Effect of Different Bur Grinding on the Bond Strength of Self etching Adhesives

Similar documents
Title. CitationJournal of Dentistry, 34(3): Issue Date Doc URL. Type. File Information. Author(s) Hidehiko; Sidhu, Sharanbir K.

Anisotropy of Tensile Strengths of Bovine Dentin Regarding Dentinal Tubule Orientation and Location

Effect of various grit burs on marginal integrity of resin composite restorations

Adper Easy Bond. Self-Etch Adhesive. Technical Product Profile

JBR Journal of Interdisciplinary Medicine and Dental Science

Bond Strength of Total-Etch Dentin Adhesive Systems on Peripheral and Central Dentinal Tissue: A Microtensile Bond Strength Test

UNIVERSAL ADHESIVE SYSTEM. PEAK UNIVERSAL BOND Light-Cured Adhesive with Chlorhexidine

The Effect of Subject Age on the Microtensile Bond Strengths of a Resin and a Resin-modified Glass Ionomer Adhesive to Tooth Structure

Can previous acid etching increase the bond strength of a self-etching primer adhesive to enamel?

Study of Shear Bond Strength of Two Adhesive Resin Systems

Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

of Resin Composite V Gopikrishna M Abarajithan J Krithikadatta D Kandaswamy

Effect of Surface Treatments and Different Adhesives on the Hybrid Layer Thickness of Non-carious Cervical Lesions

***Handout*** Adhesive Dentistry Harald O. Heymann, DDS MEd Dentin Bonding Rewetting/Desensitization

Effects of Surface Texture and Etching Time on Roughness and Bond Strength to Ground Enamel

Long-term Durability of One-step Adhesive-composite Systems to Enamel and Dentin

Interface Characterization and Nanoleakage of One-step Self-etch Adhesive Systems

MDJ Evaluation the effect of eugenol containing temporary Vol.:9 No.:2 2012

Shear Bond Strength of 4 Current Adhesives in Caries-Affected Dentin

Effect of Self-etchant ph on Shear Bond Strength of Orthodontic Brackets: An in vitro Study

Influence of resin-tags on shear-bond strength of butanol-based adhesives

Fluid Movement across the Resin-Dentin Interface during and after Bonding

Objective: To evaluate the effect of optional phosphoric acid etching on the shear

Effect of 10% Phosphoric acid Conditioning on the Efficacy of a Dentin Bonding System

Evaluation the Effect of Different Surface Treatment on Shear Bond Strength between Composite Increments (An in vitro study)

Title. Issue Date Doc URL. Type. File Information. Author(s) Masaharu; Sato, Takahiro; Sano, Hidehiko. Citation269(20):

Effect of Chlorhexidine Application in a Self-etching Adhesive on the Immediate Resin-Dentin Bond Strength

Enamel Bond Strength of New Universal Adhesive Bonding Agents

Effect of Water Storage on the Bonding Effectiveness of 6 Adhesives to Class I Cavity Dentin

Effect of Prolonged Application Times on Resin-Dentin Bond Strengths

Adper Scotchbond SE. Self-Etch Adhesive. Self-etch technology that s visibly better

The Microtensile Bond Strength of Self-etching Adhesives to Ground Enamel

Compilation of Scientific Abstracts and study results. CleaRfil Tm S³ BoND plus CleaRfil Tm DC CoRE plus

Forgives Nothing. Forgives Almost Anything. Science Update

Effect of time on tensile bond strength of resin cement bonded to dentine and low-viscosity composite

Comparison of Microtensile Bond Strength to Enamel and Dentin of Human, Bovine, and Porcine Teeth

G-Premio BOND. Introducing a premium bonding experience

The Influence of Temperature of Three Adhesive Systems on Bonding to Ground Enamel

Micro-tensile bond strength of one-step adhesives to dentin

Effect of Cavosurface Angle on Dentin Cavity Adaptation of Resin Composites

Restoration Interface Microleakage Using Two Total-etch and Two Self-etch Adhesives

Bond strengths between composite resin and auto cure glass ionomer cement using the co-cure technique

values is of great interest.

G-Premio BOND. One component light cured universal adhesive. BOND with the BEST

Bond Strengths of Resin Cements to

Influence of zinc oxide-eugenol temporary cement on bond strength of an all-in-one adhesive system to bovine dentin

Effect of surface treatment with commercial primers on tensile bond strength of auto-polymerizing resin to magnetic stainless steel

A direct composite fixed partial denture fabricated using a wax mock-up technique: A clinical report

Influence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin

Morphology of the dentin on primary molars after the application of phosphoric acid under different conditions

Immediate dentin sealing improves bond strength of indirect restorations

Immediate Dentin Sealing and Cerec How to avoid sensivities 100 pc and how to have lots of practical advantages

Bond Strength of Self-etch Adhesives After Saliva Contamination at Different Application Steps

Impact of different acid etching time on microtensile bond strength to vital dentin

Bonding Efficacy of Single-step Self-etch Systems to Sound Primary and Permanent Tooth Dentin

monomers in self-etching primers

Etching with EDTA- An in vitro study

The Histology of Dentin

Etched Enamel Structure and Topography: Interface with Materials

5,6 Significant improvements of the dentin bond

SEM study of a self-etching primer adhesive system used for dentin bonding in primary and permanent teeth

Literaturverzeichnis: 1. Tay FR, Frankenberger R, Krejci I et al. (2004) Single-bottle adhesives behave as permeable membranes after polymerization. I

A comparison of three resin bonding agents to primary tooth dentin

Original Research. Contributors: 1

etching systems with mixing self-etching Etch & Rinse systems 3-year Water-storage Class-V Dentin Margin Integrity of Adhesives

Effect of Conditioning on Adhesion of Glass Ionomer Cements to Dentin

Clinical factors influencing dentin bonding

Adhesive dentistry has provided

Long Term Evaluation of the Sealing Ability of 2 Root Canal Sealers in Combination with Self-etching Bonding Agents

Experimental and Numerical Study the Effect of Materials Changing on Behavior of Dental Bur (Straight Fissure) under Static Stress Analysis

Effect of different etching periods on the bond strength of a composite resin to a machinable porcelain

Fuji II LC. A Perfect Choice

Effect of Double-application or the Application of a Hydrophobic Layer for Improved Efficacy of One-step Self-etch Systems in Enamel and Dentin

The Effect of Deproteinization of Dentin Surface on the Micro-Shear Bond Strength to Dentin

Downloaded from jdm.tums.ac.ir at 10:02 IRDT on Friday August 17th 2018

Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging

Comparative Evaluation of Perimarginal Enamel Demineralization among Total Etch, Two Step

Conditioning effect on dentin, resin tags and hybrid layer of different acidity self-etch adhesives applied to thick and thin smear layer

Effect of Chlorhexidine Application Methods on Microtensile Bond Strength to Dentin in Class I Cavities

DH220 Dental Materials

Effects of Cavity Configuration on Bond Strength and Microleakage of Composite Restoration

Effect of modified smear layer on the bond strength of all-in-one adhesives to dentin

INTRODUCTION. Restorative Dentistry

In nitro bond strength of cements to treated teeth

Morphological Evaluation of 2- and 1-step Self-etching System Interfaces with Dentin

Increases in Dentin-bond Strength If Doubling Application Time of an Acetone-containing One-step Adhesive

Adhesion of 10-MDP containing resin cements to dentin with and without the etchand-rinse

Effect of long-term water aging on microtensile bond strength of self-etch adhesives to dentin

Stability of wet versus dry bonding with different solvent-based adhesives

Bonding to dentine: How it works. The future of restorative dentistry

Do the origins of primary teeth affect the bond strength of a self-etching adhesive system to dentin?

1. RPD Acrylic portions = denture teeth (DT), denture base (DB) (and veneering)

Comparison of removal of endodontic smear layer using NaOCl, EDTA, and different concentrations of maleic acid A SEM study

Repair of fractured denture bases is an

THE ONE AND ONLY. CLEARFIL Universal Bond

Adhesive Solutions. Scotchbond Universal Adhesive. SEM pictures of Scotchbond Universal Adhesive. One bottle for all cases! Total-Etch and Self-Etch

Adper Scotchbond SE Self-Etch Adhesive. technical product profile. Adper

Effect of smear layer treatment on dentin bond of self-adhesive cements

Pulpal Protection: bases, liners, sealers, caries control Module C: Clinical applications

Microleakage of a Microhybrid Composite Resin Using Three Different Adhesive Placement Techniques

Transcription:

Operative Dentistry, 2006, 31-3, 317-323 Laboratory Research Effect of Different Bur Grinding on the Bond Strength of Self etching Adhesives S Semeraro D Mezzanzanica D Spreafico M Gagliani D Re T Tanaka SK Sidhu H Sano Clinical Relevance In some self-etching systems, selecting the proper bur type for cutting dentin is important for improving bond strength. SUMMARY This study compared the microtensile bond strength (MTBS) of three all-in-one adhesive systems and a two-step system using two types of burs to prepare the dentin surfaces. Flat coronal Stefano Semeraro, DDS, Department of Prosthodontics, School of Dentistry, University of Milan, Milan, Italy Dario Mezzanzanica, DDS, Department of Restorative and Endodontics, School of Dentistry, University of Milan, Milan, Italy Diego Spreafico, DDS, Department of Prosthodontics, School of Dentistry, University of Milan, Milan, Italy Massimo Gagliani, MD, DDS, PhD, associate professor, Department of Restorative and Endodontics, School of Dentistry, University of Milan, Milan, Italy Dino Re, MD, DDS, PhD, researcher, Department of Prosthodontics, School of Dentistry, University of Milan, Milan, Italy Toru Tanaka, DDS, PhD, assistant professor, Cariology, Operative Dentistry and Endodontology, Department of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan Sharanbir K Sidhu, BDS, MSc, PhD, FICD, MFDSRCS, FADM, lecturer, Restorative Dentistry, School of Dental Sciences, University of Newcastle, Newcastle upon Tyne, UK *Hidehiko Sano, DDS, PhD, professor, Cariology, Operative Dentistry and Endodontology, Department of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan *Reprint request: Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan; e-mail: sano@den.hokudai.ac.jp DOI: 10.2341/04-171 surfaces of 24 extracted human molars were produced using either regular-grit or superfine-grit diamond burs. Resin composite was then bonded to equal numbers of these surfaces using one of the four adhesives: Clearfil SE Bond (CSE), G- Bond (GB), SSB-200 (SSB) or Prompt L-Pop (PLP). After storage for 24 hours in 37 C distilled water, the bonded teeth were sectioned into slices (0.7-mm thick) perpendicular to the bonded surface. The specimens were then subjected to microtensile testing and the bond strengths were calculated at failure. Bond strength data were analyzed by two-way ANOVA and the Games- Howell test for interaction between adhesive and type of cut dentin. The fractured surfaces were observed by SEM to determine the failure mode. In addition, to observe the effect of conditioning, equal numbers of the two bur-cut dentin surfaces of eight additional teeth were conditioned with the adhesives and observed by SEM. Based on the results, when CSE and SSB were bonded to dentin cut with a regular-grit diamond bur, the MTBS values were significantly lower than that of superfine bur-cut dentin; whereas, GB and PLP showed no significant differences in MTBS between the two differently cut surfaces. SEM observation of the fractured surfaces revealed a mixed mode (adhesive in some areas and cohesive in others in the same sample) of failure in all specimens except PLP, which showed cohesive failure within the adhesive for both types of bur

318 Operative Dentistry preparation. Generally, SEMs of the conditioned surfaces using both types of burs showed partial removal of the smear layer for CSE, minimal for GB and SSB and complete removal for PLP. In conclusion, when cutting dentin, selecting the proper bur type is important for improving the bond strength of some self-etching adhesive systems. INTRODUCTION The smear layer has been defined as a layer of debris on the surface of dental tissues created by cutting a tooth (Eick & others, 1970). It varies in thickness, roughness, density and degree of attachment to the underlying tooth structure according to the surface preparation (Charbeneau, Peyton & Anthony, 1957; Gilboe & others, 1980). As part of restorative procedures in adhesive dentistry, the smear layer must be removed, modified or impregnated by the resin to allow for bonding between the tooth and the restorative material (Swift Jr, Perdigão & Heymann, 1995; Pashley & Carvalho, 1997). The poor performance of early dentin adhesive systems was thought to occur because the smear layer was not removed, resulting in the adhesive bonding to the surface of the smeared debris (Watanabe, Nakabayashi & Pashley, 1994a) and not to the underlying dentin (Eick & others, 1970). The potential of the smear layer to create an adverse effect on dentin bonding has been reported by Prati and others (1990). The smear layer adheres weakly to dentin, and its removal by an acid demineralizing agent prior to the application of a bonding system has been reported to result in stronger bonds (Pashley, 1991). However, others have reported that the treatment of dentin with acids can cause the collapse of exposed collagen fibers due to the removal of the supporting hydroxyapatite and the denaturation of collagen (Nakabayashi, 1992; Pashley & others, 1993). The remaining matted collagen surface becomes more difficult to impregnate with adhesive monomers. To overcome this problem, the application of a primer aims to restore the permeability of acid-treated dentin and facilitates the penetration of applied monomers. Therefore, the use of an acidic conditioner is necessary to dissolve and remove the smear layer to expose the intertubular and peritubular dentin, remove the debris from the dentin surface and demineralize the superficial dentin matrix, thus allowing the subsequent infiltration of the resin into the dentin surface. Clinically, after carious dentin has been removed or any other kind of dentin instrumentation has been performed, a smear layer is formed over the dentin surface (Pashley & Carvalho, 1997; Ogata & others, 2001). The nature of the smear layer depends on the type of bur used. In addition, different speeds of the bur and the pressure applied may influence the kind of smear layer. Coarse and superfine diamond burs each create a different smear layer. Coarse diamond burs create a thick smear layer containing cut collagen fibers and hydroxyapatite crystallites (Ayad, Rosenstiel & Hassan, 1996; Gwinnett, 1984). This can interfere with bonding of the adhesive agents, as it is not easy for some adhesive monomers to permeate dentin smears and impregnate the underlying dentin (Nakabayashi & Saimi, 1996). Differences in the smear layer generated by burs and abrasive papers have been reported to affect the bond strengths of resins to dentin (Tagami & others, 1991; Watanabe, Saimi & Nakabayashi, 1994b). The all-in-one adhesive systems are simple to use, as the steps of etching, priming and bonding occur in one single application step. A previous study of these systems has demonstrated the influence of the type of smear layer generated on their bond strength (Inoue & others, 2001). However, that study found that use of a coarse diamond bur may reduce the possibility of penetration of bonding monomers into dentinal substrate in these systems. It is not known whether these differences are also true for the newer, all-in-one adhesives. The reasons for using self-etching primers include easy handling by the operator (Sano & others, 1998; Miyazaki, Onose & Moore, 2000) and high clinical performance (Latta & others, 1997). These primers were marketed in the last decade and since then, there have been many self-etching primers available. Current advances in these systems are toward one-bottle, all-inone adhesives. Older versions of self-etching primers were believed to be susceptible to the presence of the smear layer in terms of bond strengths (Toida, Watanabe & Nakabayashi, 1995). When self-etching primers are applied to the smear layer situated on the tooth surface, the acid primer can simultaneously modify or dissolve the smear layer and decalcify the dentin (Watanabe & others, 1994a); this procedure produces good adhesion both to enamel and dentin (Kanemura, Sano & Tagami, 1999). Recent reports have demonstrated that some all-in-one systems bond well to thinner smear layer covered dentin (Inoue & others, 2001; Koase & others, 2004). This study compared the microtensile bond strength of four adhesive systems (including three all-in-one systems) after preparing the dentinal surface with either a coarse or superfine diamond bur. The null hypothesis was that there are no differences in microtensile bond strengths to dentin prepared with either a coarse diamond bur or a superfine bur. METHODS AND MATERIALS Adhesives and Bonding Procedures Twenty-four caries-free extracted human molars, stored at 37 C in distilled water, were used for this study, in accordance with local institutional guidelines. The coronal surfaces of the teeth were trimmed using a

Semeraro & Others: Effect of Different Bur Grinding on the Bond Strength of Self-etching Adhesives 319 model trimmer (MT-7 Morita Corp, Kyoto, Japan) in order to form a long, flat dentin surface at the midcrown level. A smear layer was then created by removing a thin layer of the surface with a high-speed diamond bur under water-cooling. Twelve teeth were prepared with a regular-grit diamond bur (Diamond Point FG, #106RD, Shofu, Kyoto, Japan), while the remainder were prepared using a superfine-grit diamond bur (Diamond Point FG, #SF 106RD, Shofu Inc). These two types of dentin substrates were randomly assigned to one of the four bonding treatments carried out according to the respective manufacturers instructions. After applying the adhesive in each tooth, resin composite (Clearfil AP-X, Kuraray, Okayama, Japan) was built-up incrementally (in three increments) to a height of 5 mm. Each increment was light cured for 40 seconds, and the specimens were then stored in distilled water for 24 hours at 37 C. Microtensile Bond Strength Testing The specimens were sectioned into six slabs, approximately 0.7-mm thick, perpendicular to the bonded surface using a low-speed diamond saw (Isomet, Buehler, Lake Bluff, IL, USA) under water. These slabs were trimmed to an hourglass shape to form a gentle curve along the adhesive interface from both sides, using a superfine-grit diamond bur as described by Sano and others (1994). The width at the narrowest portion was approximately 1.4 mm, and the thickness of the bonded area of each specimen was verified by a digital micrometer. The specimens were then attached to a Ciucchi s jig (Paul & others, 1999) with cyanoacrylate adhesive (Model Repair II Blue, Dentsply-Sankin, Otahara, Japan) connected to a desktop testing apparatus (EZ test, Shimadzu, Kyoto, Japan). The specimens were then subjected to a microtensile strength test at a crosshead speed of 1 mm/minute until failure occurred. The tensile bond strength was calculated as the load at failure divided by the bonded area. Bond strength data were analyzed by two-way ANOVA and the Games-Howell test for interaction between the adhesive and type of cut dentin. The surfaces of the fractured specimens were visually inspected under a light microscope (20x), then observed microscopically with SEM Adhesive to determine the failure mode. Failure Mode Analysis For determining the modes of fracture, both the dentin and composite halves of the fractured specimens were observed with a FE-SEM microscope (Hitachi S4000, Tokyo, Japan). The failure modes were classified as interfacial (fracture between the dentin or the hybrid layer and the overlying adhesive in the same sample), mixed (interfacial and partial cohesive failure in dentin or composite in the same sample) or cohesive (failure within dentin only, cohesive in adhesive only or cohesive in resin composite only), wherever relevant. SEM Observation of Dentin Surface Treated with the Adhesives In order to understand the effect of conditioning on the dentinal surfaces treated with the two types of burs, a further evaluation was conducted. The coronal surfaces of eight additional teeth were trimmed at the midcrown level; the flat dentin surfaces of four teeth were then treated using the two burs as previously described in the method. One surface in each group of four teeth was treated with the self-etching primer (CSE, Kuraray, Osaka, Japan) or with one of the all-in-one adhesives (GB, GC Company, Tokyo, Japan; SSB, Kuraray and PLP, 3M ESPE, St Paul, MN, USA) without light curing. The teeth were immediately soaked in 100% acetone for one minute to remove the applied adhesive. All the specimens were dehydrated using an ascending concentration of ethanol and chemical-dried with HMDS, which is a protocol for SEM examination described by Perdigão and others (1995). RESULTS There were no pre-testing failures in the various material groups except for PLP. For this adhesive, four samples in the regular-grit group failed during specimen fabrication, while 11 failed in the superfine diamond group. The means of MTBS and the standard deviation for each group are summarized in Table 1. The CSE group treated with a superfine bur tended to show the highest bond strength (65.16 ± 13.96 MPa), while PLP treated with a superfine bur tended to produce the lowest value (7.60 ± 9.73 MPa). The two-way ANOVA indicated that there was significant interaction between the adhesive and diamond bur surface preparation (p<0.05). Therefore, further Table 1: Microtensile Bond Strength (MPa) for All Specimen Groups Diamond Bur Regular-grit Superfine-grit Mean (SD) N PF Mean (SD) N PF Clearfil SE Bond (CSE) 49.04 (13.43)* 20-65.16 (13.96)* 20 - G-Bond (GB) 33.21 (9.24) 18-27.00 (6.40) 16 - SSB-200 (SSB) 32.20 (6.83)** 21-40.08 (4.98)** 23 - Prompt L-Pop (PLP) 15.28 (8.67) 20 4 7.60 (9.73) 19 11 Values marked with either * or with ** were significantly different from each other (p<0.05) N= total number of specimens including the pre-testing failures PF= pre-testing failure

320 Operative Dentistry A B Figure 1. SEM photomicrograph of a typical (both regular and superfinegrit) specimen of GB showing interfacial fracture (I) between the hybrid layer and the adhesive, as well as areas where the failure occurred within planes in the adhesive (A). In addition, blisters (arrowed) can be seen in the adhesive. analysis for significant differences between groups was carried out using the Games-Howell test. Significant differences were found between MTBS to dentin cut with a regular-grit diamond (lower values) bur and dentin cut with a superfine-grit diamond bur only for the CSE and SSB adhesives (p<0.05). For both GB and PLP, no significant differences in MTBS values were shown between the specimens prepared with regular-grit burs compared to those prepared with superfine-grit burs. Fractographical analysis of the specimens using SEM revealed a mixed mode of failure in all groups except PLP. The specimens of CSE bonded to dentin cut with the regular-grit diamond bur showed failures at different levels of the adhesive in the same sample, that is, interfacial between the hybrid layer and the adhesive, within the adhesive as well as the interfacial between the adhesive and the overlying resin composite. In the CSE group bonded to dentin cut with the superfine-grit diamond bur, the mixed fractures occurred not only within the adhesive, but they were also interfacial between the dentin and the adhesive. For the GB group, the mixed fractures for both specimens cut with a superfine and a regular-grit diamond bur were interfacial (between the hybrid layer and the adhesive) and also occurred at different planes in the adhesive within the same sample; the adhesive also showed the presence of blisters (Figure 1) in both groups. In the SSB samples cut with a regular diamond, the mixed failures in each sample were both interfacial between the hybrid layer and the adhesive, as well as Figure 2. SEM image of a typical PLP (of both regular and superfine-grit) sample showing a cohesive fracture that occurred within the adhesive layer. within the adhesive. Those prepared with a superfinegrit bur displayed fractures at different planes within the adhesive cohesive failure within the adhesive. In the PLP samples treated with both types of burs, all the samples showed failures that were cohesive within the adhesive only (Figure 2). SEM observations of the conditioned dentin surfaces with the two types of burs revealed differences with the various adhesives. Dentin prepared with regular-grit burs treated with CSE showed partial removal of the smear layer and the peritubular dentin appeared to be slightly etched (Figure 3A). Dentin prepared with superfine-grit burs displayed partial demineralization of the smear layer. The peritubular dentin was also comparatively more etched, and the porosity of the intertubular dentin was slightly greater than the regular grit prepared dentin (Figure 3B). There were no distinct differences in terms of removal of the smear layer between the dentin cut with a regulargrit bur and dentin cut with a superfine diamond for GB. The smear layer was partially demineralized and the remnants were attached to the dentin surface. The only distinct differences were dissolution of the smear plugs: the smear plugs in the regular-grit prepared dentin were more resistant to the acidity of the adhesive and therefore remained. For SSB, removal of the smear layer was minimal and similar for both specimens cut with a regular-grit bur and those cut with a superfine diamond. The porosity of the intertubular dentin cut with a superfine-grit bur appeared to be relatively greater than that of regular-grit burs.

Semeraro & Others: Effect of Different Bur Grinding on the Bond Strength of Self-etching Adhesives 321 Figure 3A. SEM image of a dentin surface cut with a regular-grit diamond bur, conditioned with CSE, which was not light-cured, followed by rinsing with acetone for 1 minute. The micrograph shows shows partial removal of the smear layer and the peritubular dentin appears to be slightly etched. Figure 3B. SEM micrograph of a similarly treated sample as in Figure 3A, but with the dentin cut with a superfine diamond bur. Partial demineralization of the smear layer is noted. The peritubular dentin appears comparatively more etched, and the porosity of the intertubular dentin is slightly greater than that of regular-grit prepared dentin. Figure 4A. SEM appearance of a dentin surface cut with a regular-grit diamond bur and conditioned with PLP, which was not light-cured, followed by rinsing with acetone for 1 minute. This shows complete removal of the smear layer and plugs. In addition, the complete dissolution of peritubular dentin can be seen. The PLP samples cut with both a regular-grit and a superfine-grit bur showed complete removal of the smear layer and plugs. Additionally, complete dissolution of peritubular dentin was noted in both. The intertubular dentin cut with the regular-grit bur appeared less aggressively etched compared to dentin cut with the superfine-grit bur (Figures 4A and 4B). Figure 4B. SEM micrograph of a dentin surface cut with a superfine-grit diamond bur and conditioned with PLP, which was not light-cured, followed by rinsing with acetone for 1 minute. This shows complete removal of the smear layer and plugs, as well as complete dissolution of peritubular dentin as in Figure 4A. The intertubular dentin appears more aggressively etched compared to that cut with a regular-grit bur in Figure 4A. DISCUSSION This study assessed the effect of different smear layers generated by two different types of burs on the microtensile bond strengths to dentin. CSE performed significantly better with superfine cut dentin. CSE primer partially dissolves the smear layer as seen in Figures 3A and 3B. It was previously reported

322 Operative Dentistry that a hybridized smear layer and hybridized dentin were observed when using CSE (Tay & others, 2000). CSE can penetrate the partially demineralized smear layer and create a hybrid layer (Tay & others, 2000). The greater porosity of intertubular dentin observed in this study with the superfine-grit preparation implies more channels of penetration of adhesive monomers. This could be the reason for the greater bond strengths achieved with the superfine diamond bur. For GB, there were no differences in bond strengths between the dentin cut with a regular-grit bur and dentin cut with a superfine diamond bur. This may be attributed to the similar mild removal of the smear layer in both. Another reason there were no differences in bond strengths may be the presence of blisters within the adhesive resin. Blisters may create defects within the adhesive resin during tension and initiate the propagation of cracks within the adhesive. The elimination of blisters should be important for producing good bonding between the resin and dentin. Further work is required to determine why blisters occur. SSB showed significantly higher bond strengths to superfine cut dentin compared to regular cut dentin. Although the smear layer removal for both groups is minimal, increased porosity within the intertubular dentin was found for the superfine grit. This may explain the higher bond strengths observed in this group. Further work, such as using TEM, is necessary to clarify the interaction between the resin and dentin of this system. PLP was the only adhesive tested which had pretesting failures in both groups. In addition, PLP tended to show the lowest bond strengths for both groups and consistently demonstrated cohesive failure within the adhesive. Although Figures 4A and 4B show complete dissolution of the smear layer (due to the low ph of 0.8) to expose the collagen fibrils, whether or not the subsequent penetration of resin monomers into the exposed collagen web occurs is not clear. The authors speculate that the relatively lower bond strengths with this adhesive suggest incomplete hybridization. Future studies should focus on the quality of the resin-dentin interface of this system. CONCLUSIONS This study showed that the type of bur used to prepare the dentinal surface may affect microtensile bond strength when using some of the current all-in-one systems. Hence, the null hypothesis that there are no differences in microtensile bond strengths to dentin prepared with either a coarse diamond bur or a superfine bur was rejected. In conclusion, when cutting dentin, selecting the proper bur type is important for improving the bond strength of some self-etching adhesive systems. (Received 8 October 2004) References Ayad MF, Rosenstiel SF & Hassan MM (1996) Surface roughness of dentin after tooth preparation with different rotary instrumentation Journal of Prosthetic Dentistry 75(2) 122 128. Charbeneau GT, Peyton FA & Anthony DH (1957) Profile characteristics of cut tooth surfaces developed by rotating instruments Journal of Dental Research 957 964. Eick JD, Wilko RA, Anderson CH & Sorensen SE (1970) Scanning electron microscopy of cut tooth surfaces and identification of debris by use of the electron microprobe Journal of Dental Research 49(6) 1359 1368. Gilboe DB, Svare CW, Thayer KE & Drennon DG (1980) Dentinal smearing: An investigation of the phenomenon Journal of Prosthetic Dentistry 44(3) 310 316. Gwinnett AJ (1984) Smear layer: Morphological considerations Operative Dentistry Supplement 3 2 12. Inoue H, Inoue S, Uno S, Takahashi A, Koase K & Sano H (2001) Microtensile bond strength of two single step adhesive systems to bur prepared dentin Journal of Adhesive Dentistry 2 129-139. Kanemura N, Sano H & Tagami J (1999) Tensile bond strength and SEM evaluation of ground and intact enamel surfaces Journal of Dentistry 27 523-530. Koase K, Inoue S, Noda M, Tanaka T, Kawamoto C, Takahashi A, Nakaoki Y & Sano H (2004) Effect of bur-cut dentin on bond strength using two all-in-one and one two-step adhesive systems Journal of Dentistry 6 97-104. Latta MA, Barkmeier WW, Triolo PT, Cavel WT & Blankenau RJ (1997) One year clinical evaluation of the Clearfil Liner Bond 2 system Journal of Dental Research 76 Abstract #1186 p 162. Miyazaki M, Onose H & Moore K (2000) Effect of operator variability on dentin bond strength of two-step bonding systems American Journal of Dentistry 13 101-104. Nakabayashi N (1992) The hybrid layer: A resin-dentin composite Proceedings of the Finnish Dental Society 88 321-329. Nakabayashi N & Saimi Y (1996) Bonding to intact dentin Journal of Dental Research 75(9) 1706 1715. Ogata M, Harada N, Yamaguchi S, Nakajima M, Pereira PN & Tagami J (2001) Effects of different burs on dentin bond strengths of self-etching primer bonding systems Operative Dentistry 26(4) 375 382. Pashley DH (1991) Dentin bonding: Overview of the substrate with respect to adhesive materials Journal of Esthetics Dentistry 3 46-50. Pashley DH, Ciucchi B, Sano H & Horner JA (1993) Permeability of dentin to adhesive agents Quintessence International 24 618-631. Pashley DH & Carvalho RM (1997) Dentin permeability and dentin adhesion Journal of Dentistry 25(5) 355 372. Paul SJ, Welter DA, Ghazi M & Pashley DH (1999) Nanoleakage at the dentin adhesive interface vs tensile bond strength Operative Dentistry 24 181-188. Perdigão J, Lambrechts P, Van Meerbeek B, Vanherle G & Lopes AL (1995) Field emission SEM comparison of four postfixation drying techniques for human dentin Journal Biomedical Materials Research 29(9) 1111-1120.

Semeraro & Others: Effect of Different Bur Grinding on the Bond Strength of Self-etching Adhesives 323 Prati C, Bigini G, Rizzoli C, Nucci C, Zucchini C & Montanari G (1990) Shear bond strength and SEM evaluation of dentinal bonding systems American Journal of Dentistry 3 283-288. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R & Pashley DH (1994) Relationship between surface area for adhesion and tensile bond strength evaluation of microtensile bond test Dental Materials 10 236-240. Sano H, Kanemura N, Burrow MF, Inai N, Yamada T & Tagami J (1998) Effect of operator variability on dentin adhesion Dental Materials Journal 17 51-58. Swift EJ Jr, Perdigão J & Heymann HO (1995) Bonding to enamel and dentin: A brief history and state of the art Quintessence International 26(2) 95 110. Tagami J, Tao L, Pashley DH, Honoda H & Sano H (1991) Effect of high-speed cutting on dentin permeability and bonding Dental Materials 7 234-239. Tay FR, Carvalho R, Sano H & Pashley DH (2000) Effect of smear layers on the bonding of a self-etching primer to dentin Journal of Adhesive Dentistry 2 99-116. Toida T, Watanabe A & Nakabayashi N (1995) Effect of smear layer on bonding to dentin prepared with the bur The Journal of the Japanese Society for Dental Materials and Devices 14 109-116. Watanabe I, Nakabayashi N & Pashley DH (1994a) Bonding to ground dentin by a phenyl-p self-etching primer Journal of Dental Research 73(6) 1212 1220. Watanabe I, Saimi Y & Nakabayashi N (1994b) Effect of smear layer on bonding to ground dentin-relationship between grinding condition and tensile bond strength The Journal of the Japanese Society for Dental Materials and Devices 13 101-108.