Correspondence should be addressed to Christopher R. Newey;

Similar documents
Iatrogenic Central Diabetes Insipidus Induced by Vasopressin Withdrawal

Clinical Study The Value of Programmable Shunt Valves for the Management of Subdural Collections in Patients with Hydrocephalus

Neuroendocrine challenges following hemispherectomy

Case 1. Case 5/30/2013. Traumatic Brain Injury : Review, Update, and Controversies

Case Report Spontaneous Rapid Resolution of Acute Epidural Hematoma in Childhood

Disorders of water and sodium homeostasis. Prof A. Pomeranz 2017

Moron General Hospital Ciego de Avila Cuba. Department of Neurological Surgery

PRACTICE GUIDELINE. DEFINITIONS: Mild head injury: Glasgow Coma Scale* (GCS) score Moderate head injury: GCS 9-12 Severe head injury: GCS 3-8

Traumatic Brain Injury

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

Iposodiemia: diagnosi e trattamento

Standardize comprehensive care of the patient with severe traumatic brain injury

Dr. Dafalla Ahmed Babiker Jazan University

Research Article Predictions of the Length of Lumbar Puncture Needles

Neuroprotective Effects for TBI. Craig Williamson, MD

Central Diabetes Insipidus

Case Report Low-Dose Tolvaptan for the Treatment of Dilutional Hyponatremia in Cirrhosis: A Case Report and Literature Review

DDAVP Tablets (desmopressin acetate) Rx only

Index. Note: Page numbers of article titles are in boldface type.

Pediatric Subdural Hematoma and Traumatic Brain Injury J. Charles Mace MD FACS Springfield Neurological Institute CoxHealth. Objectives 11/7/2017

Mandana Moosavi 1 and Stuart Kreisman Background

Case Report Intra-Articular Entrapment of the Medial Epicondyle following a Traumatic Fracture Dislocation of the Elbow in an Adult

Traumatic Brain Injury:

Pediatric Sodium Disorders

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

Case Report Subacute Subdural Hematoma in a Patient with Bilateral DBS Electrodes

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

Wales Critical Care & Trauma Network (North) Management of Hyponatraemia in Intensive Care Guidelines

Case Report Sinus Venosus Atrial Septal Defect as a Cause of Palpitations and Dyspnea in an Adult: A Diagnostic Imaging Challenge

Cerebral Salt Wasting

Supplementary Online Content

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

Case Report Tolvaptan in the Treatment of Acute Hyponatremia Associated with Acute Kidney Injury

Research Article The Cost of Prolonged Hospitalization due to Postthyroidectomy Hypocalcemia: A Case-Control Study

FLUID THERAPY: IT S MORE THAN JUST LACTATED RINGERS

Diabetic Ketoacidosis: When Sugar Isn t Sweet!!!

Case Report Intracranial Capillary Hemangioma in the Posterior Fossa of an Adult Male

Case Report Successful Closed Reduction of a Lateral Elbow Dislocation

How Low Should You Go? Management of Blood Pressure in Intracranial Hemorrhage

Clinical Study Rate of Improvement following Volar Plate Open Reduction and Internal Fixation of Distal Radius Fractures

Clinical Study The Incidence and Management of Pleural Injuries Occurring during Open Nephrectomy

Lab bulletin. Copeptin

FLUID MANAGEMENT AND BLOOD COMPONENT THERAPY

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

SUBJECT: Clinical Practice Guideline for the Management of Severe Traumatic Brain Injury

Master A.4yrs DOA DOD Duration of ventilation-70 days 2

Medical Management of Intracranial Hypertension. Joao A. Gomes, MD FAHA Head, Neurointensive Care Unit Cerebrovascular Center

Case Report Two Cases of Small Cell Cancer of the Maxillary Sinus Treated with Cisplatin plus Irinotecan and Radiotherapy

New approaches in the differential diagnosis of diabetes insipidus

Any closer to evidence based practice? Asma Salloo Chris Hani Baragwantah Academic Hospital University of Witwatersrand

Clinical Study Patient Aesthetic Satisfaction with Timing of Nasal Fracture Manipulation

Eggplant: The Story of Sodium in Neurocritical Care

Research Article The Impact of the Menstrual Cycle on Perioperative Bleeding in Vitreoretinal Surgery

CCRN/PCCN Review Course May 30, 2013

Case Report Pseudothrombocytopenia due to Platelet Clumping: A Case Report and Brief Review of the Literature

Research Article Challenges in Assessing Outcomes among Infants of Pregnant HIV-Positive Women Receiving ART in Uganda

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

Medicines Protocol HYPERTONIC SALINE 5%

Roberto Negro, 1 Ermenegildo Colosimo, 2 and Gabriele Greco Methods. 1. Introduction

Case Report Hypernatremia: Correction Rate and Hemodialysis

This is a repository copy of Diabetes insipidus and the use of desmopressin in hospitalised children..

Case Report Traumatic Haemorrhagic Cervical Lymphadenopathy with Underlying Infectious Mononucleosis

Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

Case Report Crossed Renal Ectopia without Fusion An Unusual Cause of Acute Abdominal Pain: A Case Report

Case Report Reverse Segond Fracture Associated with Anteromedial Tibial Rim and Tibial Attachment of Anterior Cruciate Ligament Avulsion Fractures

Correspondence should be addressed to Alicia McMaster;

Proceeding of the LAVC Latin American Veterinary Conference Oct , 2011 Lima, Peru

Assessment of the Patient with Endocrine Dysfunction. Objective. Endocrine. Endocrine Facts. Physical Assessment 10/3/2013

Introduction to Neurosurgical Subspecialties:

Management of Severe Traumatic Brain Injury

Case Report Evolution of Skin during Rehabilitation for Elephantiasis Using Intensive Treatment

Monday, 17 April 2017 BODY FLUID HOMEOSTASIS

Case Report Osteolysis of the Greater Trochanter Caused by a Foreign Body Granuloma Associated with the Ethibond Suture after Total Hip Arthroplasty

HEAD INJURY. Dept Neurosurgery

Composition of Body Fluids

Titrating Critical Care Medications

Optimum sodium levels in children with brain injury. Professor Sunit Singhi, Head, Department of Pediatrics, Head, Pediatric

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Eisuke Nomura, Hisatada Hiraoka, and Hiroya Sakai. 1. Introduction. 2. Case Report

Case Report An Undescribed Monteggia Type 3 Equivalent Lesion: Lateral Dislocation of Radial Head with Both-Bone Forearm Fracture

Changing Demographics in Death After Devastating Brain Injury

JACK L. SNITZER, DO INTERNAL MEDICINE BOARD REVIEW COURSE 2018 PITUITARY

IV Fluids. I.V. Fluid Osmolarity Composition 0.9% NaCL (Normal Saline Solution, NSS) Uses/Clinical Considerations

Case Report Pediatric Transepiphyseal Seperation and Dislocation of the Femoral Head

Ascites, a New Cause for Bilateral Hydronephrosis: Case Report

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

ISOVALERIC ACIDAEMIA -ACUTE DECOMPENSATION (standard version)

Pediatric Dehydration and Oral Rehydration. May 16/17

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

R. J. L. F. Loffeld, 1 P. E. P. Dekkers, 2 and M. Flens Introduction

Case Report Cytomegalovirus Colitis with Common Variable Immunodeficiency and Crohn s Disease

Clinical Outcome of Borderline Subdural Hematoma with 5-9 mm Thickness and/or Midline Shift 2-5 mm

MANAGEMENT OF PATIENTS WITH PITUITARY DISORDERS ON THE NEUROSUGERY WARDS RESPONSIBILITIES OF THE METABOLIC REGISTRAR

Case Report Medial Radial Head Dislocation Associated with a Proximal Olecranon Fracture: A Bado Type V?

Case Report Multiple Intracranial Meningiomas: A Review of the Literature and a Case Report

Research Article Analysis of Repeated CT Scan Need in Blunt Head Trauma

Case Report A Case Report of Isolated Cuboid Nutcracker Fracture

Transcription:

Hindawi Case Reports in Endocrinology Volume 2017, Article ID 3052102, 4 pages https://doi.org/10.1155/2017/3052102 Case Report Vasopressin Bolus Protocol Compared to Desmopressin (DDAVP) for Managing Acute, Postoperative Central Diabetes Insipidus and Hypovolemic Shock Anukrati Shukla, 1 Syeda Alqadri, 1 Ashley Ausmus, 2 Robert Bell, 3 Premkumar Nattanmai, 1 and Christopher R. Newey 1 1 Department of Neurology, University of Missouri, Columbia, MO, USA 2 Department of Pharmacy, University of Missouri, Columbia, MO, USA 3 Department of Neurosurgery, University of Missouri, Columbia, MO, USA Correspondence should be addressed to Christopher R. Newey; neweyc@health.missouri.edu Received 30 November 2016; Accepted 20 December 2016; Published 3 January 2017 Academic Editor: Osamu Isozaki Copyright 2017 Anukrati Shukla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Management of postoperative central diabetes insipidus (DI) can be challenging from changes in volume status and serum sodium levels. We report a case successfully using a dilute vasopressin bolus protocol in managing hypovolemic shock in acute, postoperative, central DI. Case Report.Patient presented after bifrontal decompressive craniotomyforsevere traumaticbrain injury. He developed increased urine output resulting in hypovolemia and hypernatremia. He was resuscitated with intravenous fluids including a dilute vasopressin bolus protocol. This protocol consisted of 1 unit of vasopressin in 1 liter of 0.45% normal saline. This protocol was given in boluses based on the formula: urine output minus one hundred. Initial serum sodium was 148 mmol/l, and one-hour urine output was 1 liter. After 48 hours, he transitioned to 1-desamino-8-D-arginine vasopressin (DDAVP). Pre- DDAVP serum sodium was mmol/l and one-hour urine output 320 cc. Comparing the bolus protocol to the DDAVP protocol, the average sodium was.8 ± 3.2 and.6 ± 3.2 mmol/l (p = 0.0001), average urine output was 433.2 ± 354.4 and 422.3 ± 276.0 cc/hr (p = 0.90), and average specific gravity was 1.019 ± 0.009 and 1.016 ± 0.01 (p = 0.42), respectively. Conclusion. A protocol using dilute vasopressin bolus can be an alternative for managing acute, central DI postoperatively, particularly in setting of hypovolemic shock resulting in a consistent control of serum sodium. 1. Introduction Brain surgery and head trauma are two common causes of central diabetes insipidus (DI) [1 3]. DI can manifest either transiently, permanently, or in a triphasic pattern [1 3].Thethreephasesofthetriphasicpatternarepolyuric lasting for 4-5 days, antidiuretic lasting for 5-6 days, and then DI again [1 3]. 1-Desamino-8-D-arginine vasopressin (DDAVP) is a synthetic form of arginine vasopressin and is a primary treatment of central DI [1 3]. Owing to its prolonged duration of action, easy oral/nasal dosing, and beneficial side effect profile, it is the preferred medication in the long-term management of central DI [1 3]. The use of DDAVP, however, in the critically ill patient who develops DI is more challenging. Sodium changes during the triphasic responseofcentraldiinthesepatientscanoftenbesevere [1 3]. Additionally, the critically ill patient may also be fluid underresuscitated and/or hypotensive [4, 5]. Thus, the rationale behind the use of DDAVP in the acute management of critically ill patients with central DI is not clear. Ralston and Butt showed that the use of continuous vasopressin infusion in the acute management of DI in the traumatically brain injured patient was associated with a steady decrease in serum sodium, ease of titration, and a huge benefit of physiological adaptation to change in fluid and electrolyte status [6]. Furthermore, the vasopressor effect of vasopressin can be beneficial in the critically ill patient [1, 6]. These physiological homeostatic benefits of vasopressin are advantageous particularly in the critically ill neurological patient. We present a case report comparing two regimens

2 Case Reports in Endocrinology 148 140 bpm 172 mmhg 1000 ml/h 120 bpm mmhg 650 ml/h 86 bpm 136 mmhg >0 55 250 ml/h 84 bpm 128 mmhg 150 ml Vaso 144 425 ml/h 87 bpm 114 mmhg 325 ml Vaso. 350 ml/h 89 bpm 119 mmhg 25 100 ml/h 104 bpm 141 114 mmhg 1.015 175 ml/h 95 bpm 124 mmhg >0 75 ml Vaso. 140 320 ml/h 184 mmhg 4:00 PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM 2:00 AM 4:00 AM 6:00 AM 8:00 AM Figure 1: Day 1 vasopressin bolus curve. Sodium (mmol/l; blue circles), urine output (ml/h), heart rate (bpm), systolic blood pressure (mmhg), and urine specific gravity on day 1 of vasopressin/0.45% fluid replacement. Bolus doses of vasopressin replacement are noted to be italic. ml: milliliters; h: hour; bpm: beats per minute; mmhg: millimeters of mercury; vaso: vasopressin. used to manage acute central DI status after neurosurgery in a single patient. The patient was initially treated with dilute vasopressinbolusregimenfollowedbyddavpregimen.we compared the efficacy and safety profile of the two regimens by trending the serum sodium, urine output, urine specific gravity, and vitals hourly over the period of institution of the two regimens. 2. Case Presentation A young, adult male was brought to the emergency department (ED) in a comatose state after he sustained self-inflicted gunshot wound injuries on both his temples and orbits. He was intubated and resuscitated. On arrival, he had a score of 6 on Glasgow coma scale (GCS) and absent pupillary and gag reflexes. Computed tomography (CT) scan showed bifrontal intracerebral contusions, uncal herniation, cerebral edema, and bilateral orbital floor fractures. Emergency bifrontal craniectomy with external ventricular drain (EVD) placement was successfully performed. Postoperatively, his condition was monitored in the TraumaUnitforfourdaysduringthecourseofwhichhisGCS improved from 6 to 10. Despite the procedure, his intracranial pressure (ICP) recordings continued to peak requiring continued cerebrospinal fluid (CSF) drainage via the EVD. Repeat CT head showed evidence of left parietal extradural hemorrhage. He subsequently had a left parietal craniectomy for clot evacuation. Postoperatively, he was transferred to the neurosciences intensive care unit (NSICU) for further critical care management of his cerebral edema and refractory ICP elevation. On arrival to the NSICU, he was in hypovolemic shock (overall 3.4 L negative fluid balance in past few hours) from clear polyuria. He had tachycardia and hypotension. His sodium was 154 mmol/l. His urine specific gravity was < and urine osmolality was 123 mosm/kg. Given the correlation between his urine osmolality and specific gravity, his DI was subsequently monitored using only urine specific gravity. There was no administration of mannitol or need for corticosteroid replacement. Giventhesignificantshockstate,hewasaggressively resuscitated using dilute vasopressin boluses for his DI. This dilute mixture consisted of 1 U of vasopressin in 1 L of 0.45% saline solution. This was given in boluses based on the formula, urine output minus one hundred milliliters. After starting the dilute vasopressin bolus protocol, the polyuria quickly resolved within 6 hours and sodium decreased. The serum sodium and urine input and output were monitored carefully over the following days. The serum sodium remained in the desired range of 140 mmol/l while on vasopressin bolus protocol. Once resuscitated and stabilized, IV DDAVP was started. Statistical analyses were performed on serum sodium, urine specific gravity, and urine output using student t-test with a p 0.05 being considered significant. Comparing the bolus protocol to the DDAVP protocol, the average sodium was.8 ± 3.2 and.6 ± 3.2 mmol/l (p = 0.0001), average urine output was 433.2 ± 354.4 and 422.3 ± 276.0 cc/hr (p = 0.90), and average specific gravity was 1.019 ± 0.009 and 1.016 ± 0.01 (p = 0.42), respectively. The serum sodium, urine output, heart rate, systolic blood pressure, and urine specific gravity (if available) are charted fordays1and2ofvasopressinbolusprotocol(figures1and 2) and for DDAVP regimen (Figure 3). 3. Discussion Our case shows that the use of a dilute vasopressin urine replacement formula can safely and smoothly treat patients in DI and hypovolemic shock. This protocol provided a consistent serum sodium level compared to the use of DDAVP. Diabetes insipidus is an endocrinological disorder characterized by polyuria, that is, urine output greater than 2l/m 2 /24 h or 40 50 ml/kg/24 h in adults, caused as a result of either vasopressin deficiency (central DI), vasopressin resistance (nephrogenic DI), or excessive water intake (primary polydipsia) [3]. The diagnosis of DI involves first confirming the polyuria (i.e., hypotonic urine) by recording urine output and urine osmolality (or specific gravity) and also

Case Reports in Endocrinology 3 1545 ml/h 133 bpm 169 mmhg 151 1140 ml/h 111 mmhg 113 bpm 144 mmhg 30 550 ml/h 98 bpm 151 mmhg 45 125 ml/h 120 bpm 161 mmhg 4:00 PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM 2:00 AM 4:00 AM 6:00 AM 8:00 AM 153 mmhg 20 300 ml/h 101 bpm 155 mmhg 275 ml/h 98 bpm mmhg 175 ml Vaso. 900 ml/h 148 mmhg Figure 2: Day 2 vasopressin bolus curve. Sodium (mmol/l; blue circles), urine output (ml/h), heart rate (bpm), systolic blood pressure (mmhg), and urine specific gravity on day 2 of vasopressin/0.45% fluid replacement. Bolus doses of vasopressin replacement are noted to be italic. 1-Desamino-8-D-arginine vasopressin: DDAVP; ml: milliliters; h: hour; bpm: beats per minute; mmhg: millimeters of mercury; vaso: vasopressin. 210 ml/h 96 bpm mmhg 153 1195 ml/h 128 mmhg 0.5 μg DDAVP 147 500 ml/h 127 mmhg 200 ml/h 104 bpm 139 mmhg 225 ml/h 101 bpm 174 mmhg 4:00 PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM 2:00 AM 4:00 AM 6:00 AM 8:00 AM 10:00 AM 147 110 bpm 168 mmhg 1.02 800 ml/h 102 bpm 179 mmhg 155 800 ml/h 118 bpm 162 mmhg 0.5 μg DDAVP 153 125 ml/h 129 bpm 151 152 mmhg 1.02 275 ml/h 96 bpm 118 mmhg Figure 3: DDAVP curve. Sodium (mmol/l; blue circles), urine output (ml/h), heart rate (bpm), systolic blood pressure (mmhg), and urine specific gravity with DDAVP administrations. DDAVP doses noted to be italic. 1-Desamino-8-D-arginine vasopressin: DDAVP; ml: milliliters; h: hour; bpm: beats per minute; mmhg: millimeters of mercury. the serum sodium [2, 3]. Postoperative DI can typically be managed with drinking to thirst. Water deprivation test is the confirmatoryaswellasthedifferentiatingtest[7].inpatients with normal neurohypophyseal function and patients with primary polydipsia, urine osmolality at the end of period of deprivation was greater than plasma osmolality and failed to increase by more than 5% after 5 units of aqueous vasopressin [7]. In patients with severe ADH deficiency urine osmolality prior to ADH administration was much less than plasma osmolality after it when the urine osmolality was increased by more than 50% [8]. However, in the neurocritical care patient, this thirst mechanism may be impaired or unable to monitor secondary to the critical illness. Management of DI with a defective thirst mechanism demands closer monitoring and observation. The treatment of DI is targeted towards fluid resuscitation and maintaining normal electrolyte balance status. Hence, volume replenishment is the mainstay of treatment irrespective of the cause. Underlying cause, if identified, must be treated. The primary pharmacological treatment of central DI is with the vasopressin analogue DDAVP. Removal of amine from position 1 of vasopressin increases the half-life of DDAVP and changing 1-arginine to d-arginine at position 8 reduces the vasopressor action [8 10]. DDAVP is available as oral tablets, nasal spray, and a solution [8 10]. For these reasons, it is deemed as a safe and efficacious treatment option for the management of DI [8 10]. In the critical care patient with DI and hypovolemic shock, these features may not be desirable and may result in underresuscitation and/or extreme fluctuation of serum sodium level. The use of dilute vasopressin bolus to replace urine loss may be more desirable. Vasopressinincontinuousinfusionhasbeenpreviously showntoresultinasteadydecreaseinserumsodiumwith ease of titration resulting in an improvement in fluid and

4 Case Reports in Endocrinology electrolyte status [6]. Furthermore, the vasopressor effect of vasopressin can be beneficial in the critically ill patient who may be in shock as we demonstrate in this case report [1, 6]. Additional studies are needed to assess the efficacy in a larger sample. 4. Conclusion Our case demonstrates that in the acute management of a critically ill patient in DI and hypovolemic shock, dilute vasopressin bolus emerged as a better alternative over DDAVP. Steadier decrease in serum sodium levels, convenience of titration in inpatient setting, and a self-regulating dose modulation in accordance with the body s fluid status conferred a distinct advantage, especially in volume-depleted patients with poor neurological function. Therefore, in critically ill patients, the use of dilute vasopressin should be considered an option. Disclosure An earlier version of this work was presented as a poster at 14th Annual Neurocritical Care Society Meeting, 2016. evaluation for brain death and organ recovery, Resuscitation, vol. 47, no. 1, pp. 33 40, 2000. [6] C. Ralston and W. Butt, Continuous vasopressin replacement in diabetes insipidus, Archives of Disease in Childhood,vol.65, no. 8, pp. 896 897, 1990. [7] G.L.Robertson, Disordersoftheneurohypophysis, inharrison s Principles of Internal Medicine, D.Kasper,A.Fauci,S. Hauser,D.Longo,J.L.Jameson,andJ.Loscalzo,Eds.,McGraw- Hill Education, New York, NY, USA, 19th edition, 2015. [8]M.Miller,T.Dalakos,A.M.Moses,H.Fellerman,andD.H. Streeten, Recognition of partial defects in antidiuretic hormone secretion, Annals of Internal Medicine,vol.73,no.5,pp. 721 729, 1970. [9]C.R.W.Edwards,M.J.Kitau,T.Chard,andG.M.Besser, Vasopressin analogue DDAVP in diabetes insipidus: clinical and laboratory studies, British Medical Journal,vol.3,no.5876, pp. 375 378, 1973. [10]S.M.Seif,T.V.Zenser,F.F.Ciarochi,B.B.Davis,andA.G. Robinson, DDAVP (1-desamino-8-D-arginine-vasopressin) treatment of central diabetes insipidus mechanism of prolonged antidiuresis, TheJournalofClinicalEndocrinology& Metabolism, vol. 46, no. 3, pp. 381 388, 1978. Competing Interests The authors declared no conflict of interests. Authors Contributions Syeda Alqadri contributed to concept, design, and data acquisition. Anukrati Shukla contributed to concept and design and data acquisition. Ashley Ausmus contributed to concept and design and data acquisition. Robert Bell contributed to concept and design and data acquisition. Premkumar Nattanmai contributed to concept and design, supervision, and critical revision of manuscript for intellectual content. Christopher Newey contributed to concept and design, supervision, and critical revision of manuscript for intellectual content. References [1] A. A. Abla, S. D. Wait, J. A. Forbes et al., Syndrome of alternating hypernatremia and hyponatremia after hypothalamic hamartoma surgery, Neurosurgical Focus, vol.30,no.2,article no. E6, 2011. [2] S. G. Achinger, A. I. S. Arieff, K. Kalantar-Zadeh, and J. C. A. Ayus, Desmopressin acetate (DDAVP)-associated hyponatremia and brain damage: a case series, Nephrology, Dialysis, Transplantation,vol.29,no.12,pp.2310 2315,2014. [3] N. Di Iorgi, F. Napoli, A. E. M. Allegri et al., Diabetes insipidus diagnosis and management, Hormone Research in Paediatrics,vol.77,no.2,pp.69 84,2012. [4] E. J. Hoorn and R. Zietse, Water balance disorders after neurosurgery: the triphasic response revisited, NDT Plus, vol.3,no. 1,pp.42 44,2010. [5] K. Katz, J. Lawler, J. Wax, R. O Connor, and V. Nadkarni, Vasopressin pressor effects in critically ill children during

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at https://www.hindawi.com BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity