Rapid detection of carbapenemase-producing Pseudomonas spp.

Similar documents
Rapid detection of carbapenemase-producing Enterobacteriaceae from blood cultures

Sensitive and specific Modified Hodge Test for KPC and metallo-beta-lactamase

NONFERMENTING GRAM NEGATIVE RODS. April Abbott Deaconess Health System Evansville, IN

In-House Standardization of Carba NP Test for Carbapenemase Detection in Gram Negative Bacteria

Screening and detection of carbapenemases

Carbapenemases in Enterobacteriaceae: Prof P. Nordmann Bicêtre hospital, South-Paris Med School

Received 31 January 2011/Returned for modification 2 March 2011/Accepted 15 March 2011

Detection of Carbapenem Resistant Enterobacteriacae from Clinical Isolates

Original Article Clinical Microbiology

#Corresponding author: Pathology Department, Singapore General Hospital, 20 College. Road, Academia, Level 7, Diagnostics Tower, , Singapore

Determining the Optimal Carbapenem MIC that Distinguishes Carbapenemase-Producing

MHSAL Guidelines for the Prevention and Control of Antimicrobial Resistant Organisms (AROs) - Response to Questions

Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test

Detecting Carbapenemase-Producing Enterobacteriaceae: why isn t there a single best method?

Detecting CRE. what does one need to do?

Detection of SPM-1-producing Pseudomonas aeruginosa and CHDL-producing. Acinetobacter baumannii using Liquid Chromatography Mass Spectrometry

Revised AAC Version 2» New-Data Letter to the Editor ACCEPTED. Plasmid-Mediated Carbapenem-Hydrolyzing β-lactamase KPC-2 in

Rapid identification of emerging resistance in Gram negatives. Prof. Patrice Nordmann

Insert for Kit 98006/98010/ KPC/Metallo-B-Lactamase Confirm Kit KPC+MBL detection Kit KPC/MBL and OXA-48 Confirm Kit REVISION: DBV0034J

Phenotypic detection of ESBLs and carbapenemases

β CARBA Test Rapid detection of carbapenemase-producing Enterobacteriaceae strains Contents 1. INTENDED USE

Evaluation of Six Phenotypic Methods for the Detection of Carbapenemases in Gram-Negative Bacteria With Characterized Resistance Mechanisms

Combined disk methods for the detection of KPC- and/or VIM-positive. Klebsiella pneumoniae: improving reliability for the double carbapenemase

Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by MALDI- TOF mass spectrometry

Detecting carbapenemases in Enterobacteriaceae

Revised AAC Short Form format. Comparison of two phenotypic algorithms to detect carbapenemaseproducing

Discussion points CLSI M100 S19 Update. #1 format of tables has changed. #2 non susceptible category

ALERT. Clinical microbiology considerations related to the emergence of. New Delhi metallo beta lactamases (NDM 1) and Klebsiella

Carbapenemase-producing Enterobacteriaceae

Educational Workshops 2016

International transfer of NDM-1-producing Klebsiella. pneumoniae from Iraq to France

Resistance to Polymyxins in France

Guidance on screening and confirmation of carbapenem resistant Enterobacteriacae (CRE) December 12, 2011

ORIGINAL ARTICLE. Julie Creighton and Clare Tibbs. Canterbury Health Laboratories, Christchurch

Evaluation of the in vitro activity of ceftazidime-avibactam and ceftolozane-tazobactam

Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories

Detection of NDM-1-producing Klebsiella pneumoniae in Kenya

Emergence of non-kpc carbapenemases: NDM and more

Differentiation of Carbapenemase producing Enterobacteriaceae by Triple disc Test

Supplementary Material Hofko M et al., Detection of carbapenemases by real-time PCR and melt-curve analysis on the BD MAX TM System

Strains characterization Testing procedure of commercial carbapenemase detection assays

Enterobacteriaceae with acquired carbapenemases, 2016

Carbapenem Disks on MacConkey agar as screening methods for the detection of. Carbapenem-Resistant Gram negative rods in stools.

Identification and screening of carbapenemase-producing Enterobacteriaceae

The role of an AMR reference laboratory

Enterobacteriaceae with acquired carbapenemases, 2015

CARBAPENEMASE PRODUCING ENTEROBACTERIACEAE

Use of Faropenem as an Indicator of Carbapenemase Activity

CRO and CPE: Epidemiology and diagnostic tests

Laboratory testing for carbapenems resistant Enterobacteriacae (CRE)

Methodological and interpretative problems in antimicrobial susceptiblity tests of P. aeruginosa

Translocation Studies Mid-Term Review (MTR) Meeting Marseille, France

Nature and Science 2017;15(10)

ST11 KPC-2 Klebsiella pneumoniae detected in Taiwan

Downloaded from ismj.bpums.ac.ir at 10: on Friday March 8th 2019

Chalhoub et al. Avibactam and resistance mechanisms in P. aeruginosa - Page 1 of 17

Abstract. Introduction. Editor: R. Canton

AAC Accepts, published online ahead of print on 13 October 2008 Antimicrob. Agents Chemother. doi: /aac

CARBAPENEM RESISTANCE FROM DIAGNOSIS TO OUTBREAK MANAGEMENT

β-lactamase inhibitors

False susceptibility of antibitoics to carbapenemase producers and means to overcome

Carbapenem-resistant Escherichia coli and Klebsiella pneumoniae in Taiwan

(Plasmid mediated) Carbapenemases. Timothy R. Walsh, Cardiff University, Wales

Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae

Public Health Surveillance for Multi Drug Resistant Organisms in Orange County

Comparison of phenotypic methods for the detection of carbapenem non-susceptible Enterobacteriaceae

on July 8, 2018 by guest

Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology

Abstract. Introduction. Methods. Editor: R. Canton

β- Lactamase Gene carrying Klebsiella pneumoniae and its Clinical Implication

Regional Emergence of VIM producing carbapenem resistant Pseudomonas aeruginosa (VIM CRPA)

New Mechanisms of Antimicrobial Resistance and Methods for Carbapenemase Detection

CARBAPENEM RESISTANCE From diagnosis to outbreak management

Emergence of carbapenemase-producing Enterobacteriaceae in France, 2004 to 2011.

Antibiotic Treatment of GNR MDR Infections. Stan Deresinski

Research Article PhenotypicDetectionofMetallo-β-Lactamase in Imipenem-Resistant Pseudomonas aeruginosa

Evaluation of CHROMagar msupercarba for the detection of carbapenemaseproducing Gram-negative organisms

Update on CLSI and EUCAST

Phenotypic Detection Methods of Carbapenemase Production in Enterobacteriaceae

Carbapenems and Enterobacteriaceae

Affinity of Doripenem and Comparators to Penicillin-Binding Proteins in Escherichia coli and ACCEPTED

K. Lee, Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong*

Development of a phenotypic method for fecal carriage detection of OXA-48-producing

THE INVASION BY CARBAPENEMASE-PRODUCING ENTEROBACTERIACEAE

Ceftazidime-Avibactam and Aztreonam an interesting strategy to Overcome β- Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae

Global Epidemiology of Carbapenem- Resistant Enterobacteriaceae (CRE)

KPC around the world Maria Virginia Villegas, MD, MSC

Standardisation of testing for Carbapenemase Producing Organisms (CPO) in Scotland

Carbapenemases: A Review

Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria from ICU Patients with Pneumonia

(penicillin binding protein,pbp),

Rapid identification and resistance assessment: The future is mass spectrometry

ESCMID Online Lecture Library. by author

Incidence of metallo beta lactamase producing Pseudomonas aeruginosa in ICU patients

Validating a selection method for. H. Hasman, Y. Agersø, C. Svendsen, H. Nielsen, N.S. Jensen, B. Guerra, Aarestrup, FM

Surveillance of antimicrobial susceptibility of Enterobacteriaceae pathogens isolated from intensive care units and surgical units in Russia

Antibacterial-Resistant Pseudomonas aeruginosa: Clinical Impact and Complex Regulation of Chromosomally Encoded Resistance Mechanisms

Metallo beta-lactamases mediated resistance in Pseudomonas aeruginosa from clinical samples in a teaching hospital of North India.

Laboratory CLSI M100-S18 update. Paul D. Fey, Ph.D. Associate Professor/Associate Director Josh Rowland, M.T. (ASCP) State Training Coordinator

Transcription:

JCM Accepts, published online ahead of print on 12 September 2012 J. Clin. Microbiol. doi:10.1128/jcm.01597-12 Copyright 2012, American Society for Microbiology. All Rights Reserved. 1 Rapid detection of carbapenemase-producing Pseudomonas spp. 2 3 Laurent Dortet, Laurent Poirel, and Patrice Nordmann* 4 5 6 7 Service de Bactériologie-Virologie, INSERM U914 Emerging Resistance to Antibiotics, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine Paris Sud, K.-Bicêtre, France 8 9 10 11 12 13 14 15 Corresponding author : nordmann.patrice@bct.aphp.fr; Service de Bactériologie-Virologie, hôpital de Bicêtre 78 rue du Général Leclerc, 94275 K-Bicêtre, France Tel : +33 1 45 21 36 32 Fax : +33 1 45 21 63 40 16 17 18 Word count : 1063 Key words: Resistance; antibiotic; Gram negatives; ß-lactam 19

20 21 22 23 24 25 Abstract A novel biochemical technique, the Carba NP test, has been evaluated to detect carbapenemase production in Pseudomonas spp. This test was specific (100%), sensitive (94.4%) and rapid (<2h). This cost-effective test, which could be implemented in any microbiology laboratory, offers a reliable technique for identification of carbapenemaseproducing Pseudomonas spp. 26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Pseudomonas aeruginosa is intrinsically resistant to a number of ß-lactams due to the low permeability of its outer-membrane, the constitutive expression of various efflux pumps, and the production of ß-lactamases (5). Acquired resistance to broad-spectrum ß-lactams is increasingly observed in P. aeruginosa. Currently PER-, VEB-, and GES-type enzymes are the most frequently extended-spectrum ß-lactamases (ESBLs) identified in Pseudomonas spp. (5, 7). Therefore, carbapenems are considered crucial for treating many P. aeruginosaassociated infections. In Pseudomonas spp., carbapenem resistance may be related either to a decreased bacterial outer-membrane permeability (e.g. loss or modification of the OprD2 porin, or overexpression of efflux pumps), often associated with overexpression of ß-lactamases possessing no significant carbapenemase activity (AmpCs) or to expression of true carbapenemases (5, 14). In Pseudomonas spp., those carbapenemases are mostly metallo-ß-lactamases (MBLs) of the VIM-, IMP-, SPM-, GIM-, AIM-, DIM-, and NDM-types and to a lesser extent to Ambler class A carbapenemases of the KPC- and GES-types (GES-2, -4, -5, -6, and -11) (2, 3, 12). Screening of carbapenemase producers among carbapenem-resistant P. aeruginosa isolates is important since many carbapenemase genes are plasmid-encoded and easily transferable. Phenotypic techniques for in-vitro identification of carbapenemase production, such as the modified Hodge test, are not highly sensitive and specific (10). Detection of MBL- and of KPC producers may be based on the inhibitory properties of several molecules (EDTA and boronic acid, respectively), and requires a significant degree of expertise (9). Indeed, inhibition of carbapenemase activity is more difficult to evidence in P. aeruginosa than in Enterobacteriaceae due to its low outer-membrane permeability (11). Molecular detection of carbapenemase genes is an interesting alternative but remains costly and also requires a high degree of expertise that is not available for non-specialized laboratories (16). Both the phenotypic and molecular techniques are time-consuming and therefore do not

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 correspond to the real clinical need. However, the detection of carbapenemase producers must actually be followed by a rapid adaptation of the antibiotic therapy, and by the isolation of colonized patients in order to prevent the development of nosocomial outbreaks (6). The aim of this study was to determine the value of the newly-developed Carba NP test (8) to discriminate between carbapenemase- and non-carbapenemase-producers among Pseudomonas spp. The Carba NP test is based on biochemical detection of the hydrolysis of the ß-lactam ring of a carbapenem, imipenem, followed by color change of a ph indicator. This test was performed on strains grown on Mueller-Hinton agar plates (Becton Dickinson, Le Pont de Chaix, France) at 37 C for 18-22h (8). Briefly, one calibrated oese (10 µl) of the tested strain directly recovered from the Mueller-Hinton agar plate was re-suspended in 100 µl of a Tris- HCl 20 mm lysis buffer (B-PER II, Bacterial Protein Extraction Reagent, Pierce, Thermo Scientific, Villebon-sur-Yvette, France), vortexed for 1 min and further incubated at room temperature for 30 min. This bacterial suspension was centrifuged at 10,000 x g at room temperature for 5 min. Thirty microlitres of the supernatant, corresponding to the enzymatic bacterial suspension, was mixed in a well of a 96 well tray with 100 µl of a 1 ml solution made of 3 mg of imipenem monohydrate (Sigma, Saint-Quentin-Fallavier, France) ph 7.8 phenol red solution and 0.1 mm ZnSO 4 (Merck Millipore, Guyancourt, France). The phenol red solution used was prepared by taking 2 ml of a phenol red (Merck Millipore) solution 0.5% w/v to which 16.6 ml of distilled water was added. The ph value was then adjusted to 7.8 by adding drops of 1 N NaOH. Mixture of the phenol red solution and the enzymatic suspension being tested was incubated at 37 C for a maximum of 2 h. Test results were interpreted by technicians who were blinded to the identity of the samples. Thirty-six carbapenemase-producing isolates belonging to several Pseudomonas species, isolated from various clinical samples and being of global origin have been included

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 in this study (Table 1). The strains had been previously characterized for their ß-lactamase content at the molecular level. This collection also contained 72 strains being representative of the main ß-lactam resistance phenotypes and ß-lactamase diversity identified in Pseudomonas spp. (including ESBLs of PER-, VEB-, BEL-, SHV-, TEM-, and OXA-types) (Table 2). In addition, most of those strains were resistant to carbapenems. The Carba NP test differentiated the carbapenemase producers, with the exception of several GES-type producers (Table 1), from those isolates being carbapenem-resistant due to non-carbapenemase-mediated mechanisms (the most frequent ones) such as combined mechanisms of resistance (outer-membrane permeability defect +/- associated with overproduction of cephalosporinase and/or ESBLs) (Table 2). The specificity and sensitivity of the test were found to be 100% and 94.4%, respectively. Interestingly, a carbapenemase activity was detected in the two carbapenemase producers (IMP-1-producing P. stutzeri PB207 and P. putida NTU 92/99) that were basically susceptible to carbapenems (MIC 2 µg/ml) according to the CLSI guidelines (1) (Table 1). The Carba NP test has multiple benefits for detecting carbapenemase activity in non fermenters such as in Pseudomonas spp.. It eliminates the need of in-vitro detection of carbapenemase activity (Hodge test) and of ß-lactamase inhibitor-based phenotypic techniques (boronic acid for KPC, EDTA for MBLs) that both require at least 24 to 72 h to be performed. The Carba NP test is the first technique available to identify carbapenemase producers with such high specificity, sensitivity, and rapidity (less than 2 h). However, the absence of detection of GES-type carbapenemases has to be considered, especially in geographical regions with high prevalence (i.e. Brazil, South Africa). The GES-type carbapenemases are point mutant analogues of the ESBL GES-1 that possess an additional and rather weak carbapenemase activity (4) that may explain this lack of detection. In addition, the real clinical significance of the carbapenemase activity of GES-type variants as a

102 103 104 105 106 107 108 109 110 source of in-vivo resistance to carbapenems (therapeutic failure) remained to be evaluated (13, 15). Using this accurate test would be helpful for detecting patients infected or colonized with carbapenemase producers, which is of utmost importance for a better antibiotic stewardship and prevention of outbreaks (6). Use of the Carba NP test may be interesting in particularly for ICU and burn patients where multidrug-resistant P. aeruginosa are widespread. It offers a cost-effective solution for detecting carbapenemase producers and preventing their spread, considering that they may harbor those carbapenemase genes onto plasmids that can spread in other bacterial family (Enterobacteriaceae, Acinetobacter). 111 112 113 Acknowledgments 114 This work was funded by a grant from the INSERM (UMR914). 115 116 117 118 119 120 121 122 123 124 References 1. Clinical and Laboratory Standards Institute. 2012. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement. M100-S22, vol. M100-S22. CLSI, Wayne (PA), USA. 2. Gupta V. 2008. Metallo-β-lactamases in Pseudomonas aeruginosa and Acinetobacter species. Expert Opin. Investig. Drugs 17:131-43. 3. Jovcic B, Lepsanovic Z, Suljagic V, Rackov G, Begovic J, Topisirovic L, Kojic M. 2011. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob. Agents Chemother. 55:3929-31.

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 4. Kotsakis SD, Miriagou V, Tzelepi E, Tzouvelekis LS. 2010. Comparative biochemical and computational study of the role of naturally occurring mutations at Ambler positions 104 and 170 in GES β-lactamases. Antimicrob. Agents Chemother. 54:4864-71. 5. Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F. 2007. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin. Microbiol. Infect. 13:560-78. 6. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V; European Network on Carbapenemases. 2012. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin. Microbiol. Infect. 18:432-8. 7. Nordmann P, Naas T. 2010. β-lactams and Pseudomonas aeruginosa, p. 157-174. In P. Courvalin, R. Leclercq, and L. B. Rice (ed.), Antibiogram. ASM Press, Portland. 8. Nordmann P, Poirel L, Dortet L. 2012. Rapid detection of carbapenemaseproducing Enterobacteriaceae. Emerg. Infect. Dis. 18:1503-1507. 9. Pasteran F, Veliz O, Faccone D, Guerriero L, Rapoport M, Mendez T, Corso A. 2011. A simple test for the detection of KPC and metallo-β-lactamase carbapenemaseproducing Pseudomonas aeruginosa isolates with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin. Microbiol. Infect. 17:1438-41. 10. Pasteran F, Veliz O, Rapoport M, Guerriero L, Corso A. 2011. Sensitive and specific modified Hodge test for KPC and metallo-β-lactamase detection in Pseudomonas aeruginosa by use of a novel indicator strain, Klebsiella pneumoniae ATCC 700603. J. Clin. Microbiol. 49:4301-3.

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 11. Picao RC, Andrade SS, Nicoletti AG, Campana EH, Moraes GC, Mendes RE, Gales AC. 2008. Metallo-β-lactamase detection: comparative evaluation of doubledisk synergy versus combined disk tests for IMP-, GIM-, SIM-, SPM-, or VIMproducing isolates. J. Clin. Microbiol. 46:2028-37. 12. Poirel L, Rodriguez-Martinez JM, Al Naiemi N, Debets-Ossenkopp YJ, Nordmann P. 2010. Characterization of DIM-1, an integron-encoded metallo-βlactamase from a Pseudomonas stutzeri clinical isolate in the Netherlands. Antimicrob. Agents Chemother. 54:2420-4. 13. Poirel L, Weldhagen GF, De Champs C, Nordmann P. 2002. A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum β- lactamase GES-2 in South Africa. J. Antimicrob. Chemother. 49:561-5. 14. Rodriguez-Martinez JM, Poirel L, Nordmann P. 2009. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 53:4783-8. 15. Wang C, Cai P, Chang D, Mi Z. 2006. A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum β-lactamase. J. Antimicrob. Chemother. 57:1261-2. 16. Woodford N. 2010. Rapid characterization of β-lactamases by multiplex PCR. Methods Mol. Biol. 642:181-92. 168 169 170 171

172 Figure legend 173 174 175 Figure 1. Examples of results for non carbapenemase-producing and carbapenemase- producing Pseudomonas spp. using the Carba NP test. 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 Non carbapenemase producers are as follows; P. aeruginosa 76110 wild-type (n 1), P. aeruginosa PU21 wild-type (n 2), P. aeruginosa ATCC 27853 wild-type (n 3), P. aeruginosa PA01 wild-type (n 4), P. aeruginosa HT29 OprM porin deficient (n 5), P. aeruginosa PA01 OprD porin deficient (n 6), P. aeruginosa PA01 overexpressing MexC/D-OprM efflux pump (n 7), P. aeruginosa overexpressing MexA/B-OprM efflux pump (n 8), P. aeruginosa PA01 overexpressing MexX/Y-OprM efflux pump (n 9), P. aeruginosa 3-12 overexpressing the chromosomal AmpC (n 10), P. aeruginosa GES-1 (n 11), P. aeruginosa GES-9 (n 12), P. aeruginosa ED OXA-28 (n 13), P. aeruginosa OXA-32 (n 14), P. aeruginosa SHV-2a (n 15), P. aeruginosa SHV-5 (n 16), P. aeruginosa PER-1 (n 17), P. aeruginosa VEB-1 (n 18), P. aeruginosa BEL-1 (n 19). Carbapenemase producers are as follows; P. aeruginosa 16 SPM-1 (n 20), P. stutzeri DIM-1 (n 21), P. aeruginosa P13 KPC-2 (n 22), P. aeruginosa PA-2 KPC-2 (n 23), P. aeruginosa VIM-1 (n 24), P. fluorescens COU VIM-2 (n 25), P. aeruginosa REZ VIM-2 (n 26), P. putida VIM-2 (n 27), P. stutzeri VIM-2 (n 28), P. aeruginosa CAS VIM-4 (n 29), P. aeruginosa JAC VIM-4 (n 30), P. aeruginosa 1287 IMP-1 (n 31), P. stutzeri PB207 IMP-1 (n 32), P. putida NTU 92/99 IMP-1 (n 33), P. aeruginosa 0607097 IMP-2 (n 34), P. aeruginosa IMP-13 (n 35), P. aeruginosa 453 NDM-1 (n 36), P. aeruginosa 353 NDM-1 (n 37), P. aeruginosa 73-56 GIM-1 (n 38), P. aeruginosa WCH2677 AIM-1 (n 39), P. fluorescens BIC-1 (n 40), P. aeruginosa GW-1 GES-2 (n 41), P. aeruginosa GES-5 (n 42). Note that strains 41 and 42 gave false-negative results.

Table 1. Detection of carbapenemase activity in carbapenemase producers using the Carba NP test Ambler Class A B Species ß-lactamase MIC (µg/l) IMP MER KPC P. aeruginosa COL KPC-2 >32 >32 + P. aeruginosa P13 KPC-2 >32 >32 + P. aeruginosa PA-2 KPC-2 >32 >32 + P. aeruginosa PA-3 KPC-2 >32 >32 + GES P. aeruginosa GW-1 GES-2 3 1 - P. aeruginosa P35 GES-5 >32 >32 - Carbapenemase type Carba NP test VIM P. aeruginosa P0510 VIM-1 >32 >32 + P. fluorescens COU VIM-2 >32 >32 + P. aeruginosa REZ VIM-2 >32 >32 + P. putida 9335 VIM-2 >32 >32 + P. stutzeri P511503100 VIM-2 >32 >32 + P. aeruginosa BY25753 VIM-2 >32 >32 + P. aeruginosa V919005 VIM-2 >32 >32 + P. aeruginosa AK5493 VIM-2 >32 >32 + P. aeruginosa KA-209 VIM-2 >32 >32 + P. putida NTU 91/99 VIM-2 >32 >32 + P. aeruginosa CAS VIM-4 >32 >32 + P. aeruginosa JAC VIM-4 >32 >32 + IMP P. aeruginosa 12870 IMP-1 12 >32 + P. stutzeri PB207 IMP-1 2 4 + P. putida NTU 92/99 IMP-1 1 0.19 + P. aeruginosa IMP-1 >32 >32 + P. aeruginosa 0607097 IMP-2 >32 >32 + P. aeruginosa ITA IMP-13 >32 >32 + NDM P. aeruginosa 453 NDM-1 >32 >32 + P. aeruginosa 353 NDM-1 >32 >32 + GIM P. aeruginosa 73-12198 GIM-1 3 0.19 + P. aeruginosa 73-15574 GIM-1 >32 >32 + P. aeruginosa 73-15553A GIM-1 >32 >32 + P. aeruginosa 73-5674 GIM-1 >32 >32 + AIM P. aeruginosa WCH2677 AIM-1 >32 >32 + P. aeruginosa WCH2813 AIM-1 >32 >32 + P. aeruginosa WCH2837 AIM-1 >32 >32 + SPM P. aeruginosa 16 SPM-1 >32 >32 + DIM P. stutzeri 13 DIM-1 >32 >32 + BIC P. fluorescens BIC-1 >32 4 +

Table 2. Results of Carba NP test on non-carbapenemase producing Pseudomonas spp. Resistance mechanism Wild type AmpC overproduction Efflux Porin deficiency Porin deficiency + Efflux Porin deficiency + AmpC overproduction Porin deficiency + AmpC overproduction + Efflux Species Resistance determinants * NP MIC (µg/l) Carba IMP MER test P. aeruginosa 76110 none 0.75 0.19 - P. aeruginosa PU21 none 1.5 0.75 - P. aeruginosa ATCC 27853 none 2 0.25 - P. aeruginosa PA01 none 1 0.5 - P. putida CIP 55-5 none 0.5 3 - P. aeruginosa 3-12 overexpression of chromosomal AmpC 3 0.25 - P. aeruginosa VED overexpression of chromosomal AmpC 0.12 0.19 - P. aeruginosa PA01 Mex C/D-OprJ >32 4 - P. aeruginosa PT629 Mex A/B-OprM 1.5 1.5 - P. aeruginosa PA01 Mex X/Y-OprM 1.5 0.75 - P. aeruginosa PA01 OprM deficient 0.75 0.5 - P. aeruginosa H729 OprD deficient >32 6 - P. aeruginosa Paeß-02 OprD deficient 4 4 - P. aeruginosa Paeß-05 OprD deficient 16 8 - P. aeruginosa Paeß-30 OprD deficient 8 8 - P. aeruginosa Paeß-31 OprD deficient 16 8 - P. aeruginosa Paeß-19 OprD deficient + MexA/B-OprM 4 4 - P. aeruginosa Paeß-29 OprD deficient + MexA/B-OprM + MexX/Y-OprM 16 32 - P. aeruginosa Paeß-01 OprD deficient + MexX/Y-OprM + MexC/D-OprJ 4 8 - P. aeruginosa Paeß-03 OprD deficient + AmpC 16 8 - P. aeruginosa Paeß-12 OprD deficient + AmpC 16 8 - P. aeruginosa Paeß-13 OprD deficient + AmpC 16 8 - P. aeruginosa Paeß-14 OprD deficient + AmpC 16 4 - P. aeruginosa Paeß-16 OprD deficient + AmpC 32 4 - P. aeruginosa Paeß-23 OprD deficient + AmpC 32 16 - P. aeruginosa Paeß-25 OprD deficient + AmpC 8 8 - P. aeruginosa Paeß-26 OprD deficient + AmpC 4 4 - P. aeruginosa Paeß-32 OprD deficient + AmpC 64 16 - P. aeruginosa Paeß-04 OprD deficient + AmpC + MexA/B-OprM 16 16 - P. aeruginosa Paeß-24 OprD deficient + AmpC + MexA/B-OprM 32 32 - P. aeruginosa Paeß-28 OprD deficient + AmpC + MexA/B-OprM 16 4 - P. aeruginosa Paeß-15 OprD deficient + AmpC + MexX/Y-OprM 16 8 - P. aeruginosa Paeß-21 OprD deficient + AmpC + MexX/Y-OprM 16 32 - P. aeruginosa Paeß-22 OprD deficient + AmpC + MexC/D-OprJ 8 4 - P. aeruginosa Paeß-06 OprD deficient + AmpC + MexX/Y-OprM + MexC/D-OprJ 16 8 - P. aeruginosa Paeß-07 OprD deficient + AmpC + MexX/Y-OprM + MexC/D-OprJ 16 8 - P. aeruginosa Paeß-08 OprD deficient + AmpC + MexX/Y-OprM + MexC/D-OprJ 16 8 - P. aeruginosa Paeß-09 OprD deficient + AmpC + MexX/Y-OprM + MexC/D-OprJ 16 8 - P. aeruginosa Paeß-11 OprD deficient + AmpC + MexX/Y-OprM + MexC/D-OprJ 16 8 - P. aeruginosa Paeß-17 OprD deficient + AmpC + MexX/Y-OprM + MexC/D-OprJ 32 8 - P. aeruginosa Paeß-18 OprD deficient + AmpC + MexA/B-OprM + MexX/Y-OprM 64 64 - P. aeruginosa Paeß-27 OprD deficient + AmpC + MexA/B-OprM + MexX/Y-OprM 32 64 - P. aeruginosa Paeß-10 OprD deficient + AmpC + MexA/B-OprM + MexC/D-OprJ 16 8 - P. aeruginosa Paeß-20 OprD deficient + AmpC + MexA/B-OprM + MexC/D-OprJ 16 8 -

ESBL P. aeruginosa F6R7 GES-1 1 0.75 - P. aeruginosa DEJ GES-9 2 1 - P. aeruginosa RNL-1 PER-1 6 6 - P. aeruginosa A2O6 PER-2 13 3 - P. aeruginosa A5O6 PER-8 1.5 0.38 - P. aeruginosa A7O6 PER-10 6 1 - P. aeruginosa A3O6 PER-11 3 1.5 - P. aeruginosa A8O6 PER-12 >32 12 - P. aeruginosa A4O6 PER-13 12 3 - P. aeruginosa E3O6 PER-19 >32 12 - P. aeruginosa E1O6 PER-21 0.25 0.016 - P. aeruginosa C2O7 PER-26 >32 8 - P. aeruginosa C1O7 PER-27 >32 >32 - P. aeruginosa 15 VEB-1 2 1.5 - P. aeruginosa 51170 BEL-1 1 0.5 - P. aeruginosa 0602-52025 SHV2a 1.5 3 - P. aeruginosa 1782 SHV-5 2 2 - P. aeruginosa SHAM TEM-4 3 0.75 - P. aeruginosa PU21 OXA-2 2 1 - P. aeruginosa PAO38 OXA-4 0.016 0.19 - P. aeruginosa PU 21 OXA-10 2 1.5 - P. aeruginosa PU 21 OXA-11 3 1.5 - P. aeruginosa NAJ OXA-13 2 1.5 - P. aeruginosa PU 21 OXA-14 2 2 - P. aeruginosa MUS OXA-18 + OXA-20 >32 >32 - P. aeruginosa ED OXA-28 2 0.75 - P. aeruginosa PIC OXA-31 >32 1.5 - P. aeruginosa PG13 OXA-32 >32 12 - * Underlined AmpC corresponds to overexpression of chromosomal AmpC Lack of OprD, AmpC overexpression and efflux system overproduction were previously characterized by qrt- PCR (12).