Effect of neoadjuvant chemotherapy in patients with gastric cancer: a PRISMAcompliant systematic review and metaanalysis

Similar documents
PUBLISHED VERSION.

The updated incidences and mortalities of major cancers in China, 2011

A systemic review and meta-analysis for prognostic values of pretreatment lymphocyte-to-monocyte ratio on gastric cancer

Cancerous esophageal stenosis before treatment was significantly correlated to poor prognosis of patients with esophageal cancer: a meta-analysis

Can Perioperative Chemotherapy for Advanced Gastric Cancer Be Recommended on the Basis of Current Research? A Critical Analysis

Comparison of lymph node number and prognosis in gastric cancer patients with perigastric lymph nodes retrieved by surgeons and pathologists

Advances in gastric cancer: How to approach localised disease?

Comparison of complications in one-stage bilateral total knee arthroplasty with and without drainage

Neo- and adjuvant treatment for gastric cancer: The role of chemotherapy

Satisfactory surgical outcome of T2 gastric cancer after modified D2 lymphadenectomy

Impact of upfront randomization for postoperative treatment on quality of surgery in the CRITICS gastric cancer trial

Diagnostic and prognostic value of CEA, CA19 9, AFP and CA125 for early gastric cancer

Positive impact of adding No.14v lymph node to D2 dissection on survival for distal gastric cancer patients after surgery with curative intent

Association between the -77T>C polymorphism in the DNA repair gene XRCC1 and lung cancer risk

Meta-Analysis of Randomized Controlled Trial in Treating Primary Liver Cancer by Fufang Kushen Injection Combined with TACE

A study on clinicopathological features and prognostic factors of patients with upper gastric cancer and middle and lower gastric cancer.

Lack of association between IL-6-174G>C polymorphism and lung cancer: a metaanalysis

Drain versus no-drain after gastrectomy for patients with advanced gastric cancer Student EBM presentations

Weekly Versus Triweekly Cisplatin-Based Chemotherapy Concurrent With Radiotherapy in the Treatment of Cervical Cancer

Qiong Yang, 1 Ying Wei, 1 Yan-Xian Chen, 1 Si-Wei Zhou, 2 Zhi-Min Jiang, 1 and De-Rong Xie Introduction. 2. Methods

A meta-analysis of clinical trials over regimens with or without cetuximab for advanced gastric cancer patients

Metal versus plastic stents for malignant biliary obstruction: An update meta-analysis

Alectinib Versus Crizotinib for Previously Untreated Alk-positive Advanced Non-small Cell Lung Cancer : A Meta-Analysis

Does serum CA125 have clinical value for follow-up monitoring of postoperative patients with epithelial ovarian cancer? Results of a 12-year study

Association of mir-21 with esophageal cancer prognosis: a meta-analysis

Endoscopic ultrasonography compared with multidetector computed tomography for the preoperative staging of gastric cancer: a meta-analysis

Han-Yu Deng 1,2#, Chang-Long Qin 1#, Gang Li 2#, Guha Alai 2, Yidan Lin 2, Xiao-Ming Qiu 1, Qinghua Zhou 1. Original Article

Review Article The efficacy of combination of chemotherapy and cytokine-induced killer cells therapy for soft tissue cancer: a meta-analysis

Which Treatment Approach is Most Appropriate for Primary Therapy of Gastric Cancer: Neoadjuvant Chemotherapy

(Neo-) adjuvant Treatment of Gastric Cancer. - The European View

Small cell lung cancer (SCLC) accounts for approximately

Relationship Between GSTT1 Gene Polymorphism and Hepatocellular Carcinoma in Patients from China

Medicinae Doctoris. One university. Many futures.

Review Article Prognostic Role of MicroRNA-200c-141 Cluster in Various Human Solid Malignant Neoplasms

c-erbb-2 expression and prognosis of gastric cancer: a meta-analysis

Perioperative versus adjuvant management of gastric cancer, update 2013

EXPERIMENTAL AND THERAPEUTIC MEDICINE 7: , 2014

The improved cure fraction for esophageal cancer in Linzhou city

Title: What is the role of pre-operative PET/PET-CT in the management of patients with

Trastuzumab for the treatment of HER2 positive advanced gastric cancer Appraisal Consultation Document (ACD)

Gemcitabine fixed-dose rate infusion for the treatment of pancreatic carcinoma: a meta-analysis of randomized controlled trials

Characteristics and prognostic factors of synchronous multiple primary esophageal carcinoma: A report of 52 cases

Is unilateral pedicle screw fixation superior than bilateral pedicle screw fixation for lumbar degenerative diseases: a meta-analysis

Is ERAS effective and safe in laparoscopic gastrectomy for gastric carcinoma? A meta-analysis

Subdural hemorrhages in acute lymphoblastic leukemia: case report and literature review

Cancer Cell Research 17 (2018)

Gemcitabine and cisplatin regimen facilitates prognosis of advanced nasopharyngeal carcinoma

Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma

The angiotensin-converting enzyme (ACE) I/D polymorphism in Parkinson s disease

Results. NeuRA Treatments for internalised stigma December 2017

Results. NeuRA Herbal medicines August 2016

Cover Page. Author: Dikken, Johannes Leen Title: Gastric cancer : staging, treatment, and surgical quality assurance Issue Date:

Efficacy and safety of XELOX and FOLFOX6 adjuvant chemotherapy following radical total gastrectomy

GASTRIC & PANCREATIC CANCER

Clinical effectiveness of preoperative neoadjuvant chemotherapy for patients with borderline resectable pancreatic cancer: an updated meta-analysis

Van Cutsem E et al. Proc ASCO 2009;Abstract LBA4509.

Overview on Gastric Cancer

Diagnostic performance of microrna-29a for colorectal cancer: a meta-analysis

RETRACTED ARTICLE. Association between serum vitamin D levels and the risk of kidney stone: evidence from a meta-analysis

Safety and efficacy of the oblique-axis plane in ultrasound-guided internal jugular vein puncture: A meta-analysis

Research Article Survival Benefit of Adjuvant Radiation Therapy for Gastric Cancer following Gastrectomy and Extended Lymphadenectomy

The association between CDH1 promoter methylation and patients with ovarian cancer: a systematic meta-analysis

Tobias Engel Ayer Botrel 1,2*, Luciana Gontijo de Oliveira Clark 1, Luciano Paladini 1 and Otávio Augusto C. Clark 1

stage III gastric cancer after D2 gastrectomy.

Review Article Elevated expression of long noncoding RNA UCA1 can predict a poor prognosis: a meta-analysis

Local anesthetic infusion pump for pain management following total knee arthroplasty: a meta-analysis

Traumatic brain injury

Systematic reviews and meta-analyses of observational studies (MOOSE): Checklist.

Association between the CYP11B2 gene 344T>C polymorphism and coronary artery disease: a meta-analysis

disorders among Chinese: A meta-analysis Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong

American Journal of Internal Medicine

Yi-Long Yang 1, Guo-Yuan Sui 1, Guang-Cong Liu 2, De-Sheng Huang 3, Si-Meng Wang 4 and Lie Wang 1*

Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer

Review Article Long Noncoding RNA H19 in Digestive System Cancers: A Meta-Analysis of Its Association with Pathological Features

RESEARCH ARTICLE. Wei-Xiang Qi, Zan Shen, Feng Lin, Yuan-Jue Sun, Da-Liu Min, Li-Na Tang, Ai-Na He, Yang Yao* Abstract.

Downloaded from:

Oral risedronate increases Gruen zone bone mineral density after primary total hip arthroplasty: a meta-analysis

Decline of serum CA724 as a probable predictive factor for tumor response during chemotherapy of advanced gastric carcinoma

Kunihiko Izuishi, 1 Mitsuyoshi Kobayashi, 2 Takanori Sano, 1 Hirohito Mori, 1 and Kazuo Ebara Introduction

Reliability of Echocardiography Measurement of Patent Ductus Arteriosus Minimum Diameter: A Meta-analysis

CT findings in patients with Cabazitaxel induced pelvic pain and haematuria: a case series

Meta-analyses: analyses:

Significance of the lymph nodes in the 7th station in rational dissection for metastasis of distal gastric cancer with different T categories

Problem solving therapy

Comparative analysis of integrated chemotherapy regimens in treatment of end-stage gastric cancer.

The association between methylenetetrahydrofolate reductase gene C677T polymorphisms and breast cancer risk in Chinese population

Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006

intent treatment be in the elderly?

Chemoradiotherapy Versus Chemotherapy for Localized Gastric Cancer: A Mini Review

PROSPERO International prospective register of systematic reviews

Original Article CREPT expression correlates with esophageal squamous cell carcinoma histological grade and clinical outcome

Cover Page. Author: Dikken, Johannes Leen Title: Gastric cancer : staging, treatment, and surgical quality assurance Issue Date:

Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54

Neoadjuvant Therapy for Rectal Cancer is Overrated. Joon H. Lee, Research Resident University of Colorado 8/31/2009

2. The effectiveness of combined androgen blockade versus monotherapy.

Surveillance report Published: 17 March 2016 nice.org.uk

CHEMOTHERAPY FOR METASTATIC GASTRIC CANCER

Analysis of the outcome of young age tongue squamous cell carcinoma

Wen-Bin Shen 1, Hong-Mei Gao 2, Shu-Chai Zhu 1*, You-Mei Li 1, Shu-Guang Li 1 and Jin-Rui Xu 1

Michiel H.F. Poorthuis*, Robin W.M. Vernooij*, R. Jeroen A. van Moorselaar and Theo M. de Reijke

Transcription:

Miao et al. BMC Cancer (2018) 18:118 DOI 10.1186/s12885-018-4027-0 RESEARCH ARTICLE Effect of neoadjuvant chemotherapy in patients with gastric cancer: a PRISMAcompliant systematic review and metaanalysis Open Access Zhi-Feng Miao 1, Xing-Yu Liu 1, Zhen-Ning Wang 1, Ting-Ting Zhao 2, Ying-Ying Xu 2, Yong-Xi Song 1, Jin-Yu Huang 1, Hao Xu 1 and Hui-Mian Xu 1* Abstract Background: Neoadjuvant chemotherapy (NAC) is extensively used in the treatment of patients with gastric cancer (GC), particularly in high risk, advanced gastric cancer. Previous trials testing the efficacy of NAC have reported inconsistent results. Methods: This study compares the combined use of NAC and surgery with surgery alone for GC by using a metaanalytic approach. We performed an electronic search of PubMed, EmBase, and the Cochrane Library to identify randomized controlled trials (RCTs) on NAC published before Oct 2015. The primary outcome of the studies was data on survival rates for patients with GC. The summary results were pooled using the random-effects model. We included 12 prospective RCTs reporting data on 1538 GC patients. Results: Patients who received NAC were associated with significant improvement of OS (P = 0.001) and PFS (P <0.001). Furthermore, NAC therapy significantly increased the incidence of 1-year survival rate (SR) (P = 0.020), 3-year SR (P = 0.011), and 4-year SR (P = 0.001). Similarly, NAC therapy was associated with a lower incidence of 1-year (P < 0.001), 2-year (P <0. 001), 3-year (P < 0.001), 4-year (P = 0.001), and 5-year recurrence rate (P = 0.002). Conversely, patients who received NAC also experienced a significantly increased risk of lymphocytopenia (P = 0.003), and hemoglobinopathy (P = 0.021). Conclusions: The findings of this study suggested that NAC is associated with significant improvement in the outcomes of survival and disease progression for GC patients while also increasing some toxicity. Keywords: Gastric cancer, Neoadjuvant chemotherapy, Meta-analysis, Overall aurvival, Prognosis Background Although cancer-related incidence and mortality have been decreasing in the past few years, gastric cancer (GC) remains the fourth most common malignancy in world [1]. The incidence of early gastric cancer were highest in China, Japan, and Korea, which accounting for greater than 50% of the world totals [2]. The prognosis of GC patients is determined relative to their cancer stage. Such as, for patients with advanced stages of GC (III and IV preoperative TNM staging), the 5-year * Correspondence: 13898829926@163.com 1 Department of Surgical Oncology, First Hospital of China Medical University, Shenyang 110001, China Full list of author information is available at the end of the article survival rate of approximately 25 % [3]. It is estimated that local recurrence or distant metastases will happen in about 60% of GC patients even if they undergo macroscopic resection [4]. Multimodality therapy including neoadjuvent chemotherapy (NAC) therapy and D1+/D2 gastrectomy is regarded as standard of care across Europe and Australasia and is increasing accepted in North America [5]. D2 Gastrectomy with adjuvant therapy is practised routinely in Asia, whereas patients with advanced gastric tumors needed to received NAC therapy [3]. A previous meta-analysis of 6 randomized controlled trial (RCT) has no significant effect on overall survival or complete resection [6]. However, one trial [7] was included in a The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Miao et al. BMC Cancer (2018) 18:118 Page 2 of 10 previous meta-analysis despite its use of imbalanced postoperative chemotherapy, resulting in obvious bias [6]. Additionally, a misjudged trial [8] for RCT and two researches [9, 10] with unmatched postoperative treatment led to an ineligible criteria in Ge s analysis [11]. Moreover, the meta-analysis of Li et al. [12] and Wu et al. [13] included non-rcts and few qualified RCTs. Finally, the potential role of NAC as treatment in patients with GC on year-specific survival rate has not been investigated by previous meta-analyses. In order to reach a higher level of meta-analysis, the pooled data for this study will consist entirely of RCTs. Using only these qualified RCTs, we carried out a metaanalysis and systemic review to demonstrate the survival outcomes related to NAC. Methods Data sources, search strategy, and selection criteria This review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement issued in 2009 [14]. Ethics approval was not necessary for this study, as only deidentified pooled data from individual studies were analyzed. Following the Cochrane Handbook for systematic review and meta-analysis, electronic databases including the Cochrane online library, PubMed and Embase were utilized for the comprehensive search, and the following terms were used for the identification of relevant trials: ( gastric cancer OR gastric carcinoma OR gastric neoplasm OR stomach cancer OR stomach neoplasm OR stomach carcinoma OR gastroesophageal junction neoplasm OR cancer of stomach ) AND ( neoadjuvant chemotherapy OR preoperative chemotherapy ). We also conducted manual searches of reference lists from all relevant original research and review articles to identify additional eligible studies. The medical subject heading, methods, patient population, design, intervention, control, and outcome variables of these articles were used to identify relevant studies. We introduced a two-stage process to select eligible studies based on the above eligibility criteria. Studies selected via systematic identification were evaluated for consistency through their title, abstract and full text, and those that failed to meet the inclusion criteria were rejected. For the articles with only the abstract available, we tried to contact the corresponding author in an effort to obtain the full text. Trials were included if they compared NAC versus Surgery Alone (SA) in patients with GC and at least one of following reported outcomes: resectability, OS, PFS, year-specific survival rate (SR) and recurrence, and Grade 3 or 4 adverse events. Furthermore, all included studies followed a proper RCT design. There was no restriction for language or publication status. Data expressed as medians were not included and case series, case reports, reviews and duplicates were excluded. Finally, studies that reported data comparing outcomes of patients with or without postoperative chemotherapy were excluded. Data collection and quality assessment Two reviewers independently extracted data from eligible studies using a standardized data extraction table. Any disagreement was settled by discussion or, in the absence of a consensus, by a third reviewer. The data collected included the first author s name, country, publication year, number of participants, mean age, percentage male, disease status, NAC chemotherapy regimen, and design of trials included. Reported outcomes included resectability, OS, PFS, 1-year SR, 2-year SR, 3-year SR, 4-year SR, 5-year SR, 1-year recurrence rate, 2-year recurrence rate, 3-year recurrence rate, 4-year recurrence rate, 5-year recurrence rate, and Grade 3 or 4 adverse events. The quality of the eligible studies was evaluated using the Jadad scale [15]. Randomization, blinding, withdrawals, generation of random numbers, and concealment of allocation as the essential parts to a RCT, were scored ranged 0 to 5. A threshold of 4 points was regarded as a high-quality study. Any inconsistencies were solved by group discussion for a consensus. Statistical analysis We assigned the results of each RCT as dichotomous frequency data. Relative risks (RR) and 95% confidence intervals (CI) were calculated for each study from event numbers and total patients extracted from each trial before data pooling. The overall HR or RR and 95% CI of resectability, OS, PFS, 1-year SR, 2-year SR, 3-year SR, 4-year SR, 5-year SR, 1-year recurrence rate, 2-year recurrence rate, 3-year recurrence rate, 4-year recurrence rate, 5-year recurrence rate, and Grade 3 or 4 adverse events were also calculated. Both fixed-effect and random-effect models were used to evaluate the pooled HR or RR for patients who received NAC compared with patients with surgery alone. Although both models yielded similar findings, results from the random-effect model, which assumes that the true underlying effect varies among included trials, are presented here [16, 17]. Sensitivity analysis was conducted by removing each individual study from the meta-analysis [18]. Subgroup analyses were conducted for resectability, OS and PFS on the basis of country, mean age, percentage male, percentage of tumor stages (I and II), and disease status. The Egger [19] and Begg tests [20] were also used to statistically assess publication bias for each outcome. All reported P values are 2-sided, and P values < 0.05 were considered statistically significant for all included studies. Statistical analyses were performed using STATA

Miao et al. BMC Cancer (2018) 18:118 Page 3 of 10 software (version 12.0; Stata Corporation, College Station, TX, USA). Results The results of our study selection process are shown in Fig. 1. We identified 435 articles in our initial electronic search, of which 400 were excluded as duplicates or irrelevant studies. A total of 35 potentially eligible studies were selected for further judging. After detailed evaluations, 12 RCTs were selected for the final meta-analysis of the efficacy and safety of NAC and SA [7, 9, 10, 21 29]. A manual search of the reference lists of these studies did not yield any new eligible studies. The general characteristics of the included studies are presented in Table 1. The 12 included trials involve a total of 1538 GC patients. The sample sizes ranged from 38 to 503, with mean ages ranging from 54 to 64 years. Five trials were conducted in Europe [9, 10, 21, 22, 24], and the remaining 7 were conducted in Asia [7, 23, 25 29]. Study quality was evaluated using the Jadad scale. Overall, 1 trial [21] had a score of 5, 1 trial [22] had a score of 4, 3 trials [9, 10, 25] had a score of 3, 4 trials [9, 24, 28, 29] had a score of 2, and the remaining 3 trials [23, 26, 27] hadascoreof1. Data for the effect of NAC on the incidence of resectability were available from 8 trials. The summary RR showed no significant difference between NAC and SA for resectability (RR: 1.08; 95%CI: 0.97 1.19; P = 0.168; Fig. 2). Substantial heterogeneity was detected across included trials (P < 0.001). As a result, a sensitivity analysis was conducted for resectability and, after excluding Potential articles from PubMed, EmBase and the Cochrane (n=435) Articles reviewed in details (n=35) 12 trials included in meta-analysis Abstracts and title excluded during first screening (n=400) Articles excluded (n=23) No desirable outcomes (n=12) Affiliated trials (n=6) With other therapies (n=5) Fig. 1 Flow diagram of the literature search and trial selection process Cunningham et al. s trial which specifically included patients with gastroesophageal cancer, we noted that patients receiving NAC were associated with a nonsignificant increase in the incidence of resectability (RR: 1.12; 95%CI: 1.00 1.26; P = 0.058). Data for OS and PFS were available from 3 trials. NAC was associated with a statistically significant improvement in OS (HR: 0.74; 95%CI: 0.63 0.88; P = 0.001; Fig. 3) and PFS (HR: 0.67; 95%CI: 0.57 0.79; P < 0.001) as compared with SA. There was no significant heterogeneity across the included trials. Sensitivity analyses were conducted with the sequential exclusion of each trial, with no effect on the conclusions for OS and PFS. Data for the effects of NAC on the incidence of yearspecific SR were organized by increased SR per year and listed in Fig. 4. The combined RR suggests that patients who received NAC experienced a significantly increased incidence of 1-year SR (RR: 1.11; 95%CI: 1.02 1.21; P = 0.020), 3-year SR (RR: 1.30; 95%CI: 1.06 1.59; P = 0.011), and 4-year SR (RR: 1.45; 95%CI: 1.15 1.81; P = 0.001). However, there was no significant effect on the incidence of 2-year SR (RR: 1.14; 95%CI: 0.96 1.37; P = 0.137), and 5-year SR (RR: 1.33; 95%CI: 0.92 1.92; P = 0.130). Moderate heterogeneity was detected in 2-year SR and 5-year SR, while negligible heterogeneity was observed in 1-year SR, 3-year SR, and 4-year SR. Data for the effects of NAC on the incidence of year-- specific recurrence rate were grouped by increased recurrence rate per year and listed in Fig. 5. We noted that patients who received NAC had a significantly reduced risk of 1-year (RR: 0.69; 95%CI: 0.58 0.81; P <0.001), 2-year (RR: 0.78; 95%CI: 0.71 0.86; P < 0.001), 3-year (RR: 0.87; 95%CI: 0.80 0.94; P < 0.001), 4-year (RR: 0.90; 95%CI: 0.85 0.96; P = 0.001), and 5-year recurrence rate (RR: 0.93; 95%CI: 0.88 0.97; P = 0.002). There was no significant heterogeneity detected across the included trials. The combined results of WHO grade 3 or greater adverse events are presented in Table 2. Most specific adverse events were non-significant due to the low number of trials reporting this information. We noted that patients who received NAC were associated with an elevated risk of developing lymphocytopenia (RR: 2.02; 95%CI: 1.27 3.24; P = 0.003), and hemoglobinopathy (RR: 11.13; 95%CI: 1.45 85.58; P = 0.021) when compared with SA. No significant effect was detected across the included trials for other adverse events. Subgroup analyses were performed for resectability, OS, and PFS to evaluate the effect of NAC in specific subpopulations (Table 3). First, we noted NAC was associated with higher resectability if the patients included in individual trial were Asian. Second, patients who received NAC has no significant effect on OS if the mean age of patients less than 60, percentage male less than 70%, percentage of tumor stage (I and II) less than 30%, and

Miao et al. BMC Cancer (2018) 18:118 Page 4 of 10 Table 1 Baseline characteristics of studies included in the final meta-analysis First author Publication year Country Age Male (%) Sample size Chemotherapy regimen Disease status Tumor stage (I and II) NAC SA Total 43.8% 5 Cunningham [21] 2006 UK 62.0 78.7 250 253 503 Cisplatin; fluorouracil Resectable Gastroesophageal Cancer Hartgrink [22] 2004 Netherland NG NG 27 29 56 Methotrexate; 5-fluorouracil; leucovorin Hashemzadeh [23] 2014 Iran 59.2 75.7 22 52 74 Docetaxel; cisplatin; 5-fluorouracil Lygidakis [24] 1999 Greece 61.0 47.4 19 19 38 Mitomycin C; 5-fluorouracil; leucovorin; farmorubicin Resectable GC 53.6% 4 Locally advanced GC 28.0% 1 Resectable GC 36.8% 2 Qu [25] 2010 China 56.0 61.5 39 39 78 Docetaxel Advanced GC 0.0% 3 Schuhmacher [10] 2010 Europe 57.0 69.4 72 72 144 Cisplatin; fluorouracil Locally Advanced Cancer of the Stomach and Cardia Sun [26] 2011 China NG NG 29 26 55 Docetaxel; dexamethasone; cimetidine; phenergan Borrmann Type IV GC Wang [27] 2000 China 54.5 83.3 30 30 60 5-fluorouracil Gastric cardia cancer Ychou [9] 2011 France 63.0 84.0 113 111 224 Fluorouracil; cisplatin Resectable Gastroesophageal Adenocarcinoma Yonemura [7] 1993 Japan 60.5 74.5 26 29 55 Cisplatin; mitomycin C; etoposide;l-(2-tetrahydrofuryl)-5- fluorouracil; uracil Zhang [28] 2012 China NG 60.0 38 42 80 Calcium folinate; oxaliplatin; 5-fluorouracil High-Grade Advanced GC 0.0% 3 NG 1 18.3% 1 31.1% 3 16.4% 2 Advanced GC 0.0% 2 Kobayashi [29] 2000 Japan NG NG 91 80 171 5-fluorouracil Resectable GC NG 2 NAC neoadjuvant chemotherapy, SA surgery alone, GC gastric cancer NG not given Jadad score patients with GC. Third, NAC was not associated with PFS if the mean age of patients less than 60, percentage male less than 70%, percentage of tumor stage (I and II) less than 30%, and patients with GC. The Egger and Begg test results showed no evidence of publication bias for resectability, OS, PFS, 1-year SR, 2-year SR, 3-year SR, 4-year SR, 1-year recurrence, 2-year recurrence, 3-year recurrence, 4-year recurrence, or 5-year recurrence. Although the Begg test showed no evidence of publication bias for 5-year SR (P = 0.452), the Egger test showed potential evidence of publication bias for 5-year SR (P = 0.009) (Table 4). The conclusion Study Risk ratio (95% CI) % Weight Cunningham 0.92 ( 0.87, 0.98) 21.1 Hartgrink 0.90 ( 0.68, 1.18) 8.7 Hashemzadeh 1.57 ( 1.08, 2.26) 5.9 Qu 1.39 ( 1.03, 1.88) 7.9 Schuhmacher 1.03 ( 0.96, 1.10) 20.5 Sun 1.08 ( 0.82, 1.41) 9.1 Ychou 1.15 ( 1.00, 1.32) 16.1 Yonemura 1.12 ( 0.88, 1.41) 10.7 Overal 1.08 ( 0.97, 1.19); P=0.168 (I-square: 74.1%; P<0.001) 100.0.3 1 5 Risk ratio Fig. 2 Forest plot showing the relative risk in the resectability between NAC and SA

Miao et al. BMC Cancer (2018) 18:118 Page 5 of 10 Study HR (95% CI) OS Cunningham 0.75 ( 0.60, 0.93) Schuhmacher 0.84 ( 0.52, 1.35) Ychou 0.69 ( 0.50, 0.95) Subtotal 0.74 ( 0.63, 0.88); P=0.001 (I-square: 0.0%; P=0.792) PFS Cunningham 0.66 ( 0.53, 0.81) Schuhmacher 0.76 ( 0.49, 1.16) Ychou 0.65 ( 0.48, 0.89) Subtotal 0.67 ( 0.57, 0.79); P<0.001 (I-square: 0.0%; P=0.825).3.5 1 2 HR Fig. 3 Forest plot showing the hazard ratio in OS and PFS between NAC and SA Risk rati o Study (95% CI) 1 year survival rate Cunningham 1.10 ( 0.96, 1.25) Hartgrink 1.07 ( 0.68, 1.69) Schuhmacher 1.05 ( 0.91, 1.22) Sun 1.23 ( 0.74, 2.06) Ychou 1.16 ( 1.00, 1.34) Yonemura 2.12 ( 1.22, 3.69) Zhang 1.00 ( 0.80, 1.26) Subtotal 1.11 ( 1.02, 1.21); P=0.020 (I-square: 16.7%; P=0.302) 2 year survival rate Cunningham 1.40 ( 1.12, 1.76) Hartgrink 0.72 ( 0.39, 1.31) Schuhmacher 1.02 ( 0.81, 1.28) Sun 2.08 ( 0.73, 5.92) Ychou 1.20 ( 0.94, 1.55) Zhang 1.01 ( 0.69, 1.48) Subtotal 1.14 ( 0.96, 1.37); P=0.137 (I-square: 40.7%; P=0.134) 3 year survival rate Cunningham 1.60 ( 1.18, 2.18) Hartgrink 0.66 ( 0.33, 1.34) Schuhmacher 1.21 ( 0.88, 1.65) Ychou 1.37 ( 0.99, 1.89) Zhang 1.29 ( 0.82, 2.03) Subtotal 1.30 ( 1.06, 1.59); P=0.011 (I-square: 28.2%; P=0.234) 4 year survival rate Cunningham 1.70 ( 1.13, 2.56) Hartgrink 0.86 ( 0.40, 1.85) Lygidakis 1.17 ( 0.48, 2.83) Schuhmacher 1.45 ( 0.91, 2.31) Ychou 1.49 ( 0.99, 2.25) Subtotal 1.45 ( 1.15, 1.81); P=0.001 (I-square: 0.0%; P=0.624) 5 year survival rate Cunningham 2.14 ( 1.25, 3.64) Hartgrink 0.64 ( 0.27, 1.53) Schuhmacher 1.36 ( 0.67, 2.76) Wang 1.71 ( 0.78, 3.75) Ychou 1.66 ( 0.95, 2.90) Kobayashi 0.98 ( 0.78, 1.23) Subtotal 1.33 ( 0.92, 1.92); P=0.130 (I-square: 62.3%; P=0.021).3 1 5 Risk ratio Fig. 4 Forest plot showing the relative risk in 1-year SR, 2-year SR, 3-year SR, 4-year SR, and 5-year SR between NAC and SA

Miao et al. BMC Cancer (2018) 18:118 Page 6 of 10 Study Risk ratio (95% CI) 1 year recurrence Cunningham 0.71 (0.58, 0.88) Schuhmacher 0.57 (0.34, 0.96) Ychou 0.67 (0.49, 0.93) Subtotal 0.69 (0.58, 0.81); P<0.001 (I-square: 0.0%; P=0.727) 2 year recurrence Cunningham 0.78 (0.69, 0.88) Schuhmacher 0.82 (0.58, 1.15) Ychou 0.78 (0.63, 0.96) Subtotal 0.78 (0.71, 0.86); P<0.001 (I-square: 0.0%; P=0.967) 3 year recurrence Cunningham 0.87 (0.79, 0.96) Schuhmacher 0.93 (0.71, 1.22) Ychou 0.82 (0.68, 0.98) Subtotal 0.87 (0.80, 0.94); P<0.001 (I-square: 0.0%; P=0.704) 4 year recurrence Cunningham 0.92 (0.85, 0.99) Schuhmacher 0.86 (0.70, 1.05) Ychou 0.86 (0.74, 1.00) Subtotal 0.90 (0.85, 0.96); P=0.001 (I-square: 0.0%; P=0.653) 5 year recurrence Cunningham 0.93 (0.88, 0.98) Schuhmacher 0.97 (0.84, 1.12) Ychou 0.89 (0.79, 1.01) Subtotal 0.93 (0.88, 0.97); P=0.002 (I-square: 0.0%; P=0.694).3 1 5 Risk ratio Fig. 5 Forest plot showing the relative risk in 1-year recurrence, 2-year recurrence, 3-year recurrence, 4-year recurrence, and 5-year recurrence between NAC and SA was unchanged after adjustment for publication bias by using the trim and fill method [30]. Discussion This meta-analysis of studies analyzing the efficacy and safety of NAC included updated data from previously published studies and additional new RCTs not reviewed in previously published works. This additional information allows for a more robust analysis of the effect of NAC on survival outcomes for GC. The results of this updated meta-analysis indicate that NAC could elicit improvements in OS, PFS, 1-, 3-, and 4-year SR, and 1-, 2-, 3-, 4-, and 5-year recurrence in treatment of patients with GC as compared with those received SA. Conversely, patients receiving NAC also experienced a significantly increased risk of developing lymphocytopenia, and hemoglobinopathy. No other significant differences were detected across included trials. The methodological assessment of individual trial was the essential parts including randomization, blinding, withdrawals, generation of random numbers, and concealment of allocation. This meta-analysis provides clear information about randomization and withdrawals, whereas other forms were available in few trials and might contribute to heterogeneity in overall analysis. Therefore, we critically this recommendations for the treatment of patients with GC due to the unsatisfactory quality of included trials.

Miao et al. BMC Cancer (2018) 18:118 Page 7 of 10 Table 2 Summarized of grade 3 or greater adverse events Outcomes NAC group Control group RR (95% CI) P value P value for heterogeneity Granulocytopenia 67/222 52/240 1.23 (0.81 1.87) 0.338 0.209 Lymphocytopenia 46/204 23/230 2.02 (1.27 3.24) 0.003 Leukopenia 39/250 29/263 1.26 (0.59 2.66) 0.552 0.086 Hemoglobinopathy 11/239 1/252 11.13 (1.45 85.58) 0.021 Thrombocytopenia 2/287 6/286 0.35 (0.07 1.72) 0.195 0.677 Other hematologic abnormality 1/249 2/251 0.51 (0.05 5.55) 0.577 Nausea 25/264 29/263 0.86 (0.53 1.41) 0.559 0.889 Vomiting 13/237 14/239 0.94 (0.45 1.96) 0.868 Neurologic effects 10/279 7/285 1.46 (0.55 3.89) 0.453 0.329 Skin effects 8/242 2/251 4.05 (0.87 18.88) 0.075 Stomatitis 10/240 5/248 2.02 (0.70 5.84) 0.192 Diarrhea 6/244 5/248 1.21 (0.38 3.93) 0.746 There were certain limitations present in previous meta-analysis articles exploring the efficacy and safety of NAC on survival outcomes for gastric carcinoma.. Liao et al. [6] suggested that NAC was associated with an insignificant increase in the incidence of overall survival, R0 resection, postoperative complications, and perioperative mortality. Furthermore, Xiong et al. [31] conducted an updated meta-analysis of RCTs and found that NAC can significantly improve SR, 3-year PFS, tumor down-staging rate and R0 resection rate, whereas it had no significant effect on relapse rates, operative complications, perioperative mortality and grade 3/4 adverse events. However, these studies did not report year-specifically SR and recurrence. Additionally, although several trials suggest that NAC can be used as a standard therapy for patients with GC, the superiority of NAC over SA remains unclear due to the greater adverse events detected in the NAC group. Therefore, it was necessary to conduct an updated meta-analysis to explore further information regarding the efficacy and safety of the NAC in treatment of patients with GC. There was no significant overall difference for the incidence of resectability between NAC and SA groups. However, three trials included in our study reported inconsistent results. The MAGIC Trial [21] suggested that patients with resectable gastroesophageal cancer who received NAC were associated with a lower incidence of resectability, whereas two other trials [23, 25] indicated that NAC therapy significantly increased the incidence of resectability. A possible explanation could be that patients who received NAC therapy might have had their surgery postponed, allowing for the disease to progress, causing these patients to lose a chance to undergo curative surgery. The findings of our study suggest that patients who received NAC therapy experienced significant improvement in OS, PFS, and year-specifically SR and recurrence, although there was no significant difference between NAC and SA for 2-year SR and 5-year SR. The cause of this could simply be the smaller number of trials reporting these outcomes. Further, the reason for no significant difference for 5-year SR might affected by the Kobayashi et al. s study, which included patients received the low dose of 5 -deoxy-5-fluorouridine. Furthermore, the use of NAC was considered in order to lower the stage of the tumor and improve resectability and survival. Therefore, NAC might play a beneficial role in the treatment of patients with GC. As expected, NAC therapy was associated with an increased risk of some toxicity. The improvement of survival outcomes should balance these risks if used on grade 3 or greater adverse events, which optimize the impact on the patients quality of life. However, data on specific adverse events were rarely available and these results may be variable due to the low number of trials included. Therefore, we only aim to provideasyntheticandcomprehensivereviewforadverse events in aggregate. In our study, patients received NAC was associated with a higher incidence of resectability when the study included Asians. These findings were inconsistent with the study included Europeans. This could be because the percentage of tumor stage (I and II) was higher in Europe, which associated with higher resectability rate. Further, the tumor stages was higher in Asia than Europe, and the treatment effect on resectability was obvious. Two of included trials provided higher weight (21.1% and 20.5%; Fig. 2) were conducted in Europe and reported no significant effect on resectability, which could affect the treatment effect of NAC on resectability to no statistically significant [21]. In addition, disease status, tumor stages were also play an important role on treatment effect. Although no significant difference were detected, the reason could be that the analysis

Miao et al. BMC Cancer (2018) 18:118 Page 8 of 10 Table 3 Subgroup analysis Outcomes Group RR (95% CI) P value P value for heterogeneity Resectability Country Asian 1.23 (1.04 1.46) 0.015 0.243 Europe 1.00 (0.91 1.11) 0.950 0.008 Mean age (years) 60 or more 1.02 (0.81 1.29) 0.842 0.002 < 60 1.29 (0.84 1.97) 0.251 < 0.001 Percentage male (%) 70 or greater 1.13 (0.87 1.46) 0.355 < 0.001 < 70 1.14 (0.91 1.42) 0.257 0.020 Percentage of tumor stage (I and II) (%) 30 or greater 0.99 (0.83 1.18) 0.934 0.009 < 30 1.22 (0.94 1.59) 0.132 0.001 Disease status Gastroesophageal cancer 1.02 (0.81 1.29) 0.842 0.002 Gastric cancer 1.12 (0.96 1.31) 0.136 0.018 OS Country Asian Europe 0.74 (0.63 0.88) 0.001 0.792 Mean age (years) 60 or more 0.73 (0.61 0.88) 0.001 0.674 < 60 0.84 (0.52 1.35) 0.474 Percentage male (%) 70 or greater 0.73 (0.61 0.88) 0.001 0.674 < 70 0.84 (0.52 1.35) 0.474 Percentage of tumor stage (I and II) (%) 30 or greater 0.73 (0.61 0.88) 0.001 0.674 < 30 0.84 (0.52 1.35) 0.474 Disease status Gastroesophageal cancer 0.73 (0.61 0.88) 0.001 0.674 Gastric cancer 0.84 (0.52 1.35) 0.474 PFS Country Asian Europe 0.67 (0.57 0.79) < 0.001 0.825 Mean age (years) 60 or more 0.66 (0.55 0.78) < 0.001 0.936 < 60 0.76 (0.49 1.17) 0.212 Percentage male (%) 70 or greater 0.66 (0.55 0.78) < 0.001 0.936 < 70 0.76 (0.49 1.17) 0.212 Percentage of tumor stage (I and II) (%) 30 or greater 0.66 (0.55 0.78) < 0.001 0.936 < 30 0.76 (0.49 1.17) 0.212 Disease status Gastroesophageal cancer 0.66 (0.55 0.78) < 0.001 0.936 Gastric cancer 0.76 (0.49 1.17) 0.212

Miao et al. BMC Cancer (2018) 18:118 Page 9 of 10 Table 4 Publication bias Outcomes P value for Egger P value for Begg Resectability 0.363 0.711 OS 0.763 1.000 PFS 0.444 1.000 1-year survival rate 0.376 0.764 2-year survival rate 0.266 1.000 3-year survival rate 0.991 0.806 4-year survival rate 0.065 0.221 5-year survival rate 0.009 0.452 1-year recurrence 0.069 1.000 2-year recurrence 0.242 0.296 3-year recurrence 0.243 0.296 4-year recurrence 0.723 1.000 5-year recurrence 0.887 1.000 included smaller patient cohorts, and the result may be unstable. Furthermore, the results of subgroup analyses for OS and PFS were restricted due to only three trials provided the data of OS and PFS. Two strengths of our study should be highlighted. First, the large sample size allowed us to quantitatively assess the efficacy and safety of NAC in the treatment of GC patients, thus our findings are potentially more robust than those of any individual study. Second, we specifically reported year-specific SR and recurrence, and summarized grade 3 or greater adverse events, which allows for an accurate assessment of the benefits and harms for GC patients. The limitations of our study are as follows: (1) in a meta-analysis of published studies, publication bias is an inevitable problem; (2) the analysis used pooled data (individual data were not available), which restricted us from performing a more detailed relevant analysis and obtaining more comprehensive results; (3) data on adverse events or quality of life were rarely available in included trials, so the conclusion may be variable; and (4) In the planning stages, we intend conducted subgroup analyses based on gender (men, women), and tumor stages (I, or II, and III or IV), whereas the results of stratified analysis in individual trial were not available. Conclusions The findings of this study indicate that NAC might play an important role on the outcomes of survival rate and disease progression for patients with GC. However, it may also associate with an increased risk in for adverse effects. Future trials should focus on specific disease status and record pre- and post-operative adverse events. Abbreviations GC: Gastric cancer; NAC: Neoadjuvant chemotherapy; RCTs: Randomized controlled trials; SR: Survival rate Acknowledgements Not applicable Funding This work was supported by the National Natural Science Foundation of China (No. 81272718, 81302125 and 81372550). The sponsors played no role in the study design, data collection, or analysis, nor decision to submit the article for publication. Availability of data and materials The datasets used and/or analysed during the current study available from the corresponding author on reasonable request. Authors contributions ZFM and XYL assisted the conception and design, ask for funding, and acquired the necessary data. ZNW assisted with statistical analysis and interpretation of data, and provided critical revision of drafts. TTZ assisted with statistical analysis and interpretation of data, she also provided critical revision of drafts. YYX assisted with abstracts selection, and also checked meta-data against the included manuscripts. YXS wrote the manuscript. JYH and HX assisted the statistical analysis and interpretation of data, they also completed all necessary elements of the systematic review and meta-analysis. HMX assisted with conception and design, assisted with statistical analysis and interpretation of data, provided critical revision of drafts. All authors read and approved the final manuscript. Ethics approval and consent to participate Not applicable Consent for publication Not applicable Competing interests The authors declare that they have no competing interests. Publisher s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details 1 Department of Surgical Oncology, First Hospital of China Medical University, Shenyang 110001, China. 2 Department of Breast Surgery, First Hospital of China Medical University, Shenyang, China. Received: 25 October 2016 Accepted: 23 January 2018 References 1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69 90. 2. Sugano K. Screening of gastric cancer in Asia. Best Pract Res Clin Gastroenterol. 2015;29:895 905. 3. Xu AM, Huang L, Liu W, Gao S, Han WX, Wei ZJ. Neoadjuvant chemotherapy followed by surgery versus surgery alone for gastric carcinoma: systematic review and meta-analysis of randomized controlled trials. PLoS One. 2014;9:e86941. 4. Sant M, Allemani C, Santaquilani M, Knijn A, Marchesi F, Capocaccia R, EUROCARE Working Group. EUROCARE-4. Survival of cancer patients diagnosed in 1995 1999. Results and commentary. Eur J Cancer. 2009;45:931 91. 5. Mezhir JJ, Tang LH, Coit DG. Neoadjuvant therapy of locally advanced gastric cancer. J Surg Oncol. 2010;101:305 14. 6. Liao Y, Yang ZL, Peng JS, Xiang J, Wang JP. Neoadjuvant chemotherapy for gastric cancer: a meta-analysis of randomized, controlled trials. J Gastroenterol Hepatol. 2013;28:777 82. 7. Yonemura Y, Sawa T, Kinoshita K, Matsuki N, Fushida S, Tanaka S, et al. Neoadjuvant chemotherapy for high-grade advanced gastric cancer. World J Surg. 1993;17:256 61. discussion 261 62

Miao et al. BMC Cancer (2018) 18:118 Page 10 of 10 8. Zhang CW, Zou SC, Shi D, Zhao DJ. Clinical significance of preoperative regional intra-arterial infusion chemotherapy for advanced gastric cancer. World J Gastroenterol. 2004;10:3070 2. 9. Ychou M, Boige V, Pignon JP, Conroy T, Bouché O, Lebreton G, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol. 2011;29:1715 21. 10. Schuhmacher C, Gretschel S, Lordick F, Reichardt P, Hohenberger W, Eisenberger CF, et al. Neoadjuvant chemotherapy compared with surgery alone for locally advanced cancer of the stomach and cardia: European Organisation for Research and Treatment of Cancer randomized trial 40954. J Clin Oncol. 2010;28:5210 8. 11. Ge L, Wang HJ, Yin D, Lei C, Zhu JF, Cai XH, et al. Effectiveness of 5-flurouracilbased neoadjuvant chemotherapy in locally-advanced gastric/ gastroesophageal cancer: a meta-analysis. World J Gastroenterol. 2012;18:7384 93. 12. Li W, Qin J, Sun YH, Liu TS. Neoadjuvant chemotherapy for advanced gastric cancer: a meta-analysis. World J Gastroenterol. 2010;16:5621 8. 13. Wu AW, Xu GW, Wang HY, Ji JF, Tang JL. Neoadjuvant chemotherapy versus none for resectable gastric cancer. Cochrane Database Syst Rev. 2007;18:CD005047. 14. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. 15. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1 12. 16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177 88. 17. Ades AE, Lu G, Higgins JP. The interpretation of random-effects metaanalysis in decision models. Med Decis Mak. 2005;25:646 54. 18. Tobias A. Assessing the influence of a single study in meta-analysis. Stata Tech Bull. 1999;47:15 7. 19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629 34. 20. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088 101. 21. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11 20. 22. Hartgrink HH, van de Velde CJ, Putter H, Songun I, Tesselaar ME, Kranenbarg EK, et al. Neo-adjuvant chemotherapy for operable gastric cancer: long term results of the Dutch randomized FAMTX trial. Eur J Surg Oncol. 2004;30:643 9. 23. Hashemzadeh S, Pourzand A, Somi MH, Zarrintan S, Javad-Rashid R, Esfahani A. The effects of neoadjuvant chemotherapy on resectability of locallyadvanced gastric adenocarcinoma: a clinical trial. Int J Surg. 2014;12:1061 9. 24. Lygidakis NJ, Sgourakis G, Aphinives P. Upper abdominal stop-flow perfusion as a neo and adjuvant hypoxic regional chemotherapy for resectable gastric carcinoma: a prospective randomized clinical trial. Hepato- Gastroenterology. 1999;46:2035 8. 25. Qu JJ, Shi YR, Liu FR, Ma SQ, Ma FY. A clinical study of paclitaxel combined with FOLFOX4 regimen as neoadjuvant chemotherapy for advanced gastric cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2010;13:664 7. Chinese 26 Sun XC, Lin J, Ju AH. Treatment of Borrmann type IV gastric cancer with a neoadjuvant chemotherapy combination of docetaxel, cisplatin and 5- Fluorouracil/Leucovorin. J Int Med Res. 2011;39:2096 102. 27 Wang XL, Wu GX, Zhang MD, Guo M, Zhang H, Sun XF. A favorable impact of preoperative FPLC chemotherapy on patients with gastric cardia cancer. Oncol Rep. 2000;7:241 4. 28 Zhang J, Chen RX, Zhang J, Cai J, Meng H, Wu GC, et al. Efficacy and safety of neoadjuvant chemotherapy with modified FOLFOX7 regimen on the treatment of advanced gastric cancer. Chin Med J. 2012;125:2144 50. 29 Kobayashi T, Kimura T. Long-term outcome of preoperative chemotherapy with 5 -deoxy-5-fluorouridine (5 -DFUR) for gastric cancer. Jpn J Cancer Chemother. 2000;27:1521 6. 30 Duvall S, Tweedie R. A nonparametric trim and fill method for assessing publication bias in meta-analysis. J Am Stat Assoc. 2000;95:89 98. 31 Xiong B, Ma L, Cheng Y, Zhang C. Clinical effectiveness of neoadjuvant chemotherapy in advanced gastric cancer: an updated meta-analysis of randomized controlled trials. Eur J Surg Oncol. 2014;40:1321 30. Submit your next manuscript to BioMed Central and we will help you at every step: We accept pre-submission inquiries Our selector tool helps you to find the most relevant journal We provide round the clock customer support Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services Maximum visibility for your research Submit your manuscript at www.biomedcentral.com/submit