Barry Boyes 1,2, Shujuan Tao 2, and Ron Orlando 2

Similar documents
Fused-Core Particles:

Current Glycoprotein Analysis. Glycan Characterization: Oligosaccharides. Glycan Analysis: Sample Preparation. Glycan Analysis: Chromatography

GlycanPac AXR-1 Columns

Hyper-fast & Super-rugged

Am I getting the very best value from my UHPLC analyses?

Phenyl-Hexyl. UHPLC Columns. lternate, complementary selectivity to C18 and C8 bonded phases

The high efficiency of sub-2 µm UHPLC columns combined with the low pressure and high speed of monolith columns.

A Novel HILIC Column for High Speed N-linked Glycan Analysis

Thermo Scientific. GlycanPac AXR-1. Column Product Manual. P/N: April, Part of Thermo Fisher Scientific

Isomeric Separation of Permethylated Glycans by Porous Graphitic Carbon (PGC)-LC-MS/MS at High- Temperatures

Core-Shell / Solid core Particles: A Practical Substitute to Sub-2 Micron Particles: An overview

Separation of Vitamin D and Vitamin D Metabolites on FLARE C18 MM (Mixed Mode) HPLC Column

The Raptor HILIC-Si Column

N-Glycan Sequencing Kit

Isomer Separation of Positively Labeled N-glycans by CE-ESI-MS

Separation of 2AA-Labeled N-Linked Glycans from Glycoproteins on a High Resolution Mixed-Mode Column

Thank you for joining us! Our session will begin shortly Waters Corporation 1

Maximizing Efficiency Using Agilent InfinityLab Poroshell 120 Columns

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Analysis of N-Linked Glycans from Coagulation Factor IX, Recombinant and Plasma Derived, Using HILIC UPLC/FLR/QTof MS

C30 ISOMERS HAVE MET THEIR MATCH

GlycanPac AXH-1 Columns

Detailed Characterization of Antibody Glycan Structure using the N-Glycan Sequencing Kit

Extended Temperature Range Impact on HPLC Column Stability and Performance

APPLICATIONS TN Overview of Kinetex 2.6 µm Core-Shell Technology

Structural Analysis of Labeled N-Glycans from Proteins by LC-MS/MS Separated Using a Novel Mixed-Mode Stationary Phase

Oligosaccharide Analysis by High-Performance Anion- Exchange Chromatography with Pulsed Amperometric Detection

A Fully Integrated Workflow for LC-MS/MS Analysis of Labeled and Native N-Linked Glycans Released From Proteins

Dr Mark Hilliard, NIBRT. Waters THE SCIENCE OF WHAT S POSSIBLE TM

Glycan and Monosaccharide Workshop Eoin Cosgrave David Wayland Bill Warren

Comparison of Relative Quantification of Monoclonal Antibody N-glycans Using Fluorescence and MS Detection

Ludger Guide to Sialylation: II. Highly Sialylated Glycoproteins

Thermo Fisher Scientific, Sunnyvale, CA, USA; 2 Thermo Fisher Scientific, San Jose, CA, USA

Analytical and Preparative SFC Columns

Studies on Stationary Phase Selectivity for Solid-Core Particles

Separation of Macrocyclic Lactones (Avermectins) on FLARE C18 MM & FLARE C18+ Columns

RAPID SAMPLE PREPARATION METHODS FOR THE ANALYSIS OF N-LINKED GLYCANS

Raptor HILIC-Si: Simplify the Switch to HILIC

Sepax Technologies, Inc.

The LC Column Playbook

Charged Surface Hybrid C18 for High Resolution LC and LC/MS Peptide Separations

Electronic Supplementary Information

HICHROM. Chromatography Columns and Supplies NEW PRODUCTS. Catalogue 9. Hichrom Limited

New HPLC Column Options for UHPLC

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

11:00 a.m. EST Telephone Number: Chair Person: Tim Spaeder

Authors. Abstract. Introduction. Environmental

Aeris. Precision Engineered Core- Shell Particles for Ultra-High Resolution BioSeparations. Aeris PEPTIDE. Aeris WIDEPORE

LC/MS Analysis of Various Hydrophilic Compounds Using a Polymer-Based Amino Column - Shodex TM HILICpak TM VG-50 2D

Comprehensive Two-Dimensional HPLC and Informative Data Processing for Pharmaceuticals and Lipids

Product Guide for LudgerSep TM C3 anion exchange HPLC Column for Glycan Analysis

GlycoWorks Sample Preparation Consumables

Analysis of HMF by HPLC

Unequalled durability against water elution. % tr

Can we learn something new about peptide separations after 40 years of RP and HILIC chromatography? Martin Gilar April 12, MASSEP 2016

Analytical Method Development for USP Related Compounds in Paclitaxel Using an Agilent Poroshell 120 PFP

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

Online 2D-LC Analysis of Complex N-Glycans in Biopharmaceuticals Using the Agilent 1290 Infinity 2D-LC Solution

Application Note. Abstract. Author. Biotherapeutics & Biosimilars. Sonja Schneider Agilent Technologies, Inc. Waldbronn, Germany

The Road to Glycan Analysis Without Compromise WCBP 2015 Waters Technical Seminar Jan 27, 2015 Washington, DC

HPLC to UHPLC Transfer of USP Method for Amlodipine Besylate Using the Agilent 1290 Infinity II LC

Modification of sialic acids on solid-phase: accurate characterization of. protein sialylation

Restek Ultra II HPLC Columns

BlotGlyco O-GLYCAN SAMPLE PREPARATION KIT BS-45450Z

Rapid Gradient and Elevated Temperature UHPLC of Flavonoids in Citrus Fruit

Raptor HILIC-Si: Simplify the Switch to HILIC

Performance of an ultra low elution volume 96-well plate

Pr oducts List Ludger Ltd Culham Science Centre Oxford OX14 3EB United Kingdom

Novel Glycan Column Technology for the LC-MS Analysis of Labeled and Native N-Glycans Released from Proteins and Antibodies

Supporting information

Tools for Glycan Analysis

HILIC COLUMNS TOSOH BIOSCIENCE

Ion Exchange and Reversed Phase interactions in selective Bio-SPME extractions of designer drugs

The One Minute Chromatographer

Increasing resolution using longer columns while maintaining analysis time Advantages of the wide power range of the Agilent 1290 Infinity LC System

Ultimate Core Performance to Maximize Your Investment

Separation of Saccharides Using TSKgel Amide-80, a Packing Material for High-performance Normal Phase Partition Chromatography (2) Table of Contents

Products Price List. Euros Ludger Ltd Culham Science Centre Oxford OX14 3EB United Kingdom

Products Price List. US Dollars Ludger Ltd Culham Science Centre Oxford OX14 3EB United Kingdom

Choosing Preparative Columns

Selectivity Comparison of Agilent Poroshell 120 Phases in the Separation of Butter Antioxidants

For Far. Greater. UHPLC Column Performance You Must Have Kinetex Core-Shell UHPLC Columns.

Thank you for joining us! Our session will begin shortly Waters Corporation 1

Identification of Steroids in Water by Ion Trap LC/MS/MS Application

Phospholipid characterization by a TQ-MS data based identification scheme

Roc On with These Dependable LC Columns

Columns The FIRST and ONLY sub-2 µm core-shell columns on the market

The HPLC Preparative Scale-Up of Soybean Phospholipids Application

Evaluation of UHPLC System Performance Under High Throughput Conditions. William Hedgepeth, Masatoshi Takahashi, Shimadzu Scientific Instruments

Eurospher II the logical choice. Physical properties of Eurospher II silica gel: Silica gel: ultra pure, > % Metal content: < 10 ppm

LudgerPure TM APTS Labelled IgG Glycan Library

ACE. For increased polar retention and alternative selectivity. Alternative selectivity for method development

The effect of temperature and incubation time on the analysis of highly sialylated glycans from bovine fetuin

Waters Amide Column Technology For Food Analysis

Ultra Columns HPLC COLUMNS

Separation of Saccharides Using TSKgel Amide-80, a Packing Material for High Performance Normal Phase Partition Chromatography (2)*

ARC-18. Stationary Phase: Ahead of the Curve for Large, Multiclass Lists by Mass Spec. Pure Chromatography. Selectivity Accelerated.

Insulin SEC analysis. Insulin Samples:

Converting a CHP Method for Insulin to Agilent Poroshell 120 Columns

Achiral SFC: Development of an Orthogonal SFC Method for Mometasone Furoate Impurity Analysis

Transcription:

Barry Boyes 1,2, Shujuan Tao 2, and Ron Orlando 2 1 Advanced Materials Technology, Inc. Wilmington, DE USA 2 Complex Carbohydrate Research Center University of Georgia, Athens, GA USA bboyes@advanced-materials-tech.com

Agenda Protein N-glycan analysis by release, labeling and HILIC General workflow Fused-Core Particles for highly efficient separations New polar bonded phase for HILIC Analysis of N-Glycans by Penta-HILIC Standards and separation optimization strategy Complexity in action: isobaric glycan separations Implications of Complexity on Analysis of Released Glycans

Protein N-linked Glycan Analysis Release of glycoprotein Asn-linked glycans by PNGase F is a well established approach, allow analysis of complex mixtures of glycans by a variety of methods. Various additional exoglycosidases and endoglycosidases can be helpful in structure elucidation. Considerable work has been accomplished for N-linked analysis of native glycans, as well as permethylated glycans using MS (ToF and ESI), and MS coupled to high resolution separation methods, particulary CE and LC. Glycoprofiling of N-linked glycans, using HILIC (NP) combined with fluorescence detection and/or MS is becoming a standard for biopharmaceutical glycoproteins, including antibodies.

Analysis of PNGase Released and Labeled N-Glycans Release of protein N-linked glycans using PNGase F releases oligosaccharides with a free reducing terminus (alditol) that is readily labeled by amines via formation of a Schiff s base, which can be reduced readily. Many amines have been applied to labeling glycans, (Harvey, 211, J. Chrom. 879). In the current work Procainamide is favored due to reported improvements in ESI-MS detection (Klapoetke, et al., 21, J. Pharm. Biomed. Anal. 53) Typical Labeling Conditions Glycan in water (up to 1% volume) 9+% volume of:.4 M procainamide 1M sodium cyanoborohydride in 3% acetic acid/7% DMSO 12-16 hr reaction at 37 C H 2 N SEC cleanup on Sephadex G-1 minicolumn Absorbance Detection 3 nm or Fluorescence Ex 33/Em 38 nm O N H Mass: glycan + 219.32 N

Superficially Porous Particles (Fused-Core ) Porous Shell SEM Particle Cross-section Solid Core 1.7 µm 2.7 µm.5 µm Low back pressure due to the particle design (solid core with a porous shell) Specialized high pressure HPLC equipment is optional Not necessary to filter samples and mobile phase since 2 µm frits are not as small as needed for sub-2-µm High resolution is maintained at high flow rates (flat C-term in van Deemter plot)

Silane Surface Modifications with Polar Functional Groups Support effective HILIC retention Exhibit desired kinetic advantages of SPP morphology Reduce unfavorable ionic/coloumbic interactions Hydroxylic Functional Groups FG Mono-OL O O H O H L k Di-OL O H H O R 1 Si R 2 Tri-OL R L O H H O R L = silanol reactive leaving R 1 = R 2 or R 1 = R 2, R 1 = R L Eg. -Me, -OMe, -Cl, -DiiPr H O Pentan-OL AKA Halo Penta-HILIC H O O H O H O H

Effect of Linear Velocity on Penta-HILIC Column Efficiency 4.6 mm ID x 5 mm; 9% AcN/1 mm NH 4 Form 3., 25 C; 1 ml, 5 ng Adenosine 2D Graph 2 6 Data fitted to Knox Equation 5 Reduced Plate Height 4 3 Silica HILIC 2 1 Penta-HILIC (minima 1.7;.9 ml/min) 1 2 3 4 5 6 7 8 9 Mobile Phase Velocity, mm/sec

Column Efficiency Comparisons Pam-G5 2.1 (2. mm) ID x 15 mm, 6 C, k 6, 5 mm Ammonium Formate Aqueous, ph 4.4.5 ul Injection (5 pmol), Abs. 3 nm Plate Height (µm) 4 Penta-HILIC, 72% AcN P = 147 bar 1.7 µm Amide, 69% AcN 3 3. µm Amide, 67% AcN P = 331 bar 2 P = 718 bar 1..5 1. Flow Rate

Penta-HILIC Separations of Labeled Oligosaccharides and Glycans 2.1 mm ID x 15 mm; 5 mm Ammonium Formate, ph 4.4, 77.5-56.5% AcN (B) in 52.5 min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS (MS-22, (+) 4.2 kv, 4-2 with SIM) 6. mv Detector A 3nm 5.5 5. 4.5 4. 3.5 3. 2.5 2. 1.5 1..5..178.51.239.552.697 1.575 1.292 1.889 Pam-G2 3.138 5.141 7.893 11.154 14.614 18.3 21.22 24.158 26.879 -.5. 2.5 5. 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 3. 32.5 35. 37.5 4. 42.5 45. 47.5 5. 52.5 55. min 7 mv Detector A 3nm 6 5 4 3 2 1.136.196.551.737 1.19 1.489 1.314 1.75 1.636 9.136 Man 5 Man 6 12.427 15.635 16.4 18.36 17.445 18.576 Linear Dextran Standard Rs 11,1 = 4.3 Peak Capacity G22-G2 = 214 RNAase B N-linked Glycans Man 7 18.89 Man 8 21.87 21.427 Man 9 24.313 24.5 26.348 29.383 31.678 33.8 35.58 35.761 36.923 37.591 38.671 39.287 4.88 41.825 42.38 43.265 43.78 44.615 45.13 Pam-G22. 2.5 5. 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 3. 32.5 35. 37.5 4. 42.5 45. 47.5 5. 52.5 55. min 46.359 47.95 47.548 48.663 49.722 5.743 51.725 52.641 53.389 53.55 53.668 54.216 54.495 54.655 54.23

Penta-HILIC Retention of Labeled Oligosaccharides and Glycans 2.1 mm ID x 15 mm; 5 mm Ammonium Formate, ph 4.4, 77.5-56.5% AcN (B) in 52.5 min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS (MS-22, (+) 4.2 kv, 4-2 with SIM) HILIC Retention of Glycans 6 Dextran RT (min) ManX Retention Time (min) 4 2 B T Fet Antenn 2 4 6 8 1 Hydroxyls

Penta-HILIC Separations of Abundant bov. a1-agp N-glycans 2.1 mm ID x 15 mm; 5 mm Ammonium Formate, ph 4.4, 77.5-56.5% AcN (B) in 52.5 min., 6 C; 6 ml/min. MALDI of Permethylated Glycans % Intensity 1 9 8 7 6 5 4 3 2 1 (M-CH 2 +Na) + 2418.214 2448.2383 2435.2156 2462.2798 2793.729 2823.7673 2853.852 381.2273 399.243 3111.2485 3129.2595 3141.2791 3155.3137 3185.3384 3215.3547 3474.822 355.8582 3547.954 367.2 3714.2493 3759.354 4779.2 mv Detector A 3nm 12 11 1 9 8 7 6 5 4 3 2 1 2191. 2536.2 2881.4 Mass (m/z) 3226.6 3571.8 3917. HILIC of End-labeled Glycans.315.111.18.552.717 1.426 1.179 1.53 1.365 1.736 2.28 2.37 2.131 3.24 3.471 23.189 24.472 24.681 25.232 25.756 25.564 28.586 29.278 29.23 29.6 29.795 3.64 3.776 31.49 31.482 31.773 32.46 32.444. 2.5 5. 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 3. 32.5 35. 37.5 4. 42.5 45. 47.5 5. 52.5 55. min 33.424 33.85 34.453 34.777 35.333 35.785 36.57 36.682 37.584 36.98 38.484 37.823 38.723 39.66 39.879 4.513 41.293 42.99 42.95 43.71 47.511 54.78

HILIC Separations of a1-agp N-glycans 2.1 mm ID x 15 mm; 5 mm Ammonium Formate, ph 4.4, 77.5-56.5% AcN (B) in 52.5 min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS ((+) MS-22, 4.2 kv, 4-2 with SIM) 15 mv Detector A 3nm 125 32.444 1 33.424 75 31.482 5 25 23.189 24.472 24.681 25.232 25.564 25.756 28.586 29.23 29.278 29.6 29.795 3.64 2. 21. 22. 23. 24. 25. 26. 27. 28. 29. 3. 31. 32. 33. 34. 35. 36. 37. min 3.776 31.49 31.773 32.46 33.85 34.453 34.777 35.333 35.785 36.57 36.682 36.98 7 6 5 2:176.5(+) : HexNAc 4 Hex 5 NeuAc 1 2:184.5(+) : HexNAc 4 Hex 5 NeuGc 1 2:1222.7(+) : HexNAc 4 Hex 5 NeuAc 2 2:123.(+) : HexNAc 4 Hex 5 NeuAc 1 NeuGc 1 2:1238.(+) : HexNAc 4 Hex 5 NeuGc 2 BNeuAc 2 BNeuAc 1 NeuGc 1 BNeuGc 2 4 BNeuAc BNeuGc 3 2 1 2. 21. 22. 23. 24. 25. 26. 27. 28. 29. 3. 31. 32. 33. 34. 35. 36. min

High Resolution HILIC Separations of asialo-fetuin N-glycans 2.1 mm ID x 3 mm; 5 mm Ammonium Formate, ph 4.4, 7-55% AcN (B) in 9min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS ((+) MS-22, 4.2 kv, 4-2 with SIM) 7 65 6 55 5 2:931.4(+): HexNAc 4 Hex 5 2:1114.1(+): HexNAc 5 Hex 6 2:1187.2(+): HexNAc 4 Hex 5 dhex 1 T 13.717 45 4 35 B 9.473 13.325 3 25 2? 15 1 5 8.834 9.23 13.349 13.731 14.75 15.229 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 min 9 mv Detector A 3nm 8 7 6 5 4 3 2 1 6.497 7.77 8.478 8.792 9.237 9.483 1.16 1.716 11.1 11.28 13.337 13.735 14.475 14.795 15.229 16.46 16.941 17.256 17.58 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 min 19.356 19.987 2.38 21.927 22.421 1. 7.5 5. 2.5 mv Detector A 3nm 8.478 8.792 8. 8.5 9. 9.5 min 9.237 9.483

High Resolution HILIC Separations of Fetuin N-glycans 2.1 mm ID x 3 mm; 5 mm Ammonium Formate, ph 4.4, 7-55% AcN (B) in 9min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS ((+) MS-22, 4.2 kv, 4-2 with SIM) 1. mv Detector A 3nm 7.5 5. 2.5 6.61 8.614 1.278 11.248 1.94 13.625 14.337 16.71 17.26 18.33 2.6 22.72 24.65 24.95 25.377 27.21 28.12 29.217 29.88 3.317 31.97 31.924 33.536 34.81 34.39 34.817 35.263 35.8 36.253 36.735 38.2. 5. 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. 6. 65. 7. min 39.71 4.698 41.233 42.31 43.489 44.344 45.127 47.127 48.341 48.9 5.186 51.559 52.186 54.252 55.1 57.53 57.94 59.874 64.58 67.578 69.362 72.45 3 275 25 225 2:1551.(+): HexNAc 5 Hex 6 NeuAc 3 2:1696.6(+): HexNAc 5 Hex 6 NeuAc 4 2:1842.2(+)(1.): HexNAc 5 Hex 6 NeuAc 5 67.549 TNeuAc 5 2 175 42.31 15 45.15 125 1 75 5 TNeuAc 3 39.7 43.461 48.361 52.142 54.28 55.22 TNeuAc 4 57.945 25 1 2 3 4 5 6 7 8 9 min

High Resolution HILIC Separations of Fetuin N-glycans 2.1 mm ID x 3 mm; 5 mm Ammonium Formate, ph 4.4, 7-55% AcN (B) in 9min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS ((+) MS-22, 4.2 kv, 4-2 with SIM) mv Detector A 3nm 7 6 25.377 28.12 42.31 45.127 55.1 57.94 5 4 3 2 1 6.61 8.614 1.278 1.94 11.248 13.625 14.337 16.71 17.26 18.33 2.6 22.72 24.65 24.95 27.21 29.217 29.88 3.317 31.97 31.924 33.536 34.81 34.39 34.817 35.263 35.8 36.253 36.735 38.2 39.71 4.698 41.233 43.489 44.344 47.127 48.341 48.9 5.186 51.559 52.186 54.252 57.53 59.874 7.5 1. 12.5 15. 17.5 2. 22.5 25. 27.5 3. 32.5 35. 37.5 4. 42.5 45. 47.5 5. 52.5 55. 57.5 min 15 125 2:931.4(+): HexNAc 4 Hex 5 2:17.(+): HexNAc 4 Hex 5 NeuAc 1 2:1222.7(+): HexNAc 4 Hex 5 NeuAc 2 25.383 27.986 BNeuAc 2 1 75 5 25 9.633 22.715 (ISD) 45.216 1. 15. 2. 25. 3. 35. 4. 45. 5. 55. min

HILIC Separations of bov. a1-agp N-glycans (tri-sialated) 2.1 mm ID x 15 mm; 5 mm Ammonium Formate, ph 4.4, 77.5-56.5% AcN (B) in 52.5 min., 6 C; 6 ml/min. Detection: 3 nm Abs; ESI-MS ((+) MS-22, 4.2 kv, 4-2 with SIM) 5 mv Detector A 3nm 45 4 33.424 35 3 36.98 25 2 36.57 37.823 15 1 5 33.85 34.453 34.777 35.333 35.785 36.682 37.584 38.484 38.723 39.66 39.879 4.513 41.293 42.99 42.95 33. 33.5 34. 34.5 35. 35.5 36. 36.5 37. 37.5 38. 38.5 39. 39.5 4. 4.5 41. 41.5 42. 42.5 min 5 45 4 35 2:1367.6(+): HexNAc 4 Hex 5 NeuAc 3 2:1375.6(+): HexNAc 4 Hex 5 NeuAc 2 NeuGc 1 2:1383.6(+): HexNAc 4 Hex 5 NeuAc 1 NeuGc 2 2:1391.6(+): HexNAc 4 Hex 5 NeuGc 3 BNeuAc 2 NeuGc 1 3 25 BNeuAc 3 BNeuAc 1 NeuGc 2 2 15 BNeuGc 3 1 5 33. 34. 35. 36. 37. 38. 39. 4. 41. 42. min

Conclusions A novel hydroxylated Fused-core silica HILIC packing material has high utility for end-labeled Glycan separations. The HILIC material and method described can be operated in high resolution mode, permitting analysis of complex mixtures of released N- linked protein glycan samples to be resolved, or in very high speed mode, to enable high throughput glycan analysis. High resolution HILIC resolves isobaric glycans, which are abundant (and complex). Variations in isobaric glycan profiles between proteins is very possible. Quantitation by end-labeling using UV or Fluorescence detection only could be problematic, detection by MS only will not easily reveal isomers.

Acknowledgements Penta-HILIC AMT Thank you for your Attention! Dr. J. DeStefano, Dr. J.J. Kirkland, Dr. S. Schuster NIH for Financial Support NIH NIGMS GM99355, GM93747 Shimadzu Corp early access to high sensitivity flow cell