Journal of Chemical and Pharmaceutical Research, 2017, 9(7): Research Article

Similar documents
Pelagia Research Library

Screening of bacteria producing amylase and its immobilization: a selective approach By Debasish Mondal

EXTRACTION OF THERMO-STABLE ALPHA AMYLASE FROM FERMENTED WHEAT BRAN

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Scholars Research Library. Purification and characterization of neutral protease enzyme from Bacillus Subtilis

Recipes for Media and Solution Preparation SC-ura/Glucose Agar Dishes (20mL/dish, enough for 8 clones)

Screening of Rice Straw Degrading Microorganisms and Their Cellulase Activities

EFFECT OF ENDOSULFAN AND CHLORPYRIFOS ON PROTEASE ACTIVITY IN THE CULTIVATED SOIL Sumit Kumar*

Potentiality of Yeast Strain On Cement Concrete specimen

Research Article ISSN Vol 2/Issue 4/Oct-Dec 2012 PRAGYA RATHORE*, PRATIK SHAH, HARSHPREET CHANDOK, SATYENDRA PATEL

Experiment 1. Isolation of Glycogen from rat Liver

Isolation and Screening of Starch Hydrolising Bacteria and its Effect of Different Physiological. Parameters on Amylase Enzyme Activity

Journal of Chemical and Pharmaceutical Research, 2012, 4(8): Research Article

Bioremediation of textile azo dyes by newly isolated Bacillus sp. from dye contaminated soil

Effect of ph on the production of protease by Fusarium oxysporum using agroindustrial waste

Amylase Production from Potato and Banana Peel Waste

Production of Thermostable and Ca +2 Independent α-amylases from Halphilic Bacteria

Media Optimization Studies for Enhanced Production of Serratiopeptidase

Synergistic Effects of Vitamin B12 and Creatine on Microbes. Jake Rocchi CCHS, 11th grade 2nd year in PJAS

Lactic acid production from rice straw using plant-originated Lactobacillus rhamnosus PN04

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

ß-Galactosidase Repression in Escherichia coli B23 Using Minimal Concentrations of Glucose and Sucrose

Solubilization of organic materials in wastewater treatment

Vitamin C and Ibuprofen Effects on Escherichia Coli. Timothy Leisenring Grade 11 Central Catholic High School

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

EFFECTS OF MACRO-MINERAL ELEMENTS ON GROWTH AND L-GLUTAMIC ACID FERMENTATION BY A MUTANT MICROCOCCUS GLUTAMICUS AB 100

National Standard of the People s Republic of China. National food safety standard. Determination of pantothenic acid in foods for infants and

Production and Preliminary Characterization of Alkaline Protease from Aspergillus flavus and Aspergillus terreus

Calcium carbonate producing yeast from soil enhance chemical resistance on cement concrete specimen

ELECTROPHORETIC STUDIES OF SONIC EXTRACTS OF PROTEUS VULGARIS

Isolation and Screening of Amylase Producing Fungi

Antimicrobial Effects of Vinegar. Daniel Crawford Grade 9 Central Catholic High School

Effect of nitrogen source on the growth and lipid production of microalgae

Β-FRUCTOFURANOSIDASE ENZYME

BACILLUS SUBTILIS: A POTENTIAL SALT TOLERANT PHOSPHATE SOLUBILIZING BACTERIAL AGENT

The Effects of L-glutamate, L-glutamine, and L-aspartic Acid on the Amylase Production of E. coli Transformed with pamylase

Effects of Ethyl Alcohol on Microbial Survivorship. Tim Olson 9th Grade Central Catholic High School

Inducers for the enhanced production of lipase by Streptomyces isolated from mangrove ecosystem

S. O. Oyedemi*, A. I. Okoh, L. V. Mabinya, G. Pirochenva and A. J. Afolayan

Kinetics analysis of β-fructofuranosidase enzyme. 1-Effect of Time Incubation On The Rate Of An Enzymatic Reaction

HOW TO SOLVE PRACTICAL ASPECTS OF MICROBIOLOGY

5 Optimisation of Process Parameters of L- asparaginase production by isolate SI091

Decolorization of olive mill wastewaters by co-culture of Geotrichum candidum and Lactobacillus plantarum

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.625, ISSN: , Volume 2, Issue 11, December 2014

Research Article. The effects of hyaluronic acid on the morphological physiological differentiation of Lactobacillus

Preliminary studies of cellulase production by Acinetobacter anitratus and Branhamella sp.

EFFECT OF ADDITIONAL MINERAL IONS ON CITRIC ACID PRODUCTIVITY BY ASPERGILLUS NIGER NG-110

Production of 5-Aminolevulinic Acid from Monosodium Glutamate Effluent by Halotolerant Photosynthetic Bacterium (Rhodobacter capsulatus SS3)

BACTERIAL EXAMINATION OF WATER

Influence of Different Prebiotics and Probiotics on Selective Intestinal Pathogens

Aspergillus foetidus BY AQUEOUS TWO PHASE

OPTIMISATION OF XYLOSE PRODUCTION USING XYLANASE

Norovirus Report. Can copper and silver ionisation kill norovirus? A Study Report

METABOLIC INJURY TO BACTERIA AT LOW TEMPERATURES

Hydrogen Peroxide Influence on Microbial Survivorship. Jacob Cebulak Central Catholic Pittsburgh Grade 9

Xanthan gum production by Xanthomonas campestris pv. campestris 8004 using cassava starch as carbon source

SCREENING LACTIC ACID BACTERIA FOR ANTIMICROBIAL COMPOUND PRODUCTION K. KHALISANNI, K. LEE HUNG

The Effects of Alcohol and Nicotine on Microbial Flora. Jeff Van Kooten Grade 11 Pittsburgh Central Catholic High School

The Effects of Reiki on Bacteria Survivorship. Jordan Ciccone Central Catholic High School

CHAPTER III MATERIALS AND METHODS

The Effects of Shampoo on Microbial Flora. Andrew Walker Grade 9 Central Catholic High School

Journal of Chemical and Pharmaceutical Research

Potential of Different Light Intensities on the Productivity of Spirulina maxima

Experiment 9. NATURE OF α-amylase ACTIVITY ON STARCH

Optimization of Growth Factors of Hexa Valent Chromium Reducing Bacterial Strain.

Extraction of Enzymes from Potato Peels Substrate using Bacillus subtilis

Chapter 3 Isolation, screening, morphological and biochemical characterization of fungal isolates

Research & Reviews: Journal of Microbiology and Biotechnology

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples:

Octa Journal of Environmental Research International Peer-Reviewed Journal Oct. Jour. Env. Res. Vol. 1(1):23-29

APPENDIX Reagents. Appendix. Alsever s solution Citric acid 0.55g Sodium citrate 8.0g D-glucose 20.5g Sodium Chloride 4.2g

Journal of Chemical and Pharmaceutical Research, 2015, 7(12): Research Article

Aperto Cell Lysis and Protein Solubilization Users Manual

Hong-qi Sun, Xue-mei Lu, Pei-ji Gao* State Key Laboratory of Microbial Technology, Shandong University, Jinan , China.

GLYCATION OF PROTEINS IN ESCHERICHIA COLI: EFFECT OF NUTRIENT BROTH INGREDIENTS ON GLYCATION

Phospholipid Fatty Acid (PLFA) Science, Inovation, Networks

Tannase Production By Aspergillus niger

Studies on Glucose Isomerase from a Streptomyces Species

AZO-XYLAN (BIRCHWOOD)

VEIKKO NURMIKKO. in which the organisms under investigation are separated from each other by one or more dialysis

Scholars Research Library. Amylase production by fungi isolated from Cassava processing site

Biotreatment of High Fat and Oil Wastewater by Lipase Producing Microorganisms

Molecular Identification of Lipase Producing Bacteria based on 16S rdna Sequencing

Research Article. Lead and cadmium resistant bacteria isolated from industrial effluent

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Degradation of chicken feathers by Leuconostoc sp. and Pseudomonas microphilus

VERMIWASH: BIOCHEMICAL AND MICROBIOLOGICAL APPROACH AS ECOFRIENDLY SOIL CONDITIONER

4.1) Parameters and sampling frequency

(An ISO 3297: 2007 Certified Organization) Vol. 2, Issue 12, December 2013

AMYLOGLUCOSIDASE from ASPERGILLUS NIGER, var.

22 Bicozamycin (Bicyclomycin)

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

Journal of Chemical and Pharmaceutical Research, 2017, 9(6): Research Article

Sequential Extraction of Plant Metabolites

International Journal of Research in Pharmacy and Science

Blair Bean Grade 9 Pittsburgh Central Catholic Highschool

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Enzyme use for corn fuel ethanol production. Luis Alessandro Volpato Mereles

Role of PGPR and heavy metals in Germination and growth of Andrographis paniculata (Kalmegh)

Laboratorios CONDA, S.A. Distributed by Separations

Transcription:

Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2017, 9(7):13-17 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Impact of Imidacloprid Intoxication on Amylase and Protease Activity in Soil Isolate Escherichia coli AA Shetti 1,2 and BB Kaliwal 3 * 1 Department of Biotechnology and Microbiology, Karnatak University, Dharwad, Karnataka, India 2 Department of Biotechnology and Microbiology, PC Jabin Science College, Hubblli, Karnataka, India 3 Department of Biotechnology Davangere University, Karnataka, India ABSTRACT Imidacloprid, 1-[(6-chloro-3-pyridinyl) methyl]-n-nitro-2-imidazolidinimine, is a neonicotinoid. The present investigation was under taken to evaluate the effect of imidacloprid treatment on amylase and protease activity in soil isolate Escherichia coli (SP-02). The soil isolate Escherichia coli were isolated after enrichment cultures, as imidacloprid tolerant bacteria. The isolate was exposed to imidacloprid of varying concentrations ranging from 10-7 M to 10-3 M for a period of 96 hrs. Treatment with higher dose (10-4 and 10-3 M) of imidacloprid resulted into no significant increase in the activity of amylase and protease enzymes whereas, significant increase was observed in the lower dose (10-7, 10-6 and 10-5 M) of imidacloprid. Present investigation revealed that imidacloprid intoxication suppresses amylase and protease at higher doses of imidacloprid. Reduction in dosage of imdacloprid resulted in increase in the amylase and protease activity. The result indicates that imidacloprid toxicity results in reduced activity of essential metabolic enzymes thus effecting the growth of the Escherichia coli. Keywords: Escherichia coli; Imidacloprid amylase; Protease INTRODUCTION The excessive use of pesticides in modern agriculture has leads to an accumulation of a large amount of pesticide residues in the environment. The accumulation of residues leads to substantial health hazard for the current and future generations due to uptake and accumulation of these toxic compounds in the food chain and drinking water [1]. Assessing the side effects of pesticides on microbial populations is important to maintain soil fertility and to prevent critical damage to the agricultural ecosystems [2]. Microbial parameters, such as microbial population, biomass, activity and community structure, are affected by natural stresses and fluctuate in the environment; the side-effects caused by the pesticides should be evaluated by comparing them with those caused by natural stresses [3]. Amylase is a starch hydrolysing enzyme. It is known to be constituted by α-amylase and β-amylase. Studies have shown that α -amylases are synthesized by plants, animals and micro-organisms, whereas, β-amylase is mainly synthesized by plants. The bacterial amylase expressed in Escherichia coli is secreted in the periplasmic space by a cold osmotic shock or stress. The main role of this enzyme is the starch metabolisms in the extra cellular medium, therefore, lot of microorganisms depend on amylases for their survival [4]. Proteases are a group of enzymes that belong to one of the four major classes of proteolytic enzymes and are generated by a variety of organisms including viruses, bacteria, protozoa, yeasts, plants, helminthes, insects and mammals. This is an extracellular enzyme secreted by soil microorganisms, including bacteria and fungi widely available, where the protein rich effluents dislodge into the soil increases proteolytic activity in the due to the presence of high organic wastes (amino acids) discharged in the effluents [5]. 13

MATERIALS AND METHODS Preparation of Stock Solution of Imidacloprid The stock solution of one molar imidacloprid was prepared and further diluted to give 10-3, 10-4, 10-5, 10-6 and 10-7 molar concentrations [6]. Soil isolate was isolated and identified from soil as described in our previous publication [7]. The bacterium was maintained at 4 C on nutrient agar [8] and sub cultured every fortnight. The medium used for toxicity testing was an optimized medium (dextrose - 0.65 g/l: Yeast extract - 1.05 g/l; K HPO - 0.30 g/l; NaCl - 0.25 g/l). Preparation of Inoculum Pre-inoculum was prepared by inoculating a loop full of bacteria from the overnight incubated nutrient agar slant cultures on a 100 ml sterilized optimized growth medium and incubated for 24 hours at 37 C under static conditions. Identification of Bacterial Isolate Imidacloprid tolerant colonies were isolated and identified morphologically, cultural and biochemical characterization and 16S rdna identification was done as described earlier [7]. The pure culture was grown on nutrient agar medium. Experimental Procedures Five ml of the pre-inoculum was inoculated to 250 ml Erlenmeyer s flask containing 100 ml of sterilized optimized growth medium amended with different molar concentrations of imidacloprid. The flasks were incubated at 37 C for 96 hours under shaking conditions at 120 rpm on a rotary shaker. At regular intervals, sample was taken out from each flask aseptically for analysis. Extraction of Enzymes The cells were centrifuged at 8,000 rpm for 3 min and the pellet was dissolved in 0.2 ml of lysis buffer (50 mm triscl and 10 mm lysozyme). The tubes were incubated at 37 C and centrifuged at 10,000 rpm for 10 min, each supernatant was used as the source of enzyme. Estimation of Amylase Amylase enzyme activity was assayed using the standard method [6]. 2 ml of the sample or an aliquot diluted to 2 ml was incubated with 2 ml of phosphate buffer ph 7.0 and 2 ml of 1 per cent soluble starch at 37 C for 15 minutes. 2 ml of DNS reagent was added and the reaction mixture was boiled for ten minutes. The OD was measured at 540 nm against a blank. The amount of reducing disaccharide released by the enzyme was calculated by referring to a standard graph of maltose. The unit of amylase activity is μ moles per ml per min of the sample. Estimation of Protease Activity The protease activity of the respective samples was measured as per the procedure of [7]. Two ml of the sample was incubated with phosphate buffer ph 7.6 and 1 per cent casein for two hours at 37 C the reaction was stopped by the addition of 3 ml of 10 per cent TCA solution and filtered through Whatman No 42 filter paper. 2 ml of the filtrate was mixed with 3 ml of 0.5 N NaOH and 0.5 ml of folin phenol reagent. The optical density was estimated against an appropriate blank with a spectrophotometer at 660 nm. The unit of protease activity is calculated as micrograms of tryptophan released per minute per ml of the sample. Statistical Analysis Statistic significance between the control and experimental data were subjected to analysis of variance (ANOVA) followed by post-hoc dunnet s test (Pd<0.05). RESULTS The imidacloprid tolerant soil isolate was grown in nutrient broth containing 10-3 molar imidacloprid and incubated for seven days and plated on medium containing 10-3 molar imidacloprid colony isolated was named as SP-02. The isolated strain was a rod-shaped, gram negative, bacterium and further it was identified as Escherichia coli. The toxic effect of imidacloprid on amylase and protease activity in soil Escherichia coli was studied using broth containing 10-3 to 10-7 Molar imidacloprid. 14

The present study revealed that the amylase and protease activity in the treated groups increased significantly in lower dose (10-6 and 10-7 M) of exposure to imidacloprid, whereas, no significant increase was observed in the higher dose (10-5, 10-4 and 10-3 M) of imidacloprid when compared with that of the control (Graphs 1 and 2). Graph 1: Effect of imidacloprid on amylase activity in Escherichia coli Graph 2: Effect of imidacloprid on protease activity in Escherichia coli DISCUSSION Effect of Imidacloprid on Amylase Activity in Soil Isolates Escherichia coli Amylase is a starch hydrolyzing enzyme It is known to be constituted by α-amylase and β-amylase. β -amylase converts starch like substrates to glucose and/or oligosaccharides and α - amylase, converts starch to maltose. Studies have shown that α -amylases are synthesized by plants, animals and micro-organisms, whereas, β -amylase is mainly synthesized by plants [4]. The present study revealed that the amylase activity in the treated groups increased significantly in lower dose (10-6 and 10-7 M) of exposure to imidacloprid, whereas, no significant increase was observed in the higher dose (10-3, 10-4 and 10-5 M) of imidacloprid in Escherichia coli, cells. This indicates that the insecticide inhibits amylase activity at higher concentration. Increase in amylase activity was reported on exposure of cypermethrin and monocrotophus to free and immobilized Escherichia coli [6]. ROS are generated by many environmental pollutants leading their toxic effects. Many microorganisms depend on amylases for survival [9]. Some cells show increased catabolism to meet the energy demand under stress induced by the xenobiotics like pesticides [10]. Drastic reduction in amylase production was recorded at a concentration of 15 mg/l during the logarithmic phase where a reduction to 50% was observed. When compared with earlier observations on amylolytic microorganisms, the toxic effects on enzyme production seem to be very pronounced [11,12]. Effect of Imidacloprid on Proteases Activity in Soil Isolates Escherichia coli Proteases are a group of enzymes that belong to one of the major classes of proteolytic enzymes and are generated by a variety of organisms, including viruses, bacteria, protozoa, yeasts, plants, helminthes, insects and mammals [13,14]. Proteases participating in the protein metabolism either by degradative or biosynthetic pathways release 15

hormones and pharmacologically active peptides from precursor proteins [15]. The present study revealed that the protease activity in the treated groups increased significantly in lower dose (10-6 and 10-7 M) of exposure to imidacloprid, whereas, no significant increase was observed in the higher dose (10-3, 10-4 and 10-5 M) of imidacloprid in Escherichia coli, this indicates that the insecticide inhibits protease activity at higher concentration. It is also reported that protease is essential for Escherichia coli to survive at elevated temperatures, and degrades abnormal and misfolded proteins [16,17]. In a study protease activity in cultivated soil of Rajkot region of Gujarat pesticides viz. chlorpyrifos (an organophosphate) and endosulfan (an organochlorine cyclodiene) inhibited by 25% after one day of treatment [18]. Proteases are of vital importance to all bacteria as they are involved in bacterial resistance against xenobiotics [19]. The increase in the protease activity at lower doses could be due to the expression of intracellular proteins [20]. Proteases are a widespread group of enzymes that catalyze the hydrolysis of different proteins and degradation and turnover of intracellular proteins [5]. Extracts of Escherichia coli have been shown to degrade the damaged enzyme, but not the native protein, and several preliminary reports suggest that the Escherichia coli protease that may be responsible for selective degradation of the modified proteins. The significant decrease in the protease activity of Escherichia coli, cells on dose and durational exposure of imidacloprid observed in the present study may be due to expression of intracellular proteins, which require cell lysis for purification which will result in exposure to proteases, hydrolysis of different proteins that perform a pivotal role in the degradation and turnover of intracellular proteins, homeostasis maintenance and metabolism regulation in the cell, protect the cells against effects of toxic peptides, selective degradation of the modified proteins. CONCLUSION In the present study the increase in the amylase activity in lower doses of imidacloprid observed may be due to the toxic effects of the pollutant, by generating ROS, compensate metabolism for their survival, increased catabolism to meet the energy demand under stress induced by the pesticide, an adaptive responses induced under oxidative stress and thereby overcome stress. The significant decrease in the protease activity of Escherichia coli, cells on dose and durational exposure of imidacloprid observed in the present study may be due to expression of intracellular proteins, which require cell lysis for purification which will result in exposure to proteases, hydrolysis of different proteins that perform a pivotal role in the degradation and turnover of intracellular proteins, homeostasis maintenance and metabolism regulation in the cell, protect the cells against effects of toxic peptides, selective degradation of the modified proteins. The study revealed that imidacloprid effects amylase and protease activity in bacterial isolate E. coli and intern it effects the growth and development of the bacteria. REFERENCES [1] MS Mohamed. Electro J Biotechnol. 2009, 12, 3450-3458. [2] AJ Francis; RJ Spaznggord; GI Ouchi. Appl Microbiol. 1975, 29, 567-568. [3] KH Domsch; G Jagnow; TH Anderson. Anderson: Residue Rev. 1983, 86, 65-105. [4] K Tamura; J Dudley; M Nei; S Kumar. Mol Biol Evol. 2007, 24, 1596-1599. [5] HS Joo; KB Koo; K Park; SH Bae; JW Yun; CS Chang; JW Choi. J Microbiol. 2007, 45, 158-167. [6] AG Kulkarni; BB Kaliwal. Int J Microbiol Res. 2011, 3(2), 74-78. [7] AA Shetti; AG Kulkarni; RB Kaliwal; CT Shivasharana; BB Kaliwal. Int J Pharm Bio Sci. 2012, 3(4), (B), 1155-1163. [8] RM Logar, M Vodovnik. Topics and Trends in Applied Microbiology Méndez-Vilas, 2007. [9] RA Jones; LS Jermiin; S Easteal; BKC Patel; IR Beacham. J Appl Microbiol. 1999, 86, 93-107. [10] L Ivanova-Chemishanska. Dithiocarbamates, WHO Copenhagen, Interim Document, 1982, 29, 158-169. [11] Z Rozsypalova. Rost Vyroba. 1981, 27, 165-171. [12] CM Tu. Arch Microbiol. 1976, 108, 259-263. [13] L Polgar. Mechanism of protease action. Inc Polgar L, CRC press, Boca Raton FL, USA. 1989. [14] M Allaire; MM Chernaa; BA Malcolm; MN James. Nature. 1994, 369, 72-76. [15] VYH Hook; L Funkelstein; D Lu; S Bark; J Wegrzyn; SR Hwang. Annu Rev Pharmacol Toxicol. 2008, 48, 393-423. [16] CH Chung. Science. 1993, 262, 372-374. [17] MJ Pallen; Wren BW. Mol Microbiol. 1997, 26, 209-220. 16

[18] Kumar; R Nirmal; N Kumar; A Bora; AL Kaur. Int J Biol Med Sci. 2011, 1(1), 135-138. [19] D Jueritic; CH Chen; JH Brown; JL Morall; RW Hendler; HV Westerhoff. FEBS Letters. 1989, 249, 2119-2223. [20] AG Martin; E Christopher; DP White; EK Meininger. Springer. 1998, 103, 81-94. 17