Synaptic Transmission: Ionic and Metabotropic

Similar documents
Part 11: Mechanisms of Learning

Synaptic transmission

QUIZ YOURSELF COLOSSAL NEURON ACTIVITY

Neurotransmitter Systems II Receptors. Reading: BCP Chapter 6

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

Lecture 22: A little Neurobiology

5-Nervous system II: Physiology of Neurons

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

What effect would an AChE inhibitor have at the neuromuscular junction?

Structure of a Neuron:

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY]

Ion Channels (Part 2)

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Synapses and Neurotransmitters

Ion Channels Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Dania Ahmad. Tamer Barakat + Dania Ahmad. Faisal I. Mohammed

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota

Neurons! John A. White Dept. of Bioengineering

BIPN 140 Problem Set 6

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

NEUROCHEMISTRY Brief Review

BIPN 140 Problem Set 6

Biol 219 Lec 12 Fall 2016

Action Potentials and Synaptic Transmission. BIO 219 Napa Valley College Dr. Adam Ross

How Synapses Integrate Information and Change

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Lecture 14. Insect nerve system (II)

Chapter 4 Neuronal Physiology

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system)

MCB 160 MIDTERM EXAM 1 KEY Wednesday, February 22, 2012

Human Brain and Senses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY

Introduction to Neurobiology

How Synapses Integrate Information and Change

BIPN140 Lecture 8: Synaptic Transmission II

Neurophysiology and Synaptic Transmission Modules

Synaptic Integration

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Problem Set 3 - Answers. -70mV TBOA

Synapses and synaptic plasticity. Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember

Notes are online at The Neuron

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Neuron types and Neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Physiology of synapses and receptors

Communication Between

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses, and Signaling

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon

Lojayn Salah. Razan Aburumman. Faisal Muhammad

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

MOLECULAR AND CELLULAR NEUROSCIENCE

Communication within a Neuron

Chapter 6 subtitles postsynaptic integration

Section: Chapter 5: Multiple Choice. 1. The structure of synapses is best viewed with a(n):

Chapter 2: Cellular Mechanisms and Cognition

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Electrophysiology. General Neurophysiology. Action Potentials

11/8/16. Cell Signaling Mechanisms. Dr. Abercrombie 11/8/2016. Principal Parts of Neurons A Signal Processing Computer

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

- Neurotransmitters Of The Brain -

Action potentials propagate down their axon

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215

Chapter 2. The Cellular and Molecular Basis of Cognition

Elizabeth Biopsychology (PSY 302) The Synapses 08/29/2017. The Synapses

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open

Synaptic Transmission

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

BIOLOGICAL PROCESSES

Synapses. Objectives. Synaptic Relationships Between Neurons. Structure of a Chemical Synapse. Structure of a Chemical Synapse

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

Ligand-Gated Ion Channels

AP Biology Unit 6. The Nervous System

TA Review. Neuronal Synapses. Steve-Felix Belinga Neuronal synapse & Muscle

Psych 181: Dr. Anagnostaras

Cellular Neurobiology / BIPN 140

Synaptic transmission

Synapses and Neurotransmitters

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurophysiology for Computer Scientists

9.01 Introduction to Neuroscience Fall 2007

Session ID: 1001 June 14, 2012

It s Not Just Serotonin: Neurosignaling in Mental Illness

Bioscience in the 21st century

BIOL Week 6. Nervous System. Transmission at Synapses

Neurons, Synapses, and Signaling

Notes: Synapse. Overview. PSYC Summer Professor Claffey PDF. Conversion from an signal to a signal - electrical signal is the

Neurotransmitter Systems III Neurochemistry. Reading: BCP Chapter 6

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials

Neurons: Structure and communication

Neurotransmitters. Chemical transmission of a nerve signal by neurotransmitters at a synapse

Department of medical physiology 1 st week

Chapter 11: Nervous System and Nervous Tissue

Chapter 5 subtitles GABAergic synaptic transmission

Transcription:

Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to Brain (Sinauer Press). Chapters 9-14, especially 9-11. The inputs to neurons are synapses. Mostly these are chemical synapses, shown below, at which neurotransmitter is released from the presynaptic terminal, binding to a postsynaptic receptor. The result is some effect on the postsynaptic cell, ultimately changing its membrane potential or other properties. Na + K + Ca ++. G Syn Leak Presynaptic terminals.. Postsynaptic receptors 2M Postsynaptic receptors can be ionotropic, directly gating an ion channel G Syn or metabotropic, producing an indirect effect through production of a second messenger 2M. V Postsynaptic membrane potential V = V inside - V outside 1

Special stains for synapses (red) show their high density on dendrites and somas on CNS neurons. The sequence of steps in synaptic transmission: 1. 2. Depolarization of the presynapse Calcium entry through V-gated calcium channels 3-5. Transfer of synaptic vesicles to the membrane. 6. Fusion of the vesicle with the membrane, releasing neurotransmitter. 7. Diffusion of the neurotransmitter across the synaptic cleft 9. Binding of transmitter to the postsynaptic receptor. 10. Changes in the postsynaptic cell 11. Presynaptic terminal To terminate the synaptic action, the transmitter is metabolized (8) or removed from the cleft by reuptake (8a, 8b) in the neuron itself or in adjacent glia. Some synaptic vesicles are synthesized in the cell terminal (B), where they are filled with transmitter, primed (4) and docked (5) in preparation for release. Others are synthesized in the terminal; after release (6) the vesicle membrane is recycled by uptake (8b) and refilled with transmitter. Metabotropic Ionotropic body (A) and transported to the Postsynapse Modified from Shepherd, 2004. 2

Excitation and inhibition correspond to depolarization and hyperpolarization of the postsynaptic membrane stimulus (25 ms) Excitation: depolarization EPSPs (excitatory postsynaptic potentials) Increased spike rate Inhibition: hyperpolarization IPSPs (inhibitory postsynaptic potentials) Decreased spike rate Smith and Rhode, 1987 To model postsynaptic ionotropic effects, excitatory and inhibitory synaptic conductances are added to the membrane model. Excitatory synaptic current Inhibitory synaptic current I Ex I In V at rest, -60 mv C G Na G K G Leak G Ex G In E Na E K E Leak E Ex E In E NaK 0 mv E Cl -70 mv I Cap = [ I Na + I K + I Leak + I Ex + I In ] C dv dt = [ G Na (V E Na ) + G K (V E K ) + G Leak (V E Leak ) + G Ex (V E Ex ) + G In (V E In )] The battery-resistor model is very accurate for the ion channels of most ionotropic neurotransmitter receptors. When open, these channels show no rectification. 3

As with ion channels, the effect, excitatory or inhibitory, of a particular synaptic channel is determined by the ions that pass through the channel. For ionotropic channels in the brain, the following transmitters and ion channels are seen: Transmitter Receptor Ions Effect -------------------------------------------------------------------------------------------------- Glutamate AMPA, kainate Na, K, (some Ca) Excitatory (E exc =0 mv) NMDA Na, K, Ca Excitatory GABA A Cl Inhibitory (E inh =-70 mv) Glycine Cl Inhibitory Acetylcholine Nicotinic Na, K, Ca Excitatory Serotonin (5-HT) 5-HT 3 Na, K Excitatory ATP Purine P1 Na, K Excitatory The main synaptic systems in the brain Synaptic conductances G Ex and G In can be simulated by kinetic models like the one below. k T + R 1 k k 1 TR 2 k k 2 TR * 3 D k 3 the channel G = (const) TR * conductance T is the transmitter, R is the receptor, TR is the bound receptor, TR* is the receptor in the open-channel state, and D is a desensitized state from which the channel exits slowly. This is a simplification; usually more than one T must bind and there are additional TR and D states. Activation of the receptor is modeled by letting T be a short pulse and beginning the simulation with all the receptor in the R state. The solutions for TR*(t) or G(t) are similar to the functions below. In fact, these are approximations, called α functions, with duration parameter τ. 0.02 0.15 G Ex 0.01 G In G(t) = (const)(t t i )e (t t i )/τ 0 0 5 10 ms t i 0 0 5 10 15 ms t i 4

The HH model with synaptic inputs shows threshold and refractoriness, similar to the phenomena in real neurons. Membrane pot. mv" subthreshold EPSP suprathreshold current injected by the synapse (EPSC) Refractorinesss: Why is there no AP here? The synaptic conductance and current are actually larger than those preceding the action potential. G Ex = 0.05 0.09 0.13 0.17 0.21 ms/cm 2 note elevated n(t) and depressed h(t) Adding inhibitory conductances blocks the excitatory effect by two mechanisms: 1. Injecting an outward current that hyperpolarizes the cell. 2. Increasing membrane conductance, which reduces the effect of the excitatory synapse (shunting). No spikes" I K! I inh! I exc +I inh! I Na! I exc! G inh!! G exc! 5

Glutamate receptors require further comment. NMDA-type glutamate receptors are conditionally activated, depending on the presence of glutamate AND depolarization of the postsynaptic terminal. The depolarization is necessary to relieve a block of the NMDA receptor channel by Mg++ ions. NMDA channels show two additional differences from other types of glutamate channels (AMPA or kainate): 1. NMDA currents last longer 2. NMDA channels admit Ca ++, which other types may or may not do. These Ca ++ signals will be important later. Malenka and Siegelbaum 2001 Johnstone and Wu, 1995 Metabotropic receptors are ones that do not couple directly to an ion channel; rather they couple to effector proteins that indirectly cause some change in the cell, often through phosphorylation of a protein. While this may result in opening or closing of ion channels, the connection is indirect and often can be quite indirect. Virtually all aspects of neuron physiology can be affected by neuromodulation. Modified from Shepherd, 2004 6

The best understood metabotropic effects occur through activation of G-proteins. The general scheme of G-protein activation is shown below. When the receptor (R ) binds a transmitter (NT), the G-protein complex exchanges its GDP moiety for a GTP and cleaves into an α-subunit-gtp part and a β-γ subunit part. These diffuse in the membrane and both can activate other proteins, either enzymes (E) or ion channels (C ). The G-protein is inactivated when the α-subunit cleaves its GTP to GDP + P i and the subunits recombine. C" inactive G-protein C" active G-protein Examples of changes in the response properties of neurons in the hippocampus due to camp modulation. The effect occurs by reducing the conductance of SK type K(Ca) channels. These channels are gated by Ca ++ and produce the afterhyperpolarization (ahp) that follows one or more action potentials, as in the third trace below. (activates camp via β 1 adrenergic receptors) Why does the SK channel decrease spike rate during the stimulus as here? Note the example shown here works differently than the GIRK channel of the previous slide. Here the G protein activates the enzyme adenylyl cyclase that produces camp which activates a kinase to phosphorylate the channel and reduce its conductance. (analog of camp) (directly activates adenylyl cyclase) reduced ahp increased spiking in response to stimuli Hillle, 2001 7

What is the strength of a synapse? This question will be central to the lectures on plasticity and network theory later in the course. Synaptic strength is determined by a number of factors: 1. The size of the neurotransmitter release can be varied by presynaptic inhibition, often through metabotropic mechanisms (e.g. decreasing Ca currents in the presynaptic terminal). 2. Synaptic facilitation, due to accumulation of Ca ++ in the presynaptic terminal, can increase transmitter release. 3. Synaptic depression, due to depletion of synaptic vesicles, can decrease release. 4. Synaptic depression due to desensitization of receptors (similar to inactivation, see slide 11). 5. Number of receptors. The postsynaptic effect of NT release depends on the number of receptors in the postsynaptic membrane, especially AMPA receptors. Important for long-term plasticity. 6. Postsynaptic electrical processing. Changes in potassium currents through modulation of K + channels can change the EPSP or IPSP produced by the synapse. Shepherd, 2004 Synaptic strength is variable, due to randomness in the release of neurotransmitter. Two examples are shown below. Excitatory post-synaptic currents in a postsynaptic cell after nine activations of a single synapse in a hippocampal CA1 neuron. The synapse fails as often as it conducts. EPSPs in a cortical pyramidal cell produced by four repetitions of an action potential in another, nearby cell. Presumably there are multiple synapses, so each EPSP is a mixture of different number of successes and failures. averages Wang and Stevens, unpub. and Mason et al. 1991, reproduced in Koch, 1999. 8

Summary of neurotransmitters and synaptic actions: Synaptic actions in the brain can be roughly grouped into three categories, based on the nature of the postsynaptic pathway evoked: 1. Direct ionotropic mechanisms. The receptor is coupled directly to the ion channel. The effects are immediate (latency <1 ms) and relatively short-lasting (<10 ms). The most common transmitters are glutamate (excitatory), GABA (inhibitory), and glycine (inhibitory). Most signal processing in the brain involves ionotropic mechanisms. 2. Short-pathway metabotropic mechanisms. The receptor is coupled to a second messenger, such as a G-protein, which has a direct effect on an effector, such as opening an ion channel or releasing vesicles at a synapse. 3. Long-pathway metabotropic mechanisms (discussed later). The receptor is coupled to a second messenger cascade which leads to multiple effects or to a complex and long-lasting change in the cell s properties. For example, longterm plasticity (LTP) at synapses occurs with calcium acting as a messenger that initiates a cascade ultimately resulting in the placement of new ionotropic glutamate receptors in the post-synaptic membrane, increasing the strength of the synapse. 9