The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses

Similar documents
Pattern of lipid biomarkers and risk of cardiovascular disease

Facts on Fats. Ronald P. Mensink

13/09/2012. Dietary fatty acids. Triglyceride. Phospholipids:

Janet B. Long, MSN, ACNP, CLS, FAHA, FNLA Rhode Island Cardiology Center

Future directions for nutritional and therapeutic research in omega-3 3 lipids

The health benefits of shellfish: What should we be promoting? Professor Bruce Griffin Nutrition Division Faculty of Health & Medical Sciences

Figure S1. Comparison of fasting plasma lipoprotein levels between males (n=108) and females (n=130). Box plots represent the quartiles distribution

There is more scientific evidence behind the cardiovascular benefits of fish oil than nearly any other nutritional supplement

Omega-3 Fatty Acids. Alison L. Bailey MD, FACC Erlanger Heart and Lung Institute/University of Tennessee COM

Antihyperlipidemic Drugs

ANTIHYPERLIPIDEMIA. Darmawan,dr.,M.Kes,Sp.PD

Replacement Of Partially Hydrogenated Soybean Oil By Palm Oil In Margarine Without Unfavorable Effects On Serum Lipoproteins

Nutrition, Food, and Fitness. Chapter 6 Fats: A Concentrated Energy Source

Analysis of metabolomics data examples from the study of the lipid metabolism

Nutrition & Wellness for Life 2012 Chapter 6: Fats: A Concentrated Energy Source

Lipid Profiles. Important: Read over the section on correlation coefficients in the Guidelines for Statistics and Graphs in General Education Biology.

Overview of the cholesterol lowering effect of soy protein and perspective on the FDA s evaluation of the clinical data

Not Hard Choices. By Dato Dr. Rajen M. 27 October 2018

THE IMPORTANCE OF KNOWING YOUR OMEGA-3 INDEX: RECENT FINDINGS AND IMPLICATIONS FOR PUBLIC HEALTH PEOPLE MATTER PLANET MATTERS PROFIT MATTERS

Nutrition and Health Benefits of Rice Bran Oil. Dr. B. Sesikeran, MD, FAMS Former Director National Institute of Nutrition (ICMR) Hyderabad

Effects of Dietary Fat Intake on HDL Metabolism

Omega-3 Fatty Acids and Athletics. Current Sports Medicine Reports July 2007, 6:

MARINE Study Results

17 MAY SEOUL. IADSA Annual General Meeting Codex Alimentarius / Omega 3

Cetoleic acid makes pelagic fish more healthy

White Paper: Nutrartis Dispersible Sterols (Cardiosmile ) show improved effect on lipid profile compared to plant sterol esters

Optimize Your Omega-3 Status Personalized Blood Test Reveals a Novel Cardiac Risk Factor

Omega 3 Fatty Acids and Cardiovascular Disease: An Updated Systematic Review Executive Summary

Omega-3 requirements - length matters!

Acasti Reports Successful CaPre(R) Phase II TRIFECTA Results Proving Statistically Significant Improvements in Triglycerides & Non-HDL-C

INDIVIDUAL STUDY TABLE REFERRING TO PART OF THE DOSSIER

THE PROBLEM OMEGA 3. pure

Cardiovascular risk potential of dietary saturated fats: an update and some implications

Research shows that the most reliable source of omega-3s is a high-quality fish oil supplement

Dietary Reference Values: a Tool for Public Health

Dyerberg Discovery. Greenland Eskimos have low rates of heart disease while their diet is high in saturated fat and cholesterol. That s strange. Why?

Københavns Universitet

Update On Diabetic Dyslipidemia: Who Should Be Treated With A Fibrate After ACCORD-LIPID?

Zuhier Awan, MD, PhD, FRCPC

BCH 447. Triglyceride Determination in Serum

3-Thia Fatty Acids A New Generation of Functional Lipids?

American Journal of Clinical Nutrition July, 2004;80:204 16

Heart Health and Fats

Bringing metabolic profiling into clinical practice. Linda Mustelin, MD, PhD, MPH Senior Medical Scientist Nightingale Health

Walter B. Bayubay CLS (ASCP), AMT, MA Ed, CPI

Gender: M Chart No: Fasting: Yes. Boston Heart HDL Map TM Test 1 ApoA-I (mg/dl) levels in HDL particles. α Range > <14 mg/dl. α-2 50.

Dietary Lipid Utilization by Haddock (Melanogrammus aeglefinus)

Suppl. Table 1: CV of pooled lipoprotein fractions analysed by ESI-MS/MS

Cardiac patient quality of life. How to eat adequately?

Palm Oil: A Preferred Healthy Dietary Choice

Super Omega-3 EPA/DHA with Sesame Lignans & Olive Extract

AAOCS 10 th Biennial Conference Barossa Valley, September Presenter: Petter-Arnt Hals MSc PhD Co-authors: Nils Hoem, Xiaoli Wang, Yong-Fu Xiao

Clinically proven to quickly lower total cholesterol levels in the blood plus all the benefits of Omega-3

Cover Page. The handle holds various files of this Leiden University dissertation.

n Promotes a healthy mood 1 n Supports attention and learning 2 n Supports normal memory as we age 3

Traditional Asian Soyfoods. Proven and Proposed Cardiovascular Benefits of Soyfoods. Reduction (%) in CHD Mortality in Eastern Finland ( )

Fish Oils and Diabetes

Omega 3 s and Cardiovascular Disease: High vs. Low Dose? Terry A. Jacobson M.D., F.N.L.A. Emory University Atlanta, GA

Hypertriglyceridemia, Inflammation, & Pregnancy

Omega-3 supplementation promotes key anti-inflammatory pathways that naturally support back, neck, and joint health and mobility

Proven and Proposed Cardiovascular Benefits of Soyfoods

There are many ways to lower triglycerides in humans: Which are the most relevant for pancreatitis and for CV risk?

The role of plant sterols/stanols in life-long management of blood cholesterol - from science to claims

Males- Western Diet WT KO Age (wks) Females- Western Diet WT KO Age (wks)

FLAXSEED Health Benefits and Functionality. Kelley C. Fitzpatrick Director of Health FLAX COUNCIL OF CANADA

Case study: An overview of progress on modifying the composition of meat in relation to dietary guidelines for heart health

ANCHOR Study Results Overview

Fish Oils and Stroke/Blood Coagulation

André J. Tremblay, 1 Benoît Lamarche, 1 Jean-Charles Hogue, 1 and Patrick Couture 1,2. 1. Introduction. 2. Methods

AMR101, a Pure-EPA Omega-3 Fatty Acid, Lowers Triglycerides in Patients with Very High Triglycerides Without Raising LDL- C: The MARINE Study

THE CLINICAL BIOCHEMISTRY OF LIPID DISORDERS

2.0 Synopsis. Choline fenofibrate capsules (ABT-335) M Clinical Study Report R&D/06/772. (For National Authority Use Only) Name of Study Drug:

The New Gold Standard for Lipoprotein Analysis. Advanced Testing for Cardiovascular Risk


Lipids Types, Food Sources, Functions

Comprehensive Treatment for Dyslipidemias. Eric L. Pacini, MD Oregon Cardiology 2012 Cardiovascular Symposium

TOCOTRIENOLS The Unsaturated Vitamin E Science & Human Clinical Studies. CAROTECH INC. Your Preferred Partner In Nutraceutical Excellence

STUDY QUESTIONS, Chapter 5: The Lipids: Fats, Oils, Phospholipids and Sterols

EFFECT OF LYCOPENE IN TOMATO SOUP AND TOMATO JUICE ON THE LIPID PROFILE OF HYPERLIPIDEMIC SUBJECTS

Differentiating omega-3 fatty acids from SPMs (specialized pro-resolving lipid mediators)

Lipoprotein Particle Profile

Low-density lipoprotein as the key factor in atherogenesis too high, too long, or both

Eicosapentaenoic Acid and Docosahexaenoic Acid: Are They Different?

NCBA Ground Beef Diet/Health Study

Insert logo. Linda Main, Dietetic Adviser

Essential Fatty Acids Essential for Good Health SIE

Chapter (5) Etiology of Low HDL- Cholesterol

BIOCHEMISTRY BLOOD - SERUM Result Range Units

EPOA. Latest Insights on Palm Oil & Health. European Industry Meeting on Palm Oil Nicolette Drieduite I EPOA Project team member I Cargill 2 June 2015

Cardiovascular Complications of Diabetes

Triglyceride determination

High density lipoprotein metabolism

Nutrigenetics and personalised/stratified approaches to the provision of dietary advice

Using Genetic Information in Practice for Tailoring Lipid-lowering Interventions

ANSC/NUTR) 618 LIPIDS & LIPID METABOLISM Dietary fat and Cardiovascular Disease

Disorders of Lipid Metabolism Toolkit Table of Contents

The art of tracing dietary fat in humans. Leanne Hodson

Role of DHA in Early Life Nutrition in the First 1000 days

Lipoproteins Metabolism

Victor Tambunan. Department of Nutrition Faculty of Medicine Universitas Indonesia

Transcription:

The effect of plant sterols and different low doses of omega-3 fatty acids from fish oil on lipoprotein subclasses 18 June 2015 Doris Jacobs Unilever R&D Vlaardingen

Background Elevated low-density lipoprotein-cholesterol in blood is an important risk factor for coronary heart disease (CHD). The intake of phytosterols (PS) is known to lower LDL-Chol. An intake of ~2 g/d phytosterols reduces LDL-Chol by 8-10%. Elevated fasting triglycerides (TG) are considered as an emerging risk factor for CHD. The intake of long chain n-3 fatty acids (eicosapentaenoic acid (EPA: 20:5-n3) and docosahexaenoic acid (DHA: 22:6-n3) such as present in fish oil has been shown to reduce fasting TG concentrations. An intake of 2-4 g/d of EPA+DHA reduces TG concentrations by 25-35%.

Study Design Objective: to assess the combined effects plant sterols (PS) and low doses of EPA/DHA from fish oil on TG and lipoproteins. 2.25 g/d PS + 1.8 g/d EPA/DHA 2.25 g/d PS + 1.3 g/d EPA/DHA 332 subjects 2.25 g/d PS + 0.9 g/d EPA/DHA 2.25 g/d PS Control fasting serum 4 weeks fasting serum Randomized, double-blind, placebo-controlled, parallel efficacy study; Subjects: apparently healthy, yet hypercholesterolemic (TC: 5-8 mm); 85 men, 247 women; 25-75 years; 18-30 kg/m 2 ; Test products: fixed amount of plant sterols (PS) and varying amounts of EPA/DHA from fish oil incorporated in a low-fat spread; Control (PLA): low-fat spreads without PS and EPA/DHA The spreads (30 g) were consumed daily with the main meals.

Effect on exogenous metabolites EPA/DHA concentrations in the red blood cell membranes are expected to reflect differences in EPA/DHA intakes between intervention groups the concentrations of EPA and DHA in red blood cell membranes were measured together with other 32 fatty acids using GC- FID

Principal component analysi of fatty acids

Effect on EPA and DHA Concentrations of EPA and DHA in erythrocytes after treatment relative to before treatment. EPA concentrations are higher following PS+EPA/DHA treatments when compared to DHA concentrations.

Primary objective Does the combined effects of PS and EPA+DHA reduce both LDL-Chol and TG concentrations and thus simultaneously reduce two relevant CHD risk factors? What is the minimum dose of EPA+DHA to achieve a significant reduction in TG concentrations, while still obtaining a meaningful LDL-C lowering effect ( 8%)?

Ras, R.T. et al. J. Nutr. 2014, 144(10), 1564-1570. Effect on TG and LDL-Chol p<0.05; p<0.01 wrt PLA b=-0.07 p=0.0003 The combination of EPA/DHA from fish oil and PS lowers TG concentrations in a dose-dependent manner (9-16%) while also reducing LDL-cholesterol concentrations (~13%) in a population with borderline-high to high cholesterol concentrations.

Secondary Objective Specific lipoprotein subclasses may be more accurate estimates for CHD. The effect of PS on LDL particle size is inconsistent. PUFA s have been shown to increase large HDL particles and to reduce large VLDL particles. What is the combined effect on TG and Chol in lipoprotein subclasses?

Lipoprotein metabolism

Lipoprotein composition

Lipoprotein particle size and density

NMR-based lipoprotein profiles 564 diffusion-edited spectra TG model: 0.6-1.4 ppm = 1746 data points Chol model: 0.6-1.04 ppm = 961 data points

Calibration set: Liposearch HPLC 290 samples cholesterol triglycerides

Lipoprotein model HPLC @ Liposearch Diffusion edited 1 H-NMR spectra PLS model (-CH 2 -)n -CH 3 Xb=Y -C(18)H 3

PLS Model building/validation - cookbook ET BL 190 samples 100 samples Modeling set nlv =1..n PLS models 10 times External test set Validation set PLS model Y, RMSECV,Q2CV Beta, optimal # LV Y, RMSEP,Q2 Permutation tests, selectivity ratio

Example: LP sublass HDL17

Selectivity ratio SR i = var exp,i /var res,i Black curve: NMR spectrum Colored curves: regions that are selected by the model

Significant models of lipoprotein subclasses Chol Q 2 >0.6 VLDL03 VLDL04 0.45 < Q 2 <0.6 VLDL05 VLDL06 Q 2 <0.45 VLDL07 LDL08 LDL09 LDL10 LDL11 LDL12 LDL13 HDL14 HDL15 HDL16 HDL17 HDL18 HDL19 HDL20 TG Mihaleva VV et al. Anal Chem. 2014 86(1):543-50.

PLS-DA PS vs PLA PS + low EPA/DHA vs PLA Q 2 =0.21 Q 2 =0.15 PS + medium EPA/DHA vs PLA Q 2 =0.32 PS + high EPA/DHA vs PLA Q 2 =0.45

c(ei)/c(bl) Effects of PS and EPA/DHA on VLDL subclasses c(ei)/c(bl) c(ei)/c(bl) c(ei)/c(bl) c(ei)/c(bl) PS lowered Chol in large-medium VLDL particles. PS + medium / high EPA/DHA induced stronger reductions in Chol in larger VLDL particles. VLDL03-TG VLDL04-TG VLDL05-TG VLDL06-TG VLDL07-TG 3 2.5 2 1.5 1 0.5 0 PLA PS PS+L PS+M PS+H 3 2.5 2 1.5 1 0.5 0 PLA PS PS+L PS+M PS+H 2.5 2 1.5 1 0.5 0 PLA PS PS+L PS+M PS+H 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 PLA PS PS+L PS+M PS+H 1.6 1.4 1.2 1 0.8 0.6 0.4 PLA PS PS+L PS+MPS+H p<0.05; p<0.0001 wrt PLA PS did not change TG in VLDL particles. PS + medium / high EPA/DHA reduced TG in large-medium VLDL particles.

Effects of PS and EPA/DHA on LDL subclasses PS lowered Chol in all LDL particles. PS + EPA/DHA did not enhance or attenuate these reductions induced by PS. PS did not change TG in LDL particles. PS + medium EPA/DHA slightly reduced TG in large-medium LDL particles. p<0.05; p<0.0001 wrt PLA

Effects of PS and EPA/DHA on HDL subclasses PS and PS+EPA/DHA did not change Chol and TG in total HDL. PS did not change Chol and TG in HDL subclasses. PS + EPA/DHA increased in a dose-dependent manner Chol in large HDL subclasses. PS + medium / high EPA/DHA reduced Chol in the smallest HDL subclass. PS + medium / high EPA/DHA increased TG in the largest HDL subclass. PS + medium /high EPA/DHA reduced TG in the smaller HDL particles. p<0.05; p<0.0001 wrt PLA

Effects of PS and EPA/DHA on TG and Chol in lipoprotein subclasses PS most likely reduces Chol transport to the liver and as a consequence thereof reduces hepatic VLDL production and less conversion from VLDL and LDL particles. EPA and DHA is known to reduce the fatty acid delivery to the liver. This may lead to reduced hepatic VLDL production and increased VLDL clearance through neutral lipid exchange with HDL. The larger HDL particles are more stable and less susceptible to catabolism.

PCA loading plot based on PS+ low, medium, high EPA,DHA end-of-treatment

Correlation Matrix: Fatty acids vs TG and Chol in Lipoprotein subclasses C 8:0 C10:0 C12:0 C14:0 C14:1 C15:0 C15:1 C16:0 C16:1 C17:0 C17:1 C18:0 C18:1 (n-9) C18:2 (n-6,9) C18:3 (n-6,9,12) C18:3 + C19:0 ALA; C18:3 (n-3) C18:4 C20:0 C20:1 C20:2 (n-6) C20:3 (n-6) C20:4 (n-6) C20:3 (n-3) EPA; C20:5 (n-3) C22:0 C22:1 C22:2 (n-6,9) C23:0 C22:4 C22:5 (n-6) C24:0 DHA; C22:6 (n-3) C24:1 Unknowns Based on End of Treatment data for PS + low/medium/high EPA/DHA treatment groups VLDL03-CHOL 0.06-0.01 0.02-0.03-0.10-0.09 0.04 0.00 0.00-0.26 0.08-0.01 0.04 0.05 0.15-0.01 0.16 0.04-0.12-0.09 0.03 0.40 0.02 0.08-0.18 0.05-0.12-0.06-0.04 0.09 0.20-0.05-0.04-0.01-0.14 VLDL04-CHOL 0.09 0.02 0.02-0.01-0.08-0.07 0.03-0.01-0.02-0.25 0.07-0.03 0.00 0.07 0.11-0.01 0.14 0.03-0.09-0.12 0.02 0.34 0.01 0.10-0.14 0.04-0.11-0.08-0.08 0.10 0.17-0.08 0.01-0.01-0.11 VLDL05-CHOL -0.01-0.05 0.01-0.06-0.10-0.08-0.01-0.05 0.02-0.15 0.06 0.00 0.09-0.01 0.18 0.02 0.16 0.07-0.12-0.06-0.02 0.35 0.03 0.03-0.10 0.00-0.11-0.02 0.02 0.05 0.14 0.06 0.01-0.04-0.16 VLDL06-CHOL 0.02 0.02 0.05 0.02-0.02-0.11-0.06-0.08 0.09-0.24-0.02-0.05-0.04-0.02 0.27 0.07 0.20-0.05-0.04-0.16 0.01 0.42 0.07 0.05-0.09-0.10-0.10-0.07-0.07 0.11 0.17 0.05 0.13-0.05-0.09 VLDL07-CHOL -0.02 0.04 0.05-0.01-0.09-0.03-0.06 0.04 0.17-0.16-0.07-0.01-0.07-0.12 0.30 0.16 0.18-0.10 0.04-0.14-0.03 0.22-0.04 0.01 0.17-0.20 0.02-0.04-0.02-0.10-0.08 0.10 0.15-0.05-0.05 LDL08-CHOL -0.08-0.04 0.00-0.11-0.17-0.01-0.05-0.02 0.03 0.00 0.02 0.01 0.11 0.03 0.11 0.07 0.13 0.05-0.04 0.05-0.10 0.14 0.00 0.00 0.06-0.09-0.04-0.05 0.01-0.10-0.07 0.06 0.03-0.07-0.17 LDL09-CHOL -0.05-0.08 0.00-0.13-0.15-0.06-0.03-0.11-0.06-0.01 0.07 0.02 0.17 0.08 0.07-0.01 0.11 0.12-0.10 0.07-0.08 0.21 0.07-0.01-0.12 0.02-0.11-0.04 0.01 0.02 0.09 0.02-0.03-0.07-0.17 LDL10-CHOL -0.05-0.15-0.03-0.18-0.15-0.11-0.01-0.14-0.11-0.04 0.08 0.05 0.16 0.03 0.04-0.07 0.07 0.14-0.07 0.07 0.01 0.12 0.11-0.06-0.19 0.10-0.06 0.06 0.07 0.07 0.16-0.02-0.10-0.04-0.06 LDL11-CHOL -0.07-0.17-0.03-0.18-0.15-0.10-0.02-0.13-0.10-0.03 0.08 0.04 0.18 0.02 0.03-0.09 0.07 0.15-0.07 0.09-0.02 0.08 0.09-0.06-0.15 0.09-0.05 0.09 0.08 0.05 0.13-0.03-0.09-0.05-0.05 HDL15-CHOL -0.04-0.04-0.04-0.06-0.11 0.11 0.10 0.11-0.02 0.15 0.06 0.03 0.08-0.02-0.12 0.02-0.05 0.11 0.03 0.08-0.02-0.32-0.14-0.03 0.21 0.05 0.10 0.11 0.10-0.24-0.26 0.04-0.06 0.02-0.01 HDL16-CHOL -0.03-0.03-0.04-0.07-0.10 0.10 0.04 0.12-0.02 0.17 0.03 0.05 0.08-0.01-0.13 0.04-0.07 0.06 0.05 0.12 0.00-0.37-0.14-0.05 0.20 0.03 0.15 0.12 0.11-0.22-0.27 0.05-0.09 0.01 0.02 HDL17-CHOL -0.04-0.09-0.10-0.07-0.09-0.01-0.06 0.13 0.07 0.00-0.03 0.04 0.11 0.05-0.07 0.03 0.00 0.03-0.01 0.16 0.11-0.17-0.07-0.10-0.02 0.00 0.15 0.09 0.16-0.08-0.11 0.04-0.20-0.03 0.05 HDL18-CHOL 0.01-0.08-0.09-0.06-0.10-0.10-0.06 0.03 0.06-0.17 0.02-0.02 0.13 0.08 0.04-0.01 0.10 0.05-0.14 0.09 0.10 0.14 0.03-0.04-0.22-0.03 0.02 0.01 0.06 0.09 0.09-0.04-0.13-0.12-0.03 VLDLtotal-CHOL 0.02 0.00 0.05-0.01-0.08-0.09-0.02-0.04 0.09-0.23 0.01-0.03 0.00-0.05 0.26 0.06 0.20-0.01-0.07-0.14 0.00 0.39 0.03 0.04-0.05-0.08-0.09-0.05-0.04 0.05 0.13 0.05 0.09-0.05-0.12 LDLtotal-CHOL -0.05-0.08 0.01-0.13-0.16-0.07-0.06-0.11-0.01-0.07 0.04 0.01 0.13 0.05 0.11 0.04 0.15 0.10-0.07 0.05-0.07 0.23 0.07-0.03-0.08-0.03-0.09-0.05-0.01 0.01 0.08 0.05 0.00-0.07-0.14 HDLtotal-CHOL -0.05-0.09-0.08-0.09-0.12 0.04 0.02 0.12 0.02 0.06 0.03 0.04 0.12 0.01-0.11 0.02-0.02 0.07 0.01 0.14 0.05-0.30-0.11-0.07 0.11 0.03 0.15 0.14 0.13-0.18-0.21 0.04-0.14-0.01 0.03 VLDL03-TG 0.09 0.01 0.01-0.02-0.10-0.07 0.05 0.03-0.01-0.26 0.07-0.04 0.02 0.08 0.10-0.01 0.13 0.03-0.12-0.10 0.03 0.36 0.00 0.11-0.16 0.05-0.11-0.08-0.07 0.08 0.18-0.11-0.03-0.02-0.13 VLDL04-TG 0.10 0.02 0.01-0.02-0.10-0.07 0.05 0.01-0.02-0.26 0.08-0.04 0.02 0.07 0.10-0.02 0.13 0.04-0.12-0.10 0.03 0.36 0.01 0.10-0.16 0.05-0.11-0.08-0.07 0.09 0.18-0.10-0.02-0.02-0.12 VLDL05-TG 0.09 0.02 0.03-0.02-0.08-0.08 0.05-0.02-0.02-0.24 0.08-0.04 0.02 0.03 0.12-0.02 0.13 0.04-0.12-0.12 0.02 0.34 0.01 0.09-0.15 0.04-0.12-0.06-0.08 0.10 0.18-0.09 0.01-0.02-0.11 VLDL06-TG 0.07 0.02 0.04 0.02-0.01-0.11 0.02-0.05 0.04-0.24 0.04-0.05-0.01-0.04 0.20 0.00 0.14-0.01-0.12-0.16 0.03 0.38 0.06 0.05-0.15 0.00-0.12-0.03-0.06 0.14 0.22-0.03 0.07-0.04-0.07 VLDL07-TG 0.03 0.03 0.04 0.04-0.02-0.10 0.02-0.01 0.12-0.27 0.02-0.08-0.06-0.11 0.28 0.03 0.17-0.06-0.12-0.19 0.02 0.36 0.03 0.01-0.03-0.08-0.10-0.01-0.07 0.09 0.14-0.02 0.14-0.06-0.05 LDL08-TG 0.00 0.03 0.03 0.03-0.04-0.08 0.02 0.03 0.16-0.26 0.01-0.08-0.07-0.13 0.31 0.04 0.18-0.08-0.10-0.18 0.00 0.31 0.00-0.01 0.05-0.13-0.08 0.00-0.07 0.02 0.07-0.01 0.16-0.06-0.06 LDL09-TG -0.07 0.02 0.00 0.00-0.05-0.04 0.02 0.02 0.15-0.16 0.02-0.08-0.02-0.06 0.23-0.05 0.11-0.06-0.12-0.07-0.02 0.25-0.01 0.00 0.08-0.14-0.08-0.01-0.08-0.04-0.01-0.06 0.14-0.05-0.11 LDL10-TG -0.06 0.02-0.03-0.01-0.02-0.04 0.02 0.00 0.10-0.12 0.01-0.07 0.02 0.02 0.15-0.10 0.07-0.05-0.11-0.01 0.02 0.25 0.00 0.04-0.02-0.06-0.09 0.01-0.07-0.01 0.02-0.10 0.08 0.00-0.12 LDL11-TG -0.04 0.05 0.00 0.01-0.03-0.02 0.03 0.01 0.12-0.14 0.02-0.08-0.02 0.01 0.15-0.07 0.07-0.07-0.11-0.03-0.02 0.26-0.02 0.05 0.05-0.08-0.09-0.02-0.11-0.04-0.01-0.10 0.11-0.01-0.11 HDL15-TG -0.02-0.05-0.02-0.08-0.16 0.06 0.18 0.14-0.04 0.06 0.12 0.01 0.11-0.11-0.03 0.01 0.02 0.13-0.04 0.03-0.04-0.27-0.11-0.03 0.18 0.04 0.05 0.13 0.09-0.22-0.18 0.00-0.07-0.01-0.07 HDL16-TG -0.06-0.06-0.03-0.11-0.14 0.05 0.15 0.14-0.04 0.12 0.09 0.04 0.15-0.12 0.06 0.00 0.05 0.07-0.03 0.06-0.01-0.31-0.10-0.01 0.11 0.02 0.08 0.17 0.15-0.20-0.19-0.01-0.08-0.02-0.07 HDL17-TG 0.01-0.03-0.03-0.04-0.12-0.11 0.09 0.07 0.08-0.26 0.07-0.07 0.08-0.01 0.22-0.02 0.23 0.02-0.15-0.10 0.06 0.25 0.03 0.01-0.18-0.08-0.08 0.01-0.01 0.06 0.13-0.09-0.02-0.10-0.14 HDL18-TG 0.06 0.02 0.02 0.00-0.07-0.11 0.09 0.02 0.05-0.27 0.07-0.08 0.04-0.03 0.23 0.00 0.22 0.00-0.13-0.15 0.01 0.35 0.03 0.07-0.16-0.08-0.12-0.05-0.07 0.09 0.17-0.09 0.06-0.09-0.14 VLDLtotal-TG 0.10 0.03 0.05 0.00-0.06-0.10 0.05-0.03 0.03-0.27 0.07-0.05 0.00 0.00 0.15 0.00 0.14 0.03-0.14-0.14 0.03 0.38 0.04 0.06-0.15 0.02-0.12-0.05-0.07 0.11 0.20-0.06 0.03-0.04-0.10 LDLtotal-TG -0.05 0.02 0.01 0.01-0.04-0.06 0.02 0.02 0.15-0.19 0.01-0.08-0.03-0.08 0.26-0.03 0.13-0.07-0.12-0.10-0.01 0.29 0.00 0.01 0.05-0.13-0.09 0.00-0.08-0.01 0.03-0.05 0.15-0.05-0.09 HDLtotal-TG 0.00-0.02-0.01-0.06-0.15-0.05 0.16 0.11 0.03-0.13 0.11-0.04 0.12-0.10 0.22 0.00 0.19 0.04-0.13-0.07 0.01 0.08-0.04 0.03-0.05-0.05-0.04 0.08 0.05-0.06 0.01-0.07-0.01-0.08-0.14 TG 0.08 0.05 0.05 0.01-0.07-0.10 0.05-0.02 0.07-0.28 0.06-0.08-0.05-0.03 0.18 0.02 0.16 0.01-0.14-0.16 0.04 0.38 0.06 0.05-0.09 0.00-0.12-0.06-0.07 0.10 0.20-0.05 0.07-0.07-0.09 HDL-CHOL -0.08-0.09-0.11-0.09-0.12 0.05 0.03 0.09 0.03 0.05 0.04 0.03 0.10 0.03-0.11-0.02-0.01 0.08-0.01 0.16 0.05-0.26-0.10-0.05 0.11 0.06 0.13 0.12 0.17-0.20-0.19 0.05-0.10-0.02 0.02 CHOL -0.08-0.09-0.07-0.15-0.23-0.03 0.00-0.04 0.03-0.08 0.07-0.01 0.11 0.00 0.06 0.02 0.13 0.13-0.08 0.04-0.01 0.08 0.04-0.02 0.05-0.03-0.02 0.02 0.10-0.13-0.04 0.06-0.02-0.12-0.11 LDL/HDL 0.04 0.04 0.09-0.01-0.02-0.05 0.00-0.13-0.01-0.10 0.04-0.04 0.00 0.04 0.11 0.00 0.13 0.04-0.04-0.10-0.04 0.31 0.12 0.03-0.13-0.06-0.15-0.13-0.13 0.10 0.16-0.03 0.08-0.05-0.11 LDL-CHOL -0.03-0.06-0.01-0.14-0.18-0.08-0.05-0.13-0.01-0.10 0.04 0.00 0.10 0.09 0.10 0.03 0.18 0.11-0.04 0.01-0.02 0.27 0.11-0.01-0.12-0.03-0.09-0.07 0.00 0.00 0.11 0.05-0.01-0.09-0.14 R 0.5 0.15<R<0.5-0.15<R<-0.5 R -0.5

Correlation Matrix Based on End of Treatment data for PS + low/medium/high EPA/DHA treatment groups R=0.18 R=0.2 R=0.16 R=0.17 No significant correlations between EPA and DHA concentrations and TG and Chol concentrations in lipoprotein subclasses

Conclusion The concentrations of EPA and DHA were increased following the PS+EPA/DHA treatment. The combination of EPA/DHA from fish oil and PS lowered TG concentrations in a dose-dependent manner (9-16%) while also reducing LDL-cholesterol concentrations (~13%). The shift in lipoprotein distribution induced by PS indicates reduced hepatic VLDL production and less conversion from VLDL and LDL particles as a possible consequence of reduced Chol transport to the liver. The shift in lipoprotein distribution induced by EPA and DHA suggests reduced hepatic VLDL production and increased VLDL clearance through neutral lipid exchange with HDL as a possible consequence of reduced the fatty acid delivery to the liver. No correlations between the concentrations of EPA /DHA and the TG and Chol concentrations in lipoprotein subclasses were found.

Thank you! Daniël van Schalkwijk Albert de Graaf Rouyanne T. Ras Isabelle Demonty Elke A. Trautwein Ferdi van Dorsten John van Duynhoven Velitchka Mihaleva Jacques Vervoort Johan Westerhuis Age Smilde