Geoffrey J. Thomas, Bevan J. Buirchell & Ken G. Adcock

Similar documents
Cultural and Physiological Variation Between Isolates of Stemphylium botryosum the Causal of Stemphylium Blight Disease of Lentil (Lens culinaris)

Forest Pest Management SD14 M CI Report 87-12

Pyricularia grisea causes blight of buffel grass (Cenchrus ciliaris) in Queensland, Australia

California Leafy Greens Research Program April 1, 2014 to March 31, 2015

A Comparative Analysis of Culture Media for Optimizing the Mycelial Growth and Sporulation of Stemphylium vesicarium Cause of White Blotch of Onion

A new race of Diplocarpon rosae capable of causing severe black spot on Rosa rugosa hybrids

RESEARCH REPOSITORY.

Spore Production and Dispersal of Alternaria dauci

Forest Pathology in New Zealand No. 19 (Second Edition 2007) Poplar anthracnose. A.G. Spiers (Revised by M.A. Dick)

16 th Australian Research Assembly on Brassicas. Ballarat Victoria 2009

report on PLANT DISEASE FUNGAL LEAF SPOTS OF BLACK WALNUT

MANAGEMENT OF POWDERY MILDEW DISEASE OF RAMBUTAN (Nephelium lappaceum L.) IN SRI LANKA ABSTRACT

A NOVEL INOCULATION METHOD FOR EVALUATION OF GREY LEAF SPOT RESISTANCE IN ITALIAN RYEGRASS

Fusarium root rot of soybean occurrence, impact, and relationship with soybean cyst nematode

GRDC Grains Research Update

Management of Alternaria Leaf Blight of Bottle Gourd in Western Rajasthan, India

STEM-END ROTS: THE INFECTION PORTAL

Sorghum Grain Mold: Variability in Fungal Complex

7-012: Detection of Alternaria padwickii on Oryza sativa (Rice)

Institute of Ag Professionals

Thermo-Therapy and Use of Biofungicides and Fungicides for Management of Internal Discoloration of Horseradish Roots

Evaluation of glyphosate-tolerant soybean cultivars for resistance to bacterial pustule

RAPID SCREENING TECHNIQUE FOR ALTERNARIA BLIGHT RESISTANCE IN INDIAN MUSTARD (BRASSICA JUNCEA L.) USING COTYLEDONARY LEAF METHOD

Study of wilt producing Fusarium sp. from tomato (Lycopersicon esculentum Mill)

International Journal of Advancements in Research & Technology, Volume 6, Issue 5, May-2017 ISSN

First Report of Banana Septoria Leaf Spot Disease Caused by Septoria eumusae in Iran

CHAPTER II THE EFFECT OF TEMPERATURE AND CULTURE MEDIUM ON THE GROWTH AND SPORULATION OF DRECHSLERA CATENARIA

STUDIES ON CULTURAL, MORPHOLOGICAL AND PATHOGENIC VARIABILITY AMONG THE ISOLATES OF FUSARIUM OXYSPORUM F. SP. CICERI CAUSING WILT OF CHICKPEA

Evaluation of lime sulfur and sulforix for control of Exobasidium and Phomopsis diseases of blueberry and vinifera wine grapes, respectively

2 1 Liu Chunji 2 Kemal Kazan 2. Studies on Conditions for Sporulation of Pathogen Fusarium pseudograminearum

Pome Fruit Diseases IOBC/wprs Bull. 29(1), 2006 pp

Pathogenicity of Corynespora cassiicola in Upland Cotton

Volume XII, Number 17 September 18, Silver Scurf and Black Dot Development on Fresh Marketed Russet Norkotah Tubers in Storage

Sexual reproduction of

Pulse disease update for Syama Chatterton, Mike Harding, Robyne Bowness, Kan-Fa Chang Agronomy Update January 9-10, 2018, Red Deer, AB

EPIDEMIOLOGY AND CONTROL OF PINK ROT OF POTATOES

REPORT TO THE AGRICULTURAL RESEARCH FOUNDATION FOR THE OREGON PROCESSED VEGETABLE COMMISSION December 2010 Project Title: Management of Fusarium

CULTURAL, MORPHOLOGICAL AND BIOCHEMICAL VARIATIONS OF ALTERNARIA SOLANI CAUSING DISEASES ON SOLANACEOUS CROPS

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Guidelines for the Identification of Races of Fusarium oxysporum f. sp. melonis using Differential Melon Lines. (Version 3.0, revision: February 2016)

Necrotic Leaf Blotch A disorder of Pacific Rose. Prepared by Ross Wilson AgFirst April 2016

Screening of genotypes and effect of fungicides against purple blotch of onion.

Fusarium Species Associated with Tall Fescue Seed Production in Oregon

7-002b: Malt agar method for the detection of Alternaria radicina on Daucus carota (carrot)

Biological control of aquatic weeds by Plectosporium alismatis

Int.J.Curr.Microbiol.App.Sci (2016) 5(8):

Phytotoxicity and Efficacy of Fascination (6-Benzyl Adenine + Gibberellic Acid) for Enhanced Branching of Catnip (Nepeta cataria)

Biological control of Fusarium solani f. sp. phaseoli the causal agent of root rot of bean using Bacillus subtilis CA32 and Trichoderma harzianum RU01

Project Title: Development of a method for conducting tests for resistance to tombusviruses and lettuce dieback in the greenhouse.

Development and testing of a recommendation system to schedule copper sprays for citrus disease control

Nutrition. Grain Legume Handbook

Project title: Fusarium wilt of lettuce: management through detection, avoidance and disease resistance

Annex 14.2 GSPP Diagnostic protocol for Clavibacter michiganensis subsp. michiganensis in symptomatic tomato plants

Asian Journal of Food and Agro-Industry ISSN Available online at

The Antimicrobial Effect of Seed Coat Polymers on Soil Borne Pathogens of Castor and Groundnut

Pear Scab in Oregon Symptoms, disease cycle and management

PLANT PATHOLOGY & NEMATOLOGY

Biological control of Tradescantia fluminensis with pathogens report August 2011

Phosphorous acid for controlling Phytophthora taxon Agathis in Kauri

7-001a: Blotter method for the detection of Alternaria dauci on Daucus carota (carrot)

Colletotrichum gloeosporioides on Adhatoda vasica in India

SOIL PH IN RELATION TO BROWN STEM ROT AND SOYBEAN CYST NEMATODE N.C. Kurtzweil 1, C.R. Grau 2, A.E. MacGuidwin 3, J.M. Gaska 4, and A.W.

First order auto regression and simple regression models for prediction of grape powdery mildew in Northern Karnataka, India

Epidemiological Research on Botrytis Diseases of Tulip Plants Caused by B. tulipae and B. cinerea

Strategies and Challenges in the Management of Clubroot Disease of Canola S.E. Strelkov, S.F. Hwang, M.D. Harding

7-007: Detection of Alternaria linicola, Botrytis cinerea and Colletotrichum lini on Linum usitatissimum (flax) seed

Hands-on identification of vegetable diseases: Roses

Effect of Environmental Factors on the Growth of Aspergillus Species Associated with Stored Millet Grains in Sokoto.

Effect of Plant Height on Fusarium Head Blight in Spring Wheat

Epidemiology of Gray Leaf Spot of Perennial Ryegrass Philip Harmon and Richard Latin. Objective

DURATION OF LEAF WETNESS PERIODS AND INFECTION OF PINUS RADIATA BY DOTHISTROMA PINI

Evaluation of the Resistance in Gherkin (Cucumis anguria L.) to Fusarium Wilt and Inheritance of the Resistant Gene

Prof Ralph Noble. Mr Adrian Jansen. 30 July 2012

Physiological studies of Sclerotinia sclerotiorum causing stem rot of fennel (Foeniculum vulgare Mill.)

7-001b: Malt agar method for the detection of Alternaria dauci on Daucus carota (carrot)

Tropentag 2012, Göttingen, Germany September 19-21, 2012

PROJECT PROPOSAL SUGARBEET RESEARCH AND EDUCATION BOARD OF MINNESOTA AND NORTH DAKOTA FY

Plant Pathology Fact Sheet

Plant Pathogen Suppression the Synergistic Effect between Biofertilizer and Irradiated Oligochitosan of Tomato

Updating the Smith Period for Improved Late Blight Management in the UK

Project Title: Evaluating the Distribution and Potential Impacts of Soybean Vein Necrosis Virus in Delaware

Influence of adjuvants on the deposition of mancozeb

Bulletin 4533 ISSN X. Department of Agriculture P O L L E N. Pollen

AP249 Biological control of apple powdery mildew. Shane Dullahide Queensland Department of Primary Industries

Sensitivity of Pseudoperonospora humuli (the Causal Agent of Hop Downy Mildew) from Oregon, Idaho, and Washington to Fosetyl-Al (Aliette)

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

Fusarium sp. associated with stem diseases on sunflowers

THE PEST NAGEME NT GUIDE

Eggplant, Pepper, and Tomato. Early Blight. Identification and Life Cycle. Plant Response and Damage

Blotter method for the detection of Alternaria dauci on Daucus carota

7-002a: Blotter method for the detection of Alternaria radicina on Daucus carota (carrot)

Mycosphaerella leaf spot and other fungal diseases in organic black currant production in Norway

INFLUENCE OF TEMPERATURE AND DAYLIGHT LENGTH ON BARLEY INFECTION BY PYRENOPHORA TERES

The development of a bivariate mixed model approach for the analysis of plant survival data

Quantification of Fusarium commune in Douglas-fir Seedling Nurseries

Phytotoxicity and Efficacy of Fascination (6-Benzyl Adenine + Gibberellic Acid) for Enhanced Branching of Periwinkle (Vinca Tall Rosea Mix )

Section 5: Wheat Scab Research

Field inoculation of Actinidia sp. with Pseudomonas syringae var. actinidiae biovar 3 (Psa)

A New record of leaf spot caused by Xanthomonas campestris in Tinospora cordifolia in India

Transcription:

Re-emergence of grey leaf spot caused by Stemphylium botryosum and its implications for Western Australian lupins Geoffrey J. Thomas, Bevan J. Buirchell & Ken G. Adcock Australasian Plant Pathology Journal of the Australasian Plant Pathology Society ISSN 0815-3191 Australasian Plant Pathol. DOI 10.1007/ s13313-011-0078-2 1 23

Your article is protected by copyright and all rights are held exclusively by Australasian Plant Pathology Society Inc.. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your work, please use the accepted author s version for posting to your own website or your institution s repository. You may further deposit the accepted author s version on a funder s repository at a funder s request, provided it is not made publicly available until 12 months after publication. 1 23

Australasian Plant Pathol. DOI 10.1007/s13313-011-0078-2 Re-emergence of grey leaf spot caused by Stemphylium botryosum and its implications for Western Australian lupins Geoffrey J. Thomas & Bevan J. Buirchell & Ken G. Adcock Received: 30 June 2011 /Accepted: 8 July 2011 # Australasian Plant Pathology Society Inc. 2011 Abstract Stemphylium grey leaf spot was a damaging disease of Lupinus angustifolius crops in Western Australia during the 1970s. It has rarely been reported since the release of resistant cultivars more than 30 years ago. Severe grey leaf spot symptoms, caused by Stemphylium botryosum, were observed recently in experimental lupin plots at South Perth, Western Australia. More than a third of Lupinus angustifolius advanced breeding lines screened were susceptible, although known resistant cultivars remain effective. These investigations suggest that widespread deployment of susceptible cultivars could result in re-emergence of this disease in Western Australian lupin crops. Keywords Lupin. Stemphylium. Plant breeding. Disease resistance Grey leaf spot has been described in several countries, including Australia, causing leaf lesions and defoliation as well as stem and pod lesions on narrow-leafed lupin (Lupinus angustifolius L.) (Gladstones 1977; Tate 1970; Wells et al. 1961). Significant reductions in seed yield have been shown to occur from heavy disease pressure (Edwardson et al. 1961). Stemphylium solani in the USA (Wells et al. 1956) and Stemphylium botryosum in New Zealand and the USA (Tate 1970; Wells et al. 1961) have both been reported causing this disease. Resistance to grey leaf spot, caused by S. solani, was first identified as a naturally occurring mutant in a crop of bitter blue forage lupins (L. angustifolius) in Gainsford G. J. Thomas (*) : B. J. Buirchell : K. G. Adcock Department of Agriculture and Food Western Australia, Locked Bag No. 4, Bentley Delivery Centre, Perth, WA 6983, Australia e-mail: geoff.j.thomas@agric.wa.gov.au USA (Forbes et al. 1957). This resistance was also found to be effective against S.botryosum (Forbes et al. 1961). The resistance was based on a recessive gene pair (gl 1 gl 1 )and incorporated into various crosses resulting in the cultivar Rancher (Forbes and Wells 1967). A collaborative breeding program between the USDA and Western Australian Department of Agriculture resulted in the release of the first Australian grey leaf spot resistant variety Marri in 1976. In the early-mid 1970s in Western Australia (WA), damaging outbreaks of grey leaf spot reportedly caused by Stemphylium vesicarium, occurred in susceptible commercial narrow-leafed lupin crops, particularly in wetter seasons with late spring rains (Gladstones 1977). A series of seasons with unfavourable weather conditions coupled with the release of resistant varieties reduced incidence of the disease in WA by the late 1970s (Gladstones 1994). Grey leaf spot has been almost completely absent from WA lupin crops over the past 30 years and WA lupin breeding lines have not been screened for susceptibility during that time. Symptoms similar to those described as grey leaf spot by Wells et al. (1956), Tate (1970) and Gladstones (1977) were observed on several entries in L. angustifolius breeding trials in a shade-house in 2006 and in field plots in 2007, at South Perth, Western Australia. Differences in disease response were evident between breeding lines with some lines exhibiting an absence of any symptoms. Susceptible plants displayed roughly circular lesions on leaflets, or semi-circular lesions at the leaf edge. Immature lesions began as small (1 2 mm) dark brown spots, progressively developing into larger lesions (1 5 mm) with a dark brown margin and light brown interior; some lesions developed a target-type appearance with light and dark zones. With age, some lesions expanded and became ash-grey colour (5 mm or greater). Defoliation of some or all leaflets occurred with very heavy infection.

G.J. Thomas et al. On stems, dark brown lesions were present, initially superficial but becoming deeper with age. Lesions were generally 2 5 mm however under severe disease pressure coalesced to form larger brown patches on the stems. Small (1 5 mm) roughly circular sunken lesions were present on pods. Defoliation of lower canopy leaves and associated stem and pod lesions occurred in severely affected plants. To isolate the causal pathogen, infected leaves were surface sterilised for 30 seconds in 1% sodium hypochlorite, rinsed twice in sterile distilled water and air dried, lesions were excised, plated onto PDA and incubated for 7 days at 20 C under 12 h light/dark cycle. Single spore isolates were obtained and submitted to the Western Australian Culture collection (WAC12986, WAC13136). To produce conidia, cores taken from the edge of actively growing colonies of the two isolates were placed onto 20% V8 agar plates and incubated at 22±2 C under 12 h light/dark cycle for 14 days. Conidia were scraped from plates and suspended in water and the size and length to width (L/W) ratio was measured for 50 conidia selected at random. Conidia of WAC12986 and WAC13136 shared similar dimensions and appearance and were consistent with descriptions of S. botryosum (Simmons 1967) (Table 1). They were oblong-ovoid in shape, olive-brown in colour, constricted at 1 or more transverse septa but lacking the pointed apex of S. solani. While conidial dimensions were within the range published for S. botryosum and S. vesicarium (Table 1), Simmons (1969) notes that in culture, conidia of S. vesicarium have a L/W ratio of 2.5 3.0 compared to S. botryosum which have a L/W ratio of about 1.5. Conidial morphology was consistent with that described for S. botryosum taken from lupins in the USA (Graham and Zeiders 1960). To confirm pathogenicity, inoculum of WAC13136 was produced by streaking conidia onto V8P agar (112.5 ml V8 juice, 7.5 g Agar, 7.5 g of Difco Potato Dextrose Agar, 2.25 g CaCO 3 and 637.5 ml distilled water) (Kumar 2007) and incubating at 22±2 C under 12 h light/dark cycle for 14 days. A spore suspension was prepared by flooding V8P agar plates with sterile distilled water with 0.1% Tween 20 added and scraping the agar surface with a glass rod. The spore suspension was diluted to 2 10 5 spores per ml. Four replicate pots of 14 day old seedlings of six L. angustifolius breeding lines were spray inoculated to run-off with the spore suspension. Lines chosen had exhibited varying levels of susceptibility in initial field observations. Inoculated pots were placed inside an incubation chamber under 90% shade of natural daylight and subjected to intermittent misting for 48 hours before being transferred to the glasshouse bench at 20 C. Disease assessments were carried out 14 days after inoculation and confirmed the pathogenicity of the isolate. Cultivar disease responses confirmed the preliminary field observations. Using the described inoculum production and glasshouse inoculation techniques, Australian lupin cultivars and selected international lupin cultivars were screened for resistance. Disease severity was assessed on the first two fully expanded leaves on a 0 5 scale (0 = no symptoms, 1 = 1 2 lesions not exceeding 1 mm on each leaflet, 2 = less than 5 lesions of size 1 2 mm on each leaflet, 3 = 1 5 mm lesions, often coalescing with associated chlorosis, 4 = some leaflets completely necrotic or fallen, 5 = all leaflets completely necrotic or complete defoliation). Cultivar effects on disease severity were analysed by analysis of variance, variety means were compared using Fishers protected LSD test. Cultivars scoring less than 1 were considered resistant and were significantly different from those scoring greater than 3, which were considered susceptible. Segregating cultivars contained varying proportions of individual plants that were either resistant or susceptible. Cultivar resistance responses with the WA isolates reflected historical reports of cultivar responses to grey leaf spot. Rancher was resistant and Borre susceptible to grey leaf spot in the USA (Forbes and Wells 1967) and gave Table 1 Conidial dimensions of a) Stemphylium sp. isolates from narrow leafed lupins at South Perth, Western Australia (WA) in 2006 (WAC12986) and 2007 (WAC13136) and b) published descriptions of S. botryosum (Simmons 1967), S. vesicarium (Simmons 1969) and S. solani (Ellis and Gibson 1975) Isolate Dimensions (μm) L/W ratio (μm) Shape Colour a) WAC12986 22.5-40 15-25 1.6±0.2 # oblong-ovoid olive brown WAC13136 23-38 13-25 1.7±0.3 # oblong-ovoid olive brown b) S. botryosum 24-33 15-24 1.2 1.8 oblong-ovoid olive brown S. vesicarium 25-42 12-22 1.5 2.7 oblong-broadly oval olive brown S. solani 35-55 18-28 2 oblong-pointed apex golden brown # Mean±SD

Grey leaf spot in Western Australian lupins corresponding results in our testing. Marri was the first grey leaf spot resistant cultivar released in WA, in 1976, and has the same resistance source as Rancher (Gladstones 1977), it was resistant in our current tests. Uniwhite, Uniharvest and Unicrop were the susceptible cultivars used by WA growers in the early 1970s when grey leaf spot became evident in WA crops (Gladstones 1977) and were correspondingly highly susceptible in our testing. Of the Australian cultivars released following Marri; Belara, Coromup, Chittick, Geebung, Gungurru, Illyarrie, Jindalee, Jenabillup, Mandelup, Merrit, Tanjil, Wandoo, Warrah, Wonga, Yandee and Yorrel were resistant to the current grey leaf spot isolates. Two cultivars, Myallie and Tallerack, were susceptible and four cultivars, Danja, Kalya, Moonah and Quilinock gave segregating responses. The indication from these experiments is that the virulences of current grey leaf spot isolates are similar to those previously found in WA (and in the USA) and that the resistance introduced by Gladstones in the 1960s remains effective. However, the outbreak of grey leaf spot at South Perth indicated that a significant proportion of the advanced lupin breeding population was susceptible. Severity assessments at the infected 2007 field site (42 lines) and subsequent glasshouse assessments of advanced breeding lines in 2008 (30 lines) and 2009 (74 lines) showed that 35% of tested lines were susceptible. Additionally, 6 7% of lines showed a segregating response. This suggests that the introduction of susceptible parents into the breeding program and the absence of specific screening for this disease have allowed for a gradual erosion of resistance within the breeding population. Grey leaf spot has been rare in WA lupin crops over the last 30 years, primarily due to the resistance that is evident in most varieties released since the late 1970s. The outbreaks in 2006 and 2007 occurred only in lupin breeding experiments. Testing lupin lines for resistance to grey leaf spot was not an objective of these experiments; however the experimental conditions promoted the disease outbreak through the cultivation of high numbers of susceptible genotypes in the presence of lupin trash (including from susceptible genotypes) and dense plantings which increased canopy humidity. These outbreaks have demonstrated that the pathogen remains present within the WA environment and suggest that in WA cropping regions with favourable environments, widespread deployment of susceptible varieties could once again result in serious disease outbreaks. Various Stemphylium species have previously been associated with grey leaf spot in lupins (Gladstones 1977; Wells et al. 1956, 1961). In this instance, the pathogen involved was S. botryosum. Conceivably a number of different Stemphylium species could produce similar symptoms on lupins. However, it is apparent from a number of different sources that the resistance associated with gl 1 gl 1 is effective in all cases. Simple early generation and parental screening, using recent S. botryosum isolates, has been introduced into the WA lupin breeding program to eliminate susceptible individuals. Molecular characterisation of isolates and further examination of pathogen diversity, distribution and epidemiology is being conducted to provide better understanding of any ongoing risks associated with this disease for WA lupin production. Acknowledgements We thank Roger Shivas for assistance with morphological identification and Leanne Young for technical assistance carrying out disease screening activities. References Edwardson JR, Wells HD, Forbes I (1961) The effect of Stemphylium leaf spot complex on yield of field-planted blue Lupin. Plant Dis Rep 46:958 959 Ellis MB, Gibson IAS (1975) Stemphylium solani. [Descriptions of Fungi and Bacteria]. (48):Sheet 472 Forbes I, Wells HD (1967) Registration of rancher blue lupine (Reg. No. 2). Crop Sci 7:278 Forbes I, Wells HD, Edwardson JR (1957) Resistance to the gray leafspot disease in blue lupines. Plant Dis Rep 41:1037 1038 Forbes IJ, Wells HD, Edwardson JR, Ostazeski SA (1961) Inheritance of resistance to gray leaf spot disease and of an antho-cyanin inhibitor in blue lupines, Lupinus angustifolius L. Crop Sci 1:184 186 Gladstones JS (1977) The narrow-leafed lupin in Western Australia (Lupinus angustifolius L.), Bulletin 3990. Western Australian Department of Agriculture, South Perth Gladstones JS (1994) An historical review of lupins in Australia. Proceedings of the first Australian Lupin Technical Symposium, Perth, Western Australia, 17-21 October 1994 Graham JH, Zeiders KE (1960) Pathogenicity and morphology of some leguminicolous and related species of Stemphylium. Phytopathology 50:757 760 Kumar P (2007) Genetics of resistance to Stemphylium leaf blight of lentil (Lens culinaris) in the cross barimasur-4 CDC milestone. Master of Science, University of Saskatchewan Simmons EG (1967) Typification of Alternaria, Stemphylium, and Ulocladium. Mycologia 59:67 92 Simmons EG (1969) Perfect states of Stemphylium. Mycologia 61:1 26 Tate KG (1970) A foliage disease of blue lupin caused by Stemphylium botryosum Walk. N Z J Agric Res 13:710 716 Wells HD, Forbes I, Webb TE, Edwardson JR (1956) Two Stemphylium diseases of blue lupine. Plant Dis Rep 40:803 806 Wells HD, Forbes I, Edwardson JR (1961) The Stemphylium leaf spot complex on blue lupins. Plant Dis Rep 45:725 727