Incidence, aetiology and pattern of mandibular fractures in central Switzerland

Similar documents
Maxillofacial Trauma 4 Year prospective study at a tertiary centre in Western Nepal

Research Article Mandibular Fractures Admitted to the Emergency Department: Data Analysis from a Swiss Level One Trauma Centre

Alexander J. Sojat, BSc Tina Meisami, BSc, DDS, FRCD(C) George K.B. Sàndor MD, DDS, FRCD(C), FRCS(C), FACS Cameron M.L. Clokie, DDS, PhD, FRCD(C)

Department of Dentistry, VCSGGMS and RI, Srinagar, Pauri, Garhwal, Uttarakhand, India

1. Suneel Kumar Punjabi 2. Qadeer-ul-Hassan 3. Zaib-ul-Nisa 4. Sabir Ali

An Analysis of Maxillofacial Fractures: A 5-Year Survey of 157 Patients

Journal of American Science 2015;11(1)

Dental trauma in association with maxillofacial fractures: an epidemiological study

Pattern and Treatment of Facial Trauma in Pediatric and Adolescent Patients

The Prevalence and Distribution of. Combination Fractures in the Mandible. Dr. A Mohamed

Clinical Study An Epidemiological Study on Pattern and Incidence of Mandibular Fractures

Original Article Factors affecting the outcomes of non-surgical treatment for intracapsular condylar fractures

Patterns, Severity, and Management of Maxillofacial Injuries in a Suburban South Western Nigeria Tertiary Center

ISSN X (Print) Research Article. *Corresponding author Ali Mortazavi,

An epidemiologic survey of maxillofacial fractures and concomitant injuries in Kaduna, Nigeria

Management of Mandibular Symphysis and Para Symphysis Fractures Using a Single Mini Plate With Erich Arch Bar: Our Experience

Beate P. Hanson, MD, MPH Peter Cummings, MD, MPH Frederick P. Rivara, MD, MPH Mike T. John, DDS, MPH, PhD

Incidence of mandibular fracture in maxillofacial trauma (a retrospective study ) Mahdi Yacoub Gazar* *College of Dentistry Babylon University M J B

Three Dimensional Titanium Mini Plates in Management of Mandibular Fractures

An assessment of maxillofacial fractures treated in a suburban tertiary health facility: a 2-year study of 167 patients

Assessment of maxillofacial trauma in emergency department

AETIOLOGY, PATTERN AND MANAGEMENT OF ORAL AND MAXILLOFACIAL INJURIES AT MULAGO NATIONAL REFERRAL HOSPITAL

Epidemiological Profile and the Prevalent. Anatomic Regions of Some Maxillo Facial. Fractures Treated at National Trauma s Centre

Risk factors for maxillofacial injuries in a Brazilian emergency hospital sample

Emergency Department Visits With Facial Fractures Among Children and Adolescents: An Analysis of Profile and Predictors of Causes of Injuries

Research. Mechanisms of trauma at a rural hospital in Uganda. Open Access. Peter Hulme 1,&

Prevalence of Different Kinds of Maxillofacial Fractures and Their Associated Factors Are Surveyed in Patients

The accident injuries situation

Relationship between mandibular condyle and angle fractures and the presence of mandibular third molars

Prevention of spinal cord injuries in an Australian study (New South Wales)

MDJ Zygomatic complex fractures: a 5-year retrospective study Vol.:8 No.:3 2011

The treatment of malocclusion after open reduction of maxillofacial fracture: a report of three cases

Spine University s Guide to Whiplash and Whiplash-Associated Disorders

Five-Year Analysis of Mandible Fracture and its Associated Factors

chapter 10 INJURIES Deaths from injuries are declining, but they are still a major cause of mortality

A Study Of Mandible Fractures And Management Analysis.

Alcoholism: Community aspects and social perspective

Head Injuries In Kathmandu, Nepal

Outcomes of surgical versus nonsurgical treatment of mandibular condyle fractures

MEDICAL CODING FOR FACIAL INJURIES & RECONSTRUCTION

HOW TO CITE THIS ARTICLE:

Chapter 14. Injuries with a Focus on Unintentional Injuries & Deaths

Severe trauma presenting to the resuscitation room of a Hong Kong emergency department

Analysis of 809 Facial Bone Fractures in a Pediatric and Adolescent Population

Frequency of paediatric facial trauma in a tertiary care dental hospital

Clinical Study Mandibular Ramus Fracture: An Overview of Rare Anatomical Subsite

South Australian Alcohol and Other Drug Strategy

ROAD SAFETY IN 170 LOW-, MIDDLE-, AND HIGH-INCOME COUNTRIES

The Efficacy of Arthrocentesis in Unilateral Subcondylar Fracture

ETIOLOGY, PATTERN AND MANAGEMENT OF MAXILLOFACIAL FRACTURES IN PATIENTS SEEN AT MAYO HOSPITAL, LAHORE - PAKISTAN

International Journal of Research in Pharmacology & Pharmacotherapeutics

Maxillofacial injuries in severely injured patients

Dentoalveolar and Mandibular Body Fractures Caused by a Horse Kick: Report of a Case

Original Article Trapezoidal Condylar Plate: Report Of 15 Cases In The Management Of Mandibular Subcondylar Fracture

Maxillofacial fractures in a Swedish population incidence and etiology

Drunk Driving in Injury and Fatal Accidents in France in Interaction between Alcohol and other Offences

Assessment of Relapse Following Intraoral Vertical Ramus Osteotomy Mandibular Setback and Short-term Immobilization

Conventional radiograph verses CT for evaluation of sagittal fracture of mandibular condyle

Clinical Evaluation of the Nose: A Cheap and Effective Tool for the Nasal Fracture Diagnosis

Malpractice claims related to tooth extractions. Koskela, Sanna

Institutional communication in public health as a pillar in the prevention of road traffic accidents

Cultural Differences and Traffic Safety.

The Correlation of Patients with Spinal Cord Injury and Psychiatric Disorders. Ching Hui, Chuang Chung Hey, Chen

Complications of the use of trans-osseous wire osteosynthesis in the management of compound, unfavorable and non-comminuted mandibular angle fractures

Management of Mandibular Fractures in Children

TOBACCO CONTROL ECONOMICS TOBACCO FREE INITIATIVE PREVENTION OF NONCOMMUNICABLE DISEASES

Multi Detector Computed Tomography Evaluation of Spectrum of Facial Fractures in Motor Vehicle Accidents

INJURIES, DEATHS AND COSTS RELATED TO MOTOR VEHICLE CRASHES IN WHICH ALCOHOL WAS A FACTOR, WISCONSIN, 2011

Mandibular trauma treatment: A comparison of two protocols

Five-Year Experience with the Transoral Endoscopically Assisted Treatment of Displaced Condylar Mandible Fractures

MORBIDITY, MORTALITY AND COSTS RELATED TO MOTOR VEHICLE CRASHES IN WHICH ALCOHOL WAS A FACTOR, WISCONSIN, 2010

The Worldwide Decline in Drinking and Driving

Prevalence, Pattern and Factors associated with Dentoalveolar Injuries of Permanent Dentition in Trauma Victims Presenting at Mulago Hospital, Uganda

Key words: Third molar, Impacted tooth, Tooth Eruption, Molar, Mandible, Unerupted Tooth.

Ontario Injury Prevention Resource Centre.

Road safety. Tool 1 COMMUNITY TOOLS

DOWNLOAD OR READ : RIGID FIXATION FOR MAXILLOFACIAL SURGERY PDF EBOOK EPUB MOBI

Clinical Study Open Reduction of Subcondylar Fractures Using a New Retractor

Authors' objectives To update the evidence relating to the effectiveness of childhood injury prevention.

S. E. Udeabor, B. O. Akinbami, K. S. Yarhere, and A. E. Obiechina. Correspondence should be addressed to S. E. Udeabor;

Deceleration during 'real life' motor vehicle collisions: A sensitive predictor for the risk of sustaining a cervical spine injury?

Unusual Solitary Osteoma Coronoid Process And Aesthetic Facial Correction

Risk factors associated with facial fractures

Maxillofacial Injuries Associated With Domestic Violence

This category includes all deaths in Britain (England, Scotland and Wales) between 1981 and 2004 inclusive.

Trauma Biomechanics. Third Edition

Case study examining the impact of German reunification on life expectancy

MAXILLOFACIAL TRAUMA. The on-call maxillofacial surgeons can be contacted through the switchboard at the Southern General Hospital

The Price of Injury The Burden of Injury and the Legislative Actions to Prevent Injury

Do Radiologists and Surgeons Speak the Same Language? A Retrospective Review of Facial Trauma

Health and traffic safety behaviors in the U.S.A :

Looking Toward State Health Assessment.

Review. 1. Kinetic energy is a calculation of:

INVOLVEMENT OF DRUGS IN ACCIDENT CAUSATION

ALCOHOL AND/OR DRUGS AMONG CRASH VICTIMS DYING WITHIN 12 MONTHS OF A CRASH ON A PUBLIC ROAD, BY JURISDICTION: CANADA, 2014

A record based study of frequency and pattern of medico-legal cases reported at a tertiary care hospital in Miraj

Injuries in agriculture injury severity and mortality

ALCOHOL S BURDEN (with special attention to Africa and the NCDs)

INJURIES, DEATHS AND COSTS RELATED TO MOTOR VEHICLE CRASHES IN WHICH ALCOHOL WAS A FACTOR, WISCONSIN, 2013

Transcription:

Published 27 May 2011, doi:10.4414/smw.2011.13207 Cite this as: Incidence, aetiology and pattern of mandibular fractures in central Switzerland Zix Juergen Andreas a, Schaller Benoit a, Lieger Olivier b, Saulacic Nikola a, Thorén Hanna a, Iizuka Tateyuki a a Department of Cranio-Maxillofacial Surgery, Inselspital, University Hospital Bern, Switzerland b Department of Cranio-Maxillofacial Surgery, Kantonsspital Luzern, Luzern, Switzerland Summary PURPOSE: The two major causative factors for mandibular fractures, as stated in the literature, are either interpersonal violence or motor vehicle accidents. The purpose of this study was to describe epidemiological trends of mandibular fractures in Switzerland. A special emphasis was directed towards the potential impact of socio-economic standards on the mechanism and pattern of mandible fractures. PATIENTS AND METHODS: A database of patients aged over 16 years who had been diagnosed with a mandibular fracture between January 2000 and December 2007 at the University Hospital of Bern, Switzerland s largest Cranio- Maxillofacial-Surgery Centre, was retrospectively reviewed. Patients data including gender, age, mechanism of accident, fracture site and associated injuries were analysed and compared with previously published data. RESULTS: There were a total of 420 patients with 707 mandibular fractures. The two most common causes of injury were road traffic accidents (28%) and various types of sports injuries (21%). A total of 13% of the patients were under the influence of alcohol or drugs at admission. Fractures were predominantly situated in the condyle/subcondyle (43%) and in the symphysis/parasymphysis region (35%). Occurrences of fractures in the angle and in the body were low, at 12% and 7% respectively. CONCLUSION: In contrast to other highly developed countries, sports- and leisure-related accidents outnumbered motor vehicle accidents and altercations. The data presented here supports the assumption of a correlation of trauma cause and fracture pattern. over time. The aetiology of cranio-maxillofacial injuries is multi-factorial, mostly depending on socio-economic, demographic, cultural, technological and environmental factors. Therefore, the main mechanism of injury for mandible fractures is inconsistent in the literature. Interpersonal violence is the most common cause for mandibular fractures in North-American countries [5 8], North European countries [2, 9, 10], Australia [11, 12] and New Zealand [13, 14]. In newly industrialising and less developed countries such as Jordan [15] or Nigeria [16], motor vehicle accidents are the most common cause for mandibular fractures. In 2005, the World Bank reported that Switzerland was the richest country in the world, with a per capita wealth of 648,241 USD [17]. The high socio-economic standard and the alpine surrounding (40% of the surface are mountains) may influence the aetiology of facial trauma in Switzerland. Up to now, no epidemiological data from Switzerland have been published. The aim of this study was to evaluate the epidemiology and fracture pattern of mandibular fractures in Switzerland and compare these data to previously published studies from other highly developed countries. Furthermore, the study tried to shed light on a possible correlation of trauma mechanism and fracture pattern. Material and methods Key words: trauma; epidemiology; mandibular fracture; Switzerland Introduction Mandibular fractures are the second, most-frequent facial injuries treated at a trauma centre. According to several studies, they account for 15.5% to 59% of all facial fractures [1 4]. The epidemiological data for facial and mandibular fractures varies among countries and changes Figure 1 Trauma mechanism. Swiss Medical Weekly PDF of the online version www.smw.ch Page 1 of 5

The Cranio and Maxillofacial Surgery Unit at the Inselspital in Bern is a level-one trauma centre, which provides maxillofacial trauma coverage for a mainly suburban and rural population of about 2.5 million. Since the introduction of a computer based databank in January 2000, all patient data are recorded at the time of admission to the emergency room. All emergency reports are written and saved as an electronic medical report with the Qualicare program as previously described in the literature [18]. This program permits a text or key word search and can immediately display complete patient notes and progress reports. The observation period for the study was from January 2000 until December 2007. The search criteria included: lower jaw, mandible, mandibular fracture, condyle, condylar fracture, coronoid, angle fracture, symphysis fracture and parasymphysis fracture. Information obtained from the trauma database included the following: patient name, age, sex, trauma date, alcohol and drug abuse, sort of trauma, mechanism of injury, fracture localisation, additional injuries, investigation methods and initial therapy. In addition to the trauma data bank search, a second text search of all electronic radiological reports from the department of neuro-radiology was performed with the previously mentioned key words. Next, all the medical files of the department of cranio-maxillofacial surgery were scanned in case of incomplete data. Age was classified into 3 groups: 16 to 29 years old, 30 to 49 years old, and >50 years old. Patients under 16 years of age are also treated by our department, but could not be considered since the children s emergency room is not connected to the Qualicare database. We considered patients between 16-29 as young adults, who are often described as a risk population for mandibular fractures. The causes of the accidents were grouped into the following categories: road traffic accidents (RTA), interpersonal violence (IPV), sports, falls, occupational accidents, medical condition related accidents and other causes. Based on the documented radiographic findings, the fracture sites were assigned to one of six anatomical subsites including symphysis/parasymphysis, body, angle, ramus, condyle and coronoid process. partment of cranio-maxillofacial surgery. Thus, the mean number of fractures per patient was 1.7 and the incidence to sustain a mandibular fracture was 0.0024 p.a. The mean age was 37 years with a wide range from 16 to 97 years. With 307 patients being male and 113 female, the male-female ratio was 2.7 to 1. With 28% of all cases, the leading trauma causes were road traffic accidents (117 patients), which could be subdivided into three main categories: bicycle accidents (59 patients), motor vehicle accidents (31 patients) and motorbike accidents (21 patients) (fig. 1 and 2). Second in frequency, with 21% of all cases, were various types of sport accidents (88 patients). Ice hockey (28 patients) was the most common activity followed by skiing (23 patients) and contact sports (8 patients) (see fig. 3). Interpersonal violence accounted for 17% of all cases (72 patients) and was third in frequency, closely followed by falls (16%, 68 patients). The assault-related injuries showed a slightly increasing trend with a peak in 2006 (fig. 4). A total of 13% of all patients were under the influence of drugs or alcohol. The risk to sustain a fracture of the lower jaw declined with age. It was biggest in the age group between 16 and 29 years, and was lowest in the group over 50 years (table 1). A stratification of the trauma causes according to age is summarised in figure 5. Of the 707 total fractures, 303 were located in the condylar/ subcondylar region, followed by the symphyseal region (246), the angle (87), the body (53), the coronoid process (13) and the ramus (5) (fig. 6). Fractures of the mandibular angle were most often results of sports accidents and altercations (fig. 7). Road traffic accidents were most com- Results Over the period of 7 years, 420 patients with a total of 707 mandibular fractures were admitted and treated at the de- Figure 3 Sport related accidents. Figure 2 Road traffic accidents. Figure 4 Interpersonal violence. Swiss Medical Weekly PDF of the online version www.smw.ch Page 2 of 5

monly associated with condylar and parasymphseal fractures (table 2). A total of 93 patients (22%) had associated maxillary and mid-facial fractures. Brain commotion was observed in 19%, but severe brain injuries were extremely rare. Mandibular fractures were diagnosed using two discrete methods: 198 were diagnosed by using the currently recommended computed tomography and 222 were diagnosed with orthopantomograms and Clementschitsch (reversed Town s) view only. Discussion Figure 5 Stratification of the trauma causes according to age. Throughout the scientific literature, there is uniform consent that the typical patient with a mandibular fracture is male and between 16 and 35 years of age [2, 5 10, 12, 14]. As outlined in the introduction, the aetiology varies significantly between countries. Almost all authors try to explain this variability by socioeconomic, cultural and environmental factors. When examining the question of whether a high socioeconomic standard has an impact on the aetiology and pattern of mandibular fractures, it becomes evident that the term socioeconomic is vaguely defined. For an individual, the variables income, education, occupation and wealth account for the socioeconomic status. In fact, it has been shown that these factors correlate with illnesses and accidents [19]. In the comparison of the socioeconomic status of populations of different countries, the factor wealth is probably the most important. However, wealth is equally difficult to define and therefore multiple indices exist to quantify wealth, including intangible assets. The Gross Domestic Product (GDP) per capita does not reflect the wealth distribution, the life expectancy, the standard of education, or the standard of living. Other indicators such as the Index of Sustainable Economic Welfare (ISEW) and Human Development Index (HDI) are more comprehensive than the GDP. Switzerland ranks highest, not only in the World Bank Report on Where Is the Wealth of Nations?, but also at least within the top ten of all other methods to quantify wealth including GDP per capita [17]. In fact, our study shows some inconsistencies with data previously published on the aetiology and fracture pattern of mandibular fractures of other countries. First of all, it Figure 6 Anatomical sub-site distribution. Figure 7 Correlation of trauma mechanism and fracture site. Table 1: Age distribution and mechanism of injury. Total RTA Sport Assault Fall Occupational Illness related Other Age group 16 29 190 52 54 48 13 9 11 3 Age group 30 49 139 46 29 23 18 14 8 1 Age group >50 91 19 5 1 37 14 13 2 Table 2: Correlation of fracture site and trauma mechanism. Symphysis/ Parasymphysis Body Angle Ramus Condyle/ Subcondyle RTA 73 10 13 1 100 2 Sport 59 8 27 0 44 3 Assault 41 12 26 2 36 0 Fall 38 12 11 2 58 4 Occupational 17 6 8 0 27 1 Illness related 9 4 1 0 34 3 Other 3 0 1 0 6 0 Coronoid process Swiss Medical Weekly PDF of the online version www.smw.ch Page 3 of 5

is striking that the incidence to sustain a mandibular fracture in Switzerland is by far lower than in other countries; however, a comparison of those figures must be done with caution due to unreliable estimates on the served population. Compared to other countries such as Australia, Great Britain, Finland, Bulgaria or Kuwait, the incidence of mandibular fractures in Switzerland is markedly lower [2, 12, 20, 21] (table 3). It is noteworthy that in most publications concerning the aetiology of mandibular or facial fractures neither the number of incidences nor the number of treated patients is listed. Secondly, the mechanism of trauma differs from previous reports in many aspects. Violence was not a major cause to sustain a mandibular fracture in Switzerland, although assault is known to be a significant predictor for isolated mandible fractures [22]. In contrast to several studies, which report very high rates of interpersonal violence with almost epidemic proportions [6, 7, 14, 21], only 17% of all fractures were a consequence of assault in our patient group. For example, a recent study from neighbouring Germany showed a rate of altercation of more than 38% [9]. Some of the explanations for a low violence rate are a low unemployment-rate of roughly 3%, a generous welfare system, and the introduction of a heroin supported therapy for drug addicts in 1994 financed by the health insurance and the city, which significantly reduced drug-related crime. Nevertheless, it should not be concealed that the rate of altercation also increased in our patient population during the observation period. The explanations for this phenomenon and the peak in 2006 can only be speculative. On the other hand, it must be pointed out that none of the cases involved a gunshot wound despite a very high percentage of privately owned small arms in Switzerland [24]. Another finding that contrasts with previous epidemiological studies is the high incidence of sports related fractures with 21% of all cases. The actual number was probably even higher than reported because many of the cycling accidents were probably falsely categorised under road traffic accidents, but were in fact sport related accidents. The predominance of certain sports activities varies from country to country, and depends mostly on cultural and environmental factors [25]. In New Zealand, for example, more than half of all sports related facial fractures are the result of playing rugby [25]. In our study, winter sports accounted for 58% of all sport related injuries with playing ice hockey as the leading cause. Based on the amount of winter sport accidents (93090 persons a year), the estimated incidence of mandibular fracture (0.01%) is however very low. These findings are consistent with the figures from the Swiss Counselling Centre for Accident Prevention (BFU). In 2007, the BFU documented that with regard to facial injuries, ice hockey was by far the most dangerous of all sports activities (BFU). In both ice hockey and skiing, the protection by helmets is insufficient in the prevention of mandibular fractures. Also in cycling, conventional helmets are incapable of preventing injuries to the lower face. In our study, cycling accidents accounted for half of all road traffic accidents and outnumbered motor vehicle accidents (MVAs) by far, which are the most common cause for mandibular fractures in many countries [8, 16, 26]. Compared to cyclists, the percentage of helmet use of motorbikers is close to one hundred percent in Switzerland (38% versus 99%, respectively (BFU)), and most of them use full-face helmets. This might explain why motorcyclists are less prone to suffer a fracture of the mandible than cyclists, despite their higher velocity. Traffic law enforcement plays a critical role for traffic safety. In 2005, for example, 147 people per 1 million inhabitants died in the United States in road traffic accidents versus 55 in Switzerland (BFU). This is in part due to a strict enforcement of speed, safety and alcohol regulations. For instance, 86 out of 100 car drivers in Switzerland use their seat belt compared to countries like Turkey, where the compliance rate is only 18% [8]. Another explanation might be that most Swiss people can afford relatively new and expensive cars with advanced safety systems. Within the seven most commonly sold cars in Switzerland are high quality brands such as Mercedes, Audi, and BMW, and the average engine size is more than 2000 ccm, which is clearly above-average for all European countries [27]. It has been demonstrated that airbags and restraining devices significantly decrease the risk of sustaining a facial fracture in motor vehicle crashes [28, 29]. Regarding the relationship of trauma mechanism and fracture site, our study confirms previous findings of a correlation between aetiology and fracture pattern. The fracture classification was similar to those found in previous studies [2, 12, 22]. As previously shown by King et al., the prevalent fractures resulting from motor vehicle collisions are in the parasymphseal and condylar region, which is consistent with our results. The same applies to falls, which are most commonly associated with condylar fractures [6, 14]. An exception was the predominant fracture resulting from interpersonal violence, which in our study was in the parasymphseal and condylar region. Lee as well as King found angle fractures to be most often correlated with some sort of altercation [6, 14]. A possible explanation for our different findings could be a bias due to the small number of patients. The principal finding that sports activities outnumbered MVAs and violence as the main cause, and the low incidence of fracture compared to international figures support the assumption of a causal relationship between a socioeconomic standard and the aetiology of mandibular fractures. Nevertheless, it must be kept in mind that the comparison of different studies is limited due to multiple variables, namely differences in date of publication and incomparability of the treated patient population. Considering the comparable low number of traffic and occupational related injuries in our study, the safety measurements in these fields seem to have proven their effectiveness in the prevention of facial injuries. Hence in Switzerland, the future focus of preventive measurements should be on sports and leisure related activities. As the voluntary use of extensive facial protective gear such as full-face helmets is low, a mandatory use of helmets might be advisable, especially for ice hockey. Concerning cycling, further measurements must be found, such as optimising road conditions for cyclists. Based on the relevant literature and our own results, we support the assumption of a correlation between trauma mechanism and fracture pattern. The practical application Swiss Medical Weekly PDF of the online version www.smw.ch Page 4 of 5

of this is to optimise specific protective gear and to guide the treating physician towards a time and cost effective diagnostic workup. Funding / potential competing interests: No financial support and no other potential conflict of interest relevant to this article were reported. Correspondence: Benoit Schaller, MD, DMD, Department of Cranio-Maxillofacial Surgery, Inselspital, University Hospital Bern, CH-3010 Bern, Switzerland, benoit.schaller@insel.ch Literature 1 Brook IM, Wood N. Aetiology and incidence of facial fractures in adults. Int J Oral Surg. 1983;12(5):293 8. 2 Ellis E 3rd, Moos KF, el-attar A. Ten years of mandibular fractures: an analysis of 2,137 cases. Oral Surg Oral Med Oral Pathol. 1985;59(2):120 9. 3 Scherer M, Sullivan WG, Smith DJ Jr, Phillips LG, Robson MC. An analysis of 1423 facial fractures in 788 patients at an urban trauma center. J Trauma.1989;29(3):388 90. 4 Van Hoof RF, Merkx CA, Stekelenburg EC. The different patterns of fractures of the facial skeleton in four European countries. Int J Oral Surg. 1977;6(1):3 11. 5 Fridrich KL, Pena-Velasco G, Olson RA. Changing trends with mandibular fractures: a review of 1,067 cases. J Oral Maxillofac Surg. 1992;50(6):586 9. 6 King RE, Scianna JM, Petruzzelli GJ. Mandible fracture patterns: a suburban trauma center experience. Am J Otolaryngol. 2004;25(5):301 7. 7 Ogundare BO, Bonnick A, Bayley N. Pattern of mandibular fractures in an urban major trauma center. J Oral Maxillofac Surg. 2003;61(6):713 8. 8 Simsek S, Simsek B, Abubaker AO, Laskin DM. A comparative study of mandibular fractures in the United States and Turkey. Int J Oral Maxillofac Surg. 2007;36(5):395 7. 9 Depprich R, Handschel J, Hornung J, Meyer U, Kübler NR. Causation, therapy and complications of treating mandibular fractures a retrospective analysis of 10 years. Mund Kiefer Gesichtschir. 2007;11(1):19 26. 10 Oikarinen K, Schutz P, Thalib L, Sándor GK, Clokie C, Meisami T, et al. Differences in the etiology of mandibular fractures in Kuwait, Canada, and Finland. Dent Traumatol. 2004;20(5):241 5. 11 Allan BP, Daly CG. Fractures of the mandible a 35-year retrospective study. Int J Oral Maxillofac Surg. 1990;19(5):268 71. 12 Schön R, Roveda SI, Carter B. Mandibular fractures in Townsville, Australia: incidence, aetiology and treatment using the 2.0 AO/ASIF miniplate system. Br J Oral Maxillofac Surg. 2001;39(2):145 8. 13 Kieser J, Stephenson S, Liston PN, Tong DC, Langley JD. Serious facial fractures in New Zealand from 1979 to 1998. Int J Oral Maxillofac Surg. 2002;31(2):206 9. 14 Lee KH. Epidemiology of mandibular fractures in a tertiary trauma centre. Emerg Med J. 2008;25(9):565 8. 15 Bataineh AB. Etiology and incidence of maxillofacial fractures in the north of Jordan. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86(1):31 5. 16 Oji C. Jaw fractures in Enugu, Nigeria, 1985 95. Br J Oral Maxillofac Surg. 1999;37(2):106 9. 17 Worldbank.org [homepage on the internet]. Washington: The World Bank. 2006. Available from: http://siteresources.worldbank.org/ INTEEI/Home/20666132/WealthofNationsconferenceFINAL.pdf 18 Exadaktylos AK, Eggensperger NM, Eggli S, Smolka KM, Zimmermann H, Iizuka T. Sports related maxillofacial injuries: the first maxillofacial trauma database in Switzerland. Br J Sports Med. 2004;38(6):750 3. 19 Marmot M. The Status Syndrome: How Social Standing Affects Our Health and Longevity. New York: Times Books; 2004. 20 Bakardjiev A, Pechalova P. Maxillofacial fractures in Southern Bulgaria a retrospective study of 1706 cases. J Craniomaxillofac Surg. 2007;35(3):147 50. 21 Oikarinen K, Thalib L, Sàndor GK, Schutz P, Clokie CM, Safar S, et al. Differences in the location and multiplicity of mandibular fractures in Kuwait, Canada and Finland during the 1990s. Med Princ Pract. 2005;14(1):10 5. 22 Erdmann D, Follmar KE, Debruijn M, Bruno AD, Jung SH, Edelman D, et al. A retrospective analysis of facial fracture etiologies. Ann Plast Surg. 2008;60(4):398 403. 23 Greene D, Raven R, Carvalho G, Maas CS. Epidemiology of facial injury in blunt assault. Determinants of incidence and outcome in 802 patients. Arch Otolaryngol Head Neck Surg. 1997;123(9):923 8. 24 Smallarmssurvey.org [homepage on the internet]. Geneva: Risk and Resilience by Small Arms survey. 2008. Available from: www.smallarmssurvey.org. 25 Antoun JS, Lee KH. Sports-related maxillofacial fractures over an 11-year period. J Oral Maxillofac Surg. 2008;66(3):504 8. 26 Wong KH. Mandible fractures: a 3-year retrospective study of cases seen in an oral surgical unit in Singapore. Singapore Dent. 2000;J 23(1 Suppl):6 10. 27 Statistik.zh.ch [homepage on the internet]. Statistisches Amt des Kantons Zürich. 2010. Available from: www.statistik.zh.ch/statistik.info. 28 McMullin BT, Rhee JS, Pintar FA, Szabo A, Yoganandan N. Facial fractures in motor vehicle collisions: epidemiological trends and risk factors. Arch Facial Plast Surg. 2009;11(3):165 70. 29 Simoni P, Ostendorf R, Cox AJ 3rd. Effect of air bags and restraining devices on the pattern of facial fractures in motor vehicle crashes. Arch Facial Plast Surg. 2003;5(1):113 5. Table 3: Incidence to sustain a mandibular fracture in different countries. Country Incidence p.a. (%) Study-Group Australia 0.046 Schön R et al. 2001 Finland 0.009 Oikarinen et al. 2005 Great Britain (Scotland) 0.007 Ellis E et al. 1985 Bulgaria 0.006 Bakaradjiev et al. 2007 Kuwait 0.004 Oikarinen et al. 2005 Switzerland 0.002 Zix et al. 2011 Swiss Medical Weekly PDF of the online version www.smw.ch Page 5 of 5