ORIGINAL INVESTIGATION. Impact of Biochemical Recurrence in Prostate Cancer Among US Veterans. having prostate cancer, assessment

Similar documents
When PSA fails. Urology Grand Rounds Alexandra Perks. Rising PSA after Radical Prostatectomy

Outcomes Following Negative Prostate Biopsy for Patients with Persistent Disease after Radiotherapy for Prostate Cancer

TREATMENT OPTIONS FOR LOCALIZED PROSTATE CANCER: QUALITY-ADJUSTED LIFE YEARS AND THE EFFECTS OF LEAD-TIME

Treatment Failure After Primary and Salvage Therapy for Prostate Cancer

NIH Public Access Author Manuscript World J Urol. Author manuscript; available in PMC 2012 February 1.

in 32%, T2c in 16% and T3 in 2% of patients.

J Clin Oncol 28: by American Society of Clinical Oncology INTRODUCTION

Since the beginning of the prostate-specific antigen (PSA) era in the. Characteristics of Insignificant Clinical T1c Prostate Tumors

Predictive factors of late biochemical recurrence after radical prostatectomy

BIOCHEMICAL RECURRENCE POST RADICAL PROSTATECTOMY

Understanding the risk of recurrence after primary treatment for prostate cancer. Aditya Bagrodia, MD

Long-Term Risk of Clinical Progression After Biochemical Recurrence Following Radical Prostatectomy: The Impact of Time from Surgery to Recurrence

estimating risk of BCR and risk of aggressive recurrence after RP was assessed using the concordance index, c.

Proposed prognostic scoring system evaluating risk factors for biochemical recurrence of prostate cancer after salvage radiation therapy

Urological Society of Australia and New Zealand PSA Testing Policy 2009

Division of Urologic Surgery and Duke Prostate Center (DPC), Duke University School of Medicine, Durham, NC

Post Radical Prostatectomy Radiation in Intermediate and High Risk Group Prostate Cancer Patients - A Historical Series

Information Content of Five Nomograms for Outcomes in Prostate Cancer

The Phoenix Definition of Biochemical Failure Predicts for Overall Survival in Patients With Prostate Cancer

Prognostic value of the Gleason score in prostate cancer

Radiation Therapy After Radical Prostatectomy

Journal of American Science 2018;14(1)

Elevated PSA. Dr.Nesaretnam Barr Kumarakulasinghe Associate Consultant Medical Oncology National University Cancer Institute, Singapore 9 th July 2017

Accuracy of post-radiotherapy biopsy before salvage radical prostatectomy

Salvage prostatectomy for post-radiation adenocarcinoma with treatment effect: Pathological and oncological outcomes

Outcomes With "Watchful Waiting" in Prostate Cancer in US Now So Good, Active Treatment May Not Be Better

VALUE AND ROLE OF PSA AS A TUMOUR MARKER OF RESPONSE/RELAPSE

CONTEMPORARY UPDATE OF PROSTATE CANCER STAGING NOMOGRAMS (PARTIN TABLES) FOR THE NEW MILLENNIUM

concordance indices were calculated for the entire model and subsequently for each risk group.

A Nomogram Predicting Long-term Biochemical Recurrence After Radical Prostatectomy

Published Ahead of Print on April 4, 2011 as /JCO J Clin Oncol by American Society of Clinical Oncology INTRODUCTION

Pre-test. Prostate Cancer The Good News: Prostate Cancer Screening 2012: Putting the PSA Controversy to Rest

PSA is rising: What to do? After curative intended radiotherapy: More local options?

Radiation dose has been reported to be an important determinant

A comparative study of radical prostatectomy and permanent seed brachytherapy for low- and intermediate-risk prostate cancer

Best Papers. F. Fusco

MATERIALS AND METHODS

Corey C Foster 1, William C Jackson 1, Benjamin C Foster 1, Skyler B Johnson 1, Felix Y Feng 1 and Daniel A Hamstra 1,2*

Protocol. This trial protocol has been provided by the authors to give readers additional information about their work.

Outcomes of Radical Prostatectomy in Thai Men with Prostate Cancer

Prostate Cancer Incidence

Percent Gleason pattern 4 in stratifying the prognosis of patients with intermediate-risk prostate cancer

Prostate Cancer. Axiom. Overdetection Is A Small Issue. Reducing Morbidity and Mortality

Preoperative Gleason score, percent of positive prostate biopsies and PSA in predicting biochemical recurrence after radical prostatectomy

Predictors of time to biochemical recurrence in a radical prostatectomy cohort within the PSA-era

Introduction. Original Article

Detection & Risk Stratification for Early Stage Prostate Cancer

Use of the cell cycle progression (CCP) score for predicting systemic disease and response to radiation of biochemical recurrence

2015 myresearch Science Internship Program: Applied Medicine. Civic Education Office of Government and Community Relations

Clinical and biochemical outcomes of men undergoing radical prostatectomy or radiation therapy for localized prostate cancer

Hormone Therapy for Prostate Cancer: Guidelines versus Clinical Practice

Comparison of external radiation therapy vs radical prostatectomy in lymph node positive prostate cancer patients

RADICAL PROSTATECTOMY IS ONE

Radical Prostatectomy:

Prostate specific antigen (PSA) is used in the follow-up of prostate

I M M U L I T E. DPC s Third Generation PSA Assay. The Clinician s Choice for PSA Testing. D P C T e c h n i c a l R e p o r t

Chapter 6. Long-Term Outcomes of Radical Prostatectomy for Clinically Localized Prostate Adenocarcinoma. Abstract

Interval to biochemical recurrence following radical prostatectomy does not affect survival in men with low-risk prostate cancer

J Clin Oncol 23: by American Society of Clinical Oncology INTRODUCTION

ORIGINAL INVESTIGATION

PROSTATE CANCER SCREENING: AN UPDATE

Good Outcome for Patients with Few Lymph Node Metastases After Radical Retropubic Prostatectomy

journal of medicine The new england Preoperative PSA Velocity and the Risk of Death from Prostate Cancer after Radical Prostatectomy abstract

Long-Term Follow-Up of a Large Active Surveillance Cohort of Patients With Prostate Cancer

Timing of Androgen Deprivation: The Modern Debate Must be conducted in the following Contexts: 1. Clinical States Model

Contemporary Approaches to Screening for Prostate Cancer

Controversies in Prostate Cancer Screening

Radical Prostatectomy versus Intensity Modulated Radiation Therapy in the Management of Localized Prostate Cancer

Appendix 1: Criteria used to assess rigour of guideline development*

Prostate Cancer: Is There Standard Treatment? Who has prostate cancer? In this article:

When radical prostatectomy is not enough: The evolving role of postoperative

Multiinstitutional Validation of the UCSF Cancer of the Prostate Risk Assessment for Prediction of Recurrence After Radical Prostatectomy

UC San Francisco UC San Francisco Previously Published Works

Prostate Cancer: from Beginning to End

Short ( 1 mm) positive surgical margin and risk of biochemical recurrence after radical prostatectomy

incision into an otherwise organ-confined cancer [1,5].

Use of early PSA velocity to predict eventual abnormal PSA values in men at risk for prostate cancer {

RADICAL PROSTATECTOMY IS SElected

Validation of the 2015 Prostate Cancer Grade Groups for Predicting Long-Term Oncologic Outcomes in a Shared Equal-Access Health System

Prognostic Value of Surgical Margin Status for Biochemical Recurrence Following Radical Prostatectomy

PSA Doubling Time Versus PSA Velocity to Predict High-Risk Prostate Cancer: Data from the Baltimore Longitudinal Study of Aging

VALUE OF PSA AS TUMOUR MARKER OF RELAPSE AND RESPONSE. ELENA CASTRO Spanish National Cancer Research Centre

PSA Screening and Prostate Cancer. Rishi Modh, MD

Prostate Cancer Local or distant recurrence?

Correspondence should be addressed to Taha Numan Yıkılmaz;

Health Screening Update: Prostate Cancer Zamip Patel, MD FSACOFP Convention August 1 st, 2015

Clinical Study Oncologic Outcomes of Surgery in T3 Prostate Cancer: Experience of a Single Tertiary Center

Managing Prostate Cancer After Initital Treatment Fails: Are There Good Next Steps?

Causes of death in men with prostate cancer: an analysis of men from the Thames Cancer Registry

Multicenter Comparison of Four Automated Immunoassay Analyzers for Prostate Specific Antigen

Clinical Study Evaluation of Serum Calcium as a Predictor of Biochemical Recurrence following Salvage Radiation Therapy for Prostate Cancer

PREVALENCE OF PROSTATE CANCER AMONG HYPOGONADAL MEN WITH PROSTATE-SPECIFIC ANTIGEN LEVELS OF 4.0 ng/ml OR LESS

Original Article. Cancer September 15,

Debate: Whole pelvic RT for high risk prostate cancer??

Int. J. Cancer: 120, (2006)

A Competing Risk Analysis of Men Age Years at Diagnosis Managed Conservatively for Clinically Localized Prostate Cancer

The U.S. Preventive Services Task Force (USPSTF) makes

Salvage Brachytherapy After External-Beam Irradiation for Prostate Cancer

The Evolving Role of PSA for Prostate Cancer. The Evolving Role of PSA for Prostate Cancer: 10/30/2017

Impact of PSA Screening on Prostate Cancer Incidence and Mortality in the US

Transcription:

ORIGINAL INVESTIGATION Impact of Biochemical Recurrence in Prostate Cancer Among US Veterans Edward M. Uchio, MD; Mihaela Aslan, PhD; Carolyn K. Wells, MPH; Juan Calderone, MD; John Concato, MD, MS, MPH Background: Among men treated for prostate cancer, increasing prostate-specific antigen (PSA) is known as biochemical failure or biochemical recurrence (BCR). The impact of BCR on subsequent mortality is uncertain, however, especially given competing causes of death. Methods: To describe patterns of BCR and subsequent mortality, we conducted an observational study in a community-based, high-comorbidity setting of 623 US veterans diagnosed as having prostate cancer from 1991 to 1995 and receiving radical prostatectomy or radiation therapy. The main outcome measures were BCR, defined as a PSA level of 0.4 ng/ml or higher (treated with surgery) or PSA nadir 2 ng/ml (treated with radiation therapy), and prostate cancer mortality, determined through 06. Results: With 5-, -, and 15-year follow-up periods, respectively (for all results shown herein), the cumulative incidence of BCR after prostatectomy (n=225) was 34%, 37%, and 37%; prostate cancer mortality among men who failed treatment (n=81) was 3%, 11%, and 21%. Among men receiving radiation therapy (n=398), the cumulative incidence of BCR was 35%, 46%, and 48%; prostate cancer mortality among those who failed treatment (n=161) was 11%, %, and 42%. Overall, BCR was associated with an increased risk of death from prostate cancer in the study population, but the individual probability of this outcome was relatively low. Conclusions: Biochemical recurrence is associated with increased prostate cancer mortality, yet when BCR occurs only a minority of men subsequently die of their disease. The phrase most men die with prostate cancer, not of it applies to elderly veterans, even after failure of primary treatment. New strategies for defining and managing treatment failure in prostate cancer are needed. Arch Intern Med. ;1(15):13-1395 Author Affiliations: Surgical Urology (Drs Uchio and Calderone) and Medical Service (Drs Aslan and Concato and Ms Wells), and the VA Clinical Epidemiology Research Center, VA Connecticut Healthcare System, West Haven (Drs Uchio, Aslan, and Concato and Ms Wells); and the Departments of Surgery and Urology (Drs Uchio and Calderone) and Medicine (Drs Aslan and Concato and Ms Wells), Yale University School of Medicine, New Haven, Connecticut. AMONG MEN DIAGNOSED AS having prostate cancer, assessment of disease recurrence after primary treatment typically includes periodic measurement of prostate-specific antigen (PSA). A detectable PSA level after radical prostatectomy, or an increasing PSA level following radiation therapy, See also pages 1396 and 1397 is considered biochemical recurrence (BCR) or PSA failure. 1,2 Biochemical recurrence can indicate disease progression years before clinical signs or symptoms develop, 3 but specific criteria for determining BCR in prostate cancer differ according to the type of treatment received. After radical prostatectomy, PSA usually becomes undetectable within 6 weeks after surgery because the major source of PSA (the prostate gland) has been removed. Detectable PSA following prostatectomy most likely implies residual or recurrent prostate cancer. A PSA level cut point of 0.2 ng/ml or higher was the most commonly used criterion among 53 definitions identified by an American Urological Association guideline panel in 07, 4 but this cut point can identify BCR that is clinically insignificant. 5 Accordingly, a cut point of 0.4 ng/ml or higher has been recommended to define BCR after radical prostatectomy. 6,7 (To convert PSA to micrograms per liter, multiply by 1.0.) After radiation therapy, residual functioning epithelium leads to a gradual decline in PSA before reaching a posttreatment nadir. In this context, the American Society for Therapeutic Radiation Oncology has promulgated definitions of BCR among patients treated with radiation therapy. 1 Owing to concerns with a prior definition, 8,9 however, a PSA level greater than absolute nadir plus 2 ng/ml has been adopted as the current criterion of BCR. 13

In clinical care, BCR often triggers secondary therapy for prostate cancer, including salvage treatment or androgen deprivation. In research activities, BCR is often used as a surrogate outcome, assuming a direct progression from PSA-defined recurrence to subsequent prostate cancer mortality. This sequence of events may not occur, however, especially among older men with competing causes of mortality, such as US veterans. Our objective was to identify patterns of BCR among men treated for localized prostate cancer, focusing on prostate cancer mortality as the health-related outcome, thereby providing clinicians with a better understanding of the clinical course of this common malignant disease. METHODS PATIENTS AND CLINICAL INFORMATION Among 64 545 male veterans at least years old receiving care at any of 9 Department of Veterans Affairs (VA) facilities in New England in 19, 1313 men developed incident prostate cancer during 1991 to 1995. 11 A comprehensive review of medical records and death registries, available for 12 men (96.7%), determined each patient s clinical characteristics and mortality follow-up. For analyses of BCR, complete data were available for 1156 men (91.0%) regarding date of treatment ( zero-time ), 12 type of treatment, date of BCR, and date and cause of death (if applicable). A more complete discussion of the clinical information available was included in a previous report 11 ; pertinent aspects include a source population of patients who used the VA as their primary site for health care (minimizing non-va testing of PSA) and a systematic approach to determine cause of death (using medical records rather than death certificates). DESCRIPTIVE ANALYSES Although choice of therapy in prostate cancer is influenced by age, clinical stage, histologic grade, comorbidity, and other factors, results obtained from clinical practice provide an overview of real-world events. We therefore generated initial survival curves, showing prostate cancer mortality according to treatment received, reflecting global outcomes. The main focus of subsequent analyses was on patients receiving surgery (prostatectomy) or radiation (external beam or brachytherapy), with or without neoadjuvant/adjuvant therapy, based on evidence in the medical record that such treatment was intended as primary curative therapy. These patients could also receive subsequent, secondary therapy, usually on the basis of new clinical evidence of disease, such as BCR or metastatic lesions. PATTERNS OF BCR Patients, % Surviving 0 Prostatectomy Radiation therapy Watch and wait Hormonal 0 5 15 Years Figure 1. Prostate cancer mortality based on treatment received (N=1156 patients). For the relevant study population of men receiving primary treatment with curative intent, we first generated Kaplan-Meier timeto-event curves for BCR, based on the type of treatment received and with the clinically applicable definition of BCR, evaluated starting 6 weeks after therapy. We also examined a timevs-psa plot for each patient, and reviewed medical records when necessary, to manually verify BCR status. Next, for each treatment group, we generated Kaplan-Meier survival curves for causespecific death according to BCR status, and we also calculated a log-rank test to evaluate the (unadjusted) association of BCR with prostate cancer mortality. Of note, to account for censoring owing to causes of death other than prostate cancer, BCR and causespecific death are reported as cumulative incidence (percentage), based on the Kaplan-Meier calculations, rather than as proportions (n/n) at the end of follow-up. SECONDARY ANALYSES As a secondary analysis, we evaluated the adjusted association between BCR and cause-specific death accounting for age, comorbidity, histologic grade, and anatomic stage to confirm the independent impact of BCR on prostate cancer mortality. In addition, to highlight the clinical implications of our data, we calculated the predicted survival for a representative, hypothetical patient receiving either prostatectomy or radiation therapy and based on whether or not they experienced BCR. Finally, although our focus on cause-specific death avoided the added complexity of conducting formal competing risk analyses, we reran our analyses focusing on overall mortality as the outcome. These calculations were performed to confirm biologic plausibility; a diminution in the strength of association was expected, if BCR increases the risk specifically for prostate cancer mortality and if non prostate cancer deaths occur. RESULTS BASELINE CHARACTERISTICS AND INTERVAL FOLLOW-UP Initial treatment for the source population (N=1156) included prostatectomy (n=231 [36%]), radiation therapy (n=412 [36%]), hormonal ablation (n=0 [17%]), or watchful waiting or none (n=313 [27%]). The pattern of prostate cancer mortality based on treatment is shown in Figure 1; this descriptive information is provided with the caveat that patient characteristics vary widely across treatment groups, precluding any assessment of therapeutic effectiveness. (Data for men receiving hormonal therapy or watchful waiting were not analyzed further.) Among the 643 men receiving prostatectomy or radiation therapy with curative intent, 623 (97%) had at least 2 follow-up PSA values, representing the study population for subsequent analyses (Table). The median age was years (interquartile range, 67-74 years), most patients were white (n=556 [89%]), and comorbidity scores 13 were none (n=194 [31%]), mild (n=1 [32%]), or moderate 1391

Table. Baseline Characteristics Among 623 Men Receiving Surgery or Radiation Therapy for Curative Intent and With Complete Data a Surgery (n=225) Radiation Both Groups (n=398) P Value b (n=623) Characteristic Age range, y.001-59 19 (8.4) 8 (2.0) 27 (4.3) -69 143 (63.6) 134 (33.7) 277 (44.5) -79 63 (28.0) 242 (.8) 5 (49.0) 0 14 (3.5) 14 (2.2) Race/ethnicity.83 African American 25 (11.1) 42 (.6) 67 (.8) All other 0 (88.9) 356 (89.4) 556 (89.2) Comorbidity (Charlson score).001 0 (none) 91 (.4) 3 (25.9) 194 (31.1) 1 (mild) (31.1) 131 (32.9) 1 (32.3) 2 (moderate) 47 (.9) 93 (23.4) 1 (22.5) 3 (severe) 17 (7.6) 71 (17.8) 88 (14.1) Anatomic stage.04 Localized (T1, T2) 221 (98.2) 374 (94.0) 595 (95.5) Regional ( T3) 4 (1.8) 24 (6.0) 28 (4.5) Differentiation (Gleason score).046 Well differentiated (2-4) 57 (25.3) 81 (.4) 138 (22.2) Moderately differentiated (5-7) 147 (65.3) 254 (63.8) 1 (64.4) Poorly differentiated (8-) 21 (9.4) 63 (15.8) 84 (13.5) Baseline PSA level, ng/ml.001 0to 4.0 39 (17.3) 38 (9.5) 77 (12.4) 4.0 to.0 5 (46.7) 157 (39.5) 262 (42.1).0 to.0 49 (21.8) 118 (29.6) 167 (26.8).0 29 (12.9) 84 (21.1) 113 (18.1) Unknown 3 (1.3) 1 (0.3) 4 (0.6) Abbreviation: PSA, prostate-specific antigen. SI conversion factor: To convert PSA to micrograms per liter, multiply by 1.0. a Data are presented as number (percentage) unless otherwise indicated. b P value is for 2 test comparing patients receiving surgery vs radiation therapy. to severe (n=228 [37%]). The median PSA value at diagnosis was 8.9 ng/ml, most (n=595 [96%]) of the cancers were localized, and most (n=1 [64%]) had moderate tumor differentiation. Although not a focus of our analysis, patients receiving radiation therapy, compared with patients receiving surgery, tended to be older with more comorbidities, and have more extensive cancer, higher Gleason scores, and higher PSA values. MORTALITY OUTCOMES After follow-up through December 06, ranging from 11 to 16 years per patient, 387 of 623 patients in the study population (62%) had died from any cause, with 48 of 387 of the deaths (12%) attributed to prostate cancer. BCR and Mortality After Prostatectomy Among men receiving prostatectomy (n=225), the pattern of BCR is shown in Figure 2A. The cumulative incidence of BCR, accounting for censoring, was 34%, 37%, and 37%, at 5,, and 15 years, respectively. The median PSA value at the time of BCR was 0. ng/ml, and secondary treatment was received by 42 men (18.7%) as either androgen deprivation therapy (n=32) or radiation therapy (n=). As shown in Figure 2B, the cumulative mortality due to prostate cancer among men who did not experience BCR (n=144) at 15 years was 0%, whereas among men (n=81) who failed treatment, subsequent prostate cancer mortality at 5,, and 15 years was 3%, 11%, and 21%, respectively (P.001). BCR and Mortality After Radiation Therapy Among men receiving radiation therapy (n=398), the pattern of BCR is shown in Figure 2C. The cumulative incidence of BCR, accounting for censoring, was 35%, 46%, and 48%, at 5,, and 15 years, respectively. The median PSA value at the time of BCR was 4.3 ng/ml, and secondary treatment was received by 88 men (22.1%), mainly as androgen deprivation therapy. As shown in Figure 2D, the cumulative mortality due to prostate cancer among men who did not experience BCR (n=237) at 15 years was 1%, whereas among men (n=161) who failed treatment, subsequent prostate cancer mortality at 5,, and 15 years was 11%, %, and 42%, respectively (P.001). ADDITIONAL ANALYSES The association of BCR and prostate cancer mortality remained statistically significant (P.001) after adjusting for age, comorbidity, histologic grade, and anatomic stage (data not shown). These results confirm the independent prognostic impact of BCR in the study population. To highlight the clinical relevance of our data, we used the same multivariable (Cox) models to predict out- 1392

CPatients, % Recurrence-free APatients, % Recurrence-free DPatients, % Surviving BPatients, % Surviving 0 0 No failure Failure P<.001 0 0 0 0 No failure Failure P<.001 0 5 15 Years 0 5 15 Years Figure 2. Kaplan-Meier curves. A, Time to biochemical recurrence (BCR) among men receiving prostatectomy (n=225); B, time to prostate cancer mortality based on BCR ( treatment failure [n=81] vs no treatment failure [n=144]) among men receiving prostatectomy; C, time to BCR among men receiving radiation therapy (n=398); and D, time to prostate cancer mortality based on BCR ( treatment failure [n=161] vs no treatment failure [n=237]) among men receiving radiation therapy. comes for hypothetical patients aged 65 years, with characteristics including a baseline PSA value of 6.0 ng/ml, a Gleason score of 7, and moderate comorbidity as per the Charlson index. 13 First, in a scenario involving prostatectomy for localized disease, a hypothetical patient would have a projected -year prostate cancer mortality of 0% if he does not experience BCR, compared with 3% if BCR occurs. Second, for a similar hypothetical patient receiving radiation therapy, the projected -year prostate cancer mortality is 2% if he does not experience BCR, compared with 14% if BCR is documented. Finally, the association of BCR with all-cause mortality was not statistically significant for men receiving surgery (P=.) or radiation therapy (P=.33) (data not shown). Thus, the predictive ability of BCR was reduced when outcomes were redefined to include non prostate-related causes of death. COMMENT Among men receiving surgery or radiation therapy with curative intent, we found that BCR of prostate cancer occurred in 37% to 48% of patients over 15 years of followup. Regardless of the type of primary treatment and the corresponding definition of failure, a plateau in BCR was observed approximately 5 years after treatment, indicating that late failures are relatively uncommon. Biochemical recurrence itself was associated (as expected) with an increased likelihood of dying from prostate cancer. Yet, even among the treatment groups with biochemical failure, death caused by prostate cancer was seen in less than half of men. Prior reports on BCR tended to focus on 1 treatment modality and to be based on the experience at referral centers. For example, an early report 3 establishing BCR as an independent predictor of metastatic disease used data from patients receiving prostatectomy from 1 surgeon. Another frequently cited report 7 compared different definitions of BCR but used data from patients postprostatectomy at a single academic institution. These and similar reports are both pertinent and important, but the results may not be generalizable to patients receiving other treatments nor to community-based practice. In particular, the incidence and impact of BCR will vary with the population of men receiving treatment and the definition of biochemical failure. We analyzed data for a representative spectrum of patients treated at 9 sites in the VA health care system. Our study population was therefore regional rather than national, yet our approach is more rigorous than case series 1393

of patients receiving 1 type of treatment at a single institution. Of note, US veterans receiving care from the VA have an approximately 2-fold higher burden of comorbid illness compared with patients in nonveteran health care systems. 14 This distinction is an important consideration in patient care and research on prostate cancer, owing to a relatively long clinical course of screening, diagnosis, treatment, and outcomes. 15- Although age-comorbidity distributions may differ in nonveteran populations, older and sicker men with prostate cancer are treated in most nonacademic settings, and our findings are therefore relevant to virtually all patient populations. Prostate cancer mortality occurs less often among men diagnosed as having prostate cancer today, compared with our data from early in the era in which PSA values began to be used to detect prostate cancer. Specifically, a shift has occurred over time toward more limited burden of disease at detection 21,22 often attributed to increased screening and treatment for prostate cancer, although both topics are the subject of some controversy. 18,23 Our results therefore provide an important opportunity to examine the association of BCR with prostate cancer mortality at a time when BCR was more prevalent, allowing us to more readily evaluate the corresponding relationship. As another conceptual point, prior published reports suggest a relatively modest benefit of secondary therapy on prostate cancer mortality. 24 Nonetheless, assuming such benefits existed in our study population, the effect of treatments (given preferentially to men with BCR) would tend to lessen the influence of BCR status on prostate cancer mortality, yet we were able to discern an impact. Differing definitions of BCR based on the type of treatment can be viewed as a study limitation, yet that very issue was the motivation for our analyses, and the same problem of different thresholds for biochemical failure exists for any study that examines populations of men receiving a full spectrum of treatments for prostate cancer. 25 Although beyond the scope of our work, a related issue involves selecting the best definition of BCR. We made a decision to focus on definitions of BCR that are contemporary as well as commonly used in clinical practice, for patients after either surgery or radiation treatment. (For example, 0.4 ng/ml has been considered preferable to 0.2 ng/ml as a threshold for determining BCR after prostatectomy, 6,7 yet our results were similar when a post hoc analysis used 0.2 ng/ml as a definition of BCR; data not shown.) Finally, multiple other issues can be raised in the context of assessing the topic of prognosis after primary treatment with curative intent. For example, molecular markers or other factors may provide independent information regarding prognosis, 11 even after accounting for clinical characteristics, including BCR. Yet, our analyses of BCR help to describe and explain real-world scenarios that are often encountered during the clinical care of patients with prostate cancer. The patterns of BCR we observed, including the expected population-based association between BCR and long-term prostate cancer mortality, confirm the importance of the disease and the continued need for vigilance among clinicians and patients. From an individual patient s viewpoint, however, BCR after primary surgery or radiation therapy usually occurs if it occurs within 5 years and is followed by death caused by prostate cancer in a minority of men, especially when a high burden of comorbidity exists. The relatively low probability of prostate cancer mortality (exemplified by the analyses describing hypothetical patients) may provide some reassurance, and perhaps improve the quality of life, among men facing this situation. Clinicians and patients should be aware of these issues, and our research emphasizes the need for an improved approach to assessing prognosis in prostate cancer. Regarding PSA measurements per se, strategies to evaluate the trajectory of PSA during or after the occurrence of BCR ( PSA kinetics involving velocity/slope or doubling time 26 ) are suitable but are typically examined in separate populations of patients treated with surgery or radiation therapy. Future work can help to define BCR in a manner that is applicable to different treatment groups and also predicts prostate cancer mortality. Accepted for Publication: May 26,. Correspondence: John Concato, MD, MS, MPH, VA Connecticut Healthcare System, 9 Campbell Ave, 151B, West Haven, CT 06516 (john.concato@yale.edu). Author Contributions: Dr Concato had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Uchio, Aslan, Wells, Calderone, and Concato. Acquisition of data: Uchio, Wells, and Concato. Analysis and interpretation of data: Uchio, Aslan, Wells, and Concato. Drafting of the manuscript: Uchio, Wells, Calderone, and Concato. Critical revision of the manuscript for important intellectual content: Uchio, Aslan, Wells, and Concato. Statistical analysis: Aslan, Wells, and Concato. Obtained funding: Concato. Administrative, technical, and material support: Uchio, Wells, Calderone, and Concato. Study supervision: Uchio, Wells, and Concato. Financial Disclosure: None reported. Additional Contributions: Donna Cavaliere provided assistance with preparation of the manuscript, and Patricia Crutchfield, John Ko, MA, MBA, Richard Feinn, PhD, and Polly Palacios, MSPH, provided technical support. REFERENCES 1. American Society for Therapeutic Radiology and Oncology Consensus Panel. Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys. 1997;37(5):35-41. 2. Lange PH, Ercole CJ, Lightner DJ, Fraley EE, Vessella R. The value of serum prostate specific antigen determinations before and after radical prostatectomy. J Urol. 1989;141(4):873-879. 3. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281(17):1591-1597. 4. Cookson MS, Aus G, Burnett AL, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol. 07;177(2):5-545. 5. Jhaveri FM, Zippe CD, Klein EA, Kupelian PA. Biochemical failure does not predict overall survival after radical prostatectomy for localized prostate cancer: - year results. Urology. 1999;54(5):884-8. 1394

6. Amling CL, Bergstralh EJ, Blute ML, Slezak JM, Zincke H. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J Urol. 01;165(4):1146-1151. 7. Stephenson AJ, Kattan MW, Eastham JA, et al. Defining biochemical recurrence of prostate cancer after radical prostatectomy: a proposal for a standardized definition. J Clin Oncol. 06;24(24):3973-3978. 8. Kuban D, Thames H, Levy L, et al. Failure definition-dependent differences in outcome following radiation for localized prostate cancer: can one size fit all? Int J Radiat Oncol Biol Phys. 05;61(2):9-414. 9. Gretzer MB, Trock BJ, Han M, Walsh PC. A critical analysis of the interpretation of biochemical failure in surgically treated patients using the American Society for Therapeutic Radiation and Oncology criteria. JUrol. 02;168(4, pt 1): 1419-1422.. Roach M III, Hanks G, Thames H Jr, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 06;65(4):965-974. 11. Concato J, Jain D, Uchio E, Risch H, Li WW, Wells CK. Molecular markers and death from prostate cancer. Ann Intern Med. 09;1(9):595-3. 12. Concato J. Challenges in prognostic analysis. Cancer. 01;91(8)(suppl):17-1614. 13. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;(5):373-383. 14. Rogers WH, Kazis LE, Miller DR, et al. Comparing the health status of VA and non-va ambulatory patients: the veterans health and medical outcomes studies. J Ambul Care Manage. 04;27(3):249-262. 15. U. S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 08; 149(3):185-191. 16. Lu-Yao G, Albertsen PC, Stanford JL, Stukel TA, Walker-Corkery E, Barry MJ. Screening, treatment, and prostate cancer mortality in the Seattle area and Connecticut: fifteen-year follow-up. J Gen Intern Med. 08;23(11):19-1814. 17. Brawley OW, Ankerst DP, Thompson IM. Screening for prostate cancer. CA Cancer J Clin. 09;59(4):264-273. 18. Concato J. What will the emperor say? screening for prostate cancer as of 08. Cancer J. 09;15(1):7-12. 19. Andriole GL, Crawford ED, Grubb RL III, et al; PLCO Project Team. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 09; 3(13):13-1319.. Schröder FH, Hugosson J, Roobol MJ, et al; ERSPC Investigators. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 09; 3(13):13-1328. 21. Han M, Partin AW, Piantadosi S, Epstein JI, Walsh PC. Era specific biochemical recurrence-free survival following radical prostatectomy for clinically localized prostate cancer. J Urol. 01;166(2):416-419. 22. Kupelian PA, Buchsbaum JC, Elshaikh MA, Reddy CA, Klein EA. Improvement in relapse-free survival throughout the PSA era in patients with localized prostate cancer treated with definitive radiotherapy: year of treatment an independent predictor of outcome. Int J Radiat Oncol Biol Phys. 03;57(3):629-634. 23. Barry MJ. Screening for prostate cancer: the controversy that refuses to die. N Engl JMed. 09;3(13):1351-1354. 24. Crawford ED, Eisenberger MA, McLeod DG, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med. 1989;321 (7):419-424. 25. Anscher MS. PSA kinetics and risk of death from prostate cancer: in search of the Holy Grail of surrogate end points. JAMA. 05;294(4):493-494. 26. Sengupta S, Amling C, D Amico AV, Blute ML. Prostate specific antigen kinetics in the management of prostate cancer. J Urol. 08;179(3):821-826. 1395