ORIGINAL ARTICLE. patients with advanced head and neck cancer. Studies have demonstrated

Similar documents
SITE OF DISEASE AND TREATMENT PROTOCOL AS CORRELATES OF SWALLOWING FUNCTION IN PATIENTS WITH HEAD AND NECK CANCER TREATED WITH CHEMORADIATION

Laryngeal Conservation

Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston Texas.

Swallow Preservation Exercises during Chemoradiation Therapy Maintains Swallow Function

Accepted 12 August 2010 Published online 15 December 2010 in Wiley Online Library (wileyonlinelibrary.com). DOI: /hed.21624

Protocol of Radiotherapy for Head and Neck Cancer

Head and Neck Reirradiation: Perils and Practice

Swallowing after a Total Laryngectomy

Self-Assessment Module 2016 Annual Refresher Course

The management of advanced supraglottic and

Implementation of the Dance Head and Neck Clinical Pathway

MANAGEMENT OF CA HYPOPHARYNX

Accepted 20 April 2009 Published online 25 June 2009 in Wiley InterScience ( DOI: /hed.21179

The International Federation of Head and Neck Oncologic Societies. Current Concepts in Head and Neck Surgery and Oncology

Sanguineti s (2)Comment: When it was initially published in 2003 with a median follow-up of 3.8 years (4), the RTOG study led to a change in

Concurrent chemoradiotherapy for N2 or N3 squamous cell carcinoma of the head and neck from an occult primary

RESEARCH ARTICLE. Swallowing Exercises: Will They Really Help Head and Neck Cancer Patients?

Laryngeal Preservation Using Radiation Therapy. Chemotherapy and Organ Preservation

FINE NEEDLE ASPIRATION OF ENLARGED LYMPH NODE: Metastatic squamous cell carcinoma

SUPER-SUPRAGLOTTIC SWALLOW IN IRRADIATED HEAD AND NECK CANCER PATIENTS

Squamous Cell Carcinoma of the Oral Cavity: Radio therapeutic Considerations

TOXICITY OF TWO CISPLATIN-BASED RADIOCHEMOTHERAPY REGIMENS FOR THE TREATMENT OF PATIENTS WITH STAGE III/IV HEAD AND NECK CANCER

ORIGINAL ARTICLE. Examining the Need for Neck Dissection in the Era of Chemoradiation Therapy for Advanced Head and Neck Cancer

MULTIPLE reports have. Prediction of Aspiration in Patients With Newly Diagnosed Untreated Advanced Head and Neck Cancer ORIGINAL ARTICLE

Goals and Objectives: Head and Neck Cancer Service Department of Radiation Oncology

Cetuximab/cisplatin and radiotherapy in HNSCC: is there a favorite choice?

Persistent tracheostomy after primary chemoradiation for advanced laryngeal or hypopharyngeal cancer

Prospective subjective evaluation of swallowing function and dietary pattern in head and neck cancers treated with concomitant chemo-radiation

Title. CitationInternational Journal of Clinical Oncology, 20(6): 1. Issue Date Doc URL. Rights. Type. File Information

Simultaneous Integrated Boost or Sequential Boost in the Setting of Standard Dose or Dose De-escalation for HPV- Associated Oropharyngeal Cancer

Adjuvant Therapy in Locally Advanced Head and Neck Cancer. Ezra EW Cohen University of Chicago. Financial Support

Accepted 28 April 2005 Published online 13 September 2005 in Wiley InterScience ( DOI: /hed.

Swallowing Disorders and Their Management in Patients with Multiple Sclerosis

2013 Charleston Swallowing Conference

Analysis of Dysphagia Patterns Using a Modified Barium Swallowing Test Following Treatment of Head and Neck Cancer

FUNCTIONAL ANALYSIS OF SWALLOWING OUTCOMES AFTER SUPRACRICOID PARTIAL LARYNGECTOMY

Quality of life in patients treated for advanced hypopharyngeal or laryngeal cancer

Percutaneous Endoscopic Gastrostomy Tube Dependence Following Chemoradiation in Head and Neck Cancer Patients

Clinical Swallowing Exam

Pharyngoesophageal Strictures in Head and Neck Cancer

The following slides are from a. presentation given by. H. Worth Boyce, M.D. on. Specialized Studies on Diseases of the Esophagus.

Jamie L Penner, Susan E McClement, Jo-Ann V Sawatzky

Feeding and Oral Hygiene: How to Address the Challenges

Endoscopic carbon dioxide laser cricopharyngeal myotomy for relief of oropharyngeal dysphagia

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

RADIO- AND RADIOCHEMOTHERAPY OF HEAD AND NECK TUMORS. Zoltán Takácsi-Nagy PhD Department of Radiotherapy National Institute of Oncology, Budapest 1.

ORIGINAL ARTICLE. Video Fluoroscopic Evaluation After Glossectomy

Thomas Gernon, MD Otolaryngology THE EVOLVING TREATMENT OF SCCA OF THE OROPHARYNX

Factors predicting suitability of organ preservation with radiation therapy in laryngeal and hypopharyngeal cancer

15/11/2011. Swallowing

Comparative study of Gemcitabine versus Cisplatin concurrent with radiotherapy for locally advanced head and neck cancer

VIDEOFLUOROSCOPIC SWALLOWING EXAM

ORIGINAL ARTICLE. Chemoradiation for Locally Advanced Squamous Cell Carcinoma of the Head and Neck for Organ Preservation and Palliation

HPV INDUCED OROPHARYNGEAL CARCINOMA radiation-oncologist point of view. Prof. dr. Sandra Nuyts Dep. Radiation-Oncology UH Leuven Belgium

ORIGINAL ARTICLE CHEMOTHERAPY ALONE FOR ORGAN PRESERVATION IN ADVANCED LARYNGEAL CANCER

SWALLOWING DIFFICULTIES IN HD

Key words: Head-and-neck cancer, Chemoradiation, Concomitant Boost Radiation, Docetaxel. Materials and Methods

Dysphagia in Tongue Cancer Patients Yu Ri Son, MD, Kyoung Hyo Choi, MD, PhD, Tae Gyun Kim, MD

Use of Larynx-Preservation Strategies in the Treatment of Laryngeal Cancer. American Society of Clinical Oncology Clinical Practice Guideline

Aspiration pneumonia after chemo intensity-modulated radiation therapy of oropharyngeal carcinoma and its clinical and dysphagia-related predictors

ORIGINAL ARTICLE. Variables Associated With Feeding Tube Placement in Head and Neck Cancer. cases of head and neck cancer

Analyzing Swallow Studies in Pediatrics

Organ-Preservation Strategies in head and neck cancer. Teresa Bonfill Abella Oncologia Mèdica Parc Taulí Sabadell. Hospital Universitari

Daniels SK & Huckabee ML (2008). Dysphagia Following Stroke. Muscles of Deglutition. Lateral & Mesial Premotor Area 6. Primary Sensory

Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston Texas.

Comparison of acute toxicities of two chemotherapy schedules for head and neck cancers

Accepted 4 April 2014 Published online 6 April 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI /hed.23708

BEAVERTAIL MODIFICATION OF THE RADIAL FOREARM FREE FLAP IN BASE OF TONGUE RECONSTRUCTION: TECHNIQUE AND FUNCTIONAL OUTCOMES

Swallowing Screen Why? How? and So What? พญ.พวงแก ว ธ ต สก ลช ย ภาคว ชาเวชศาสตร ฟ นฟ คณะแพทยศาสตร ศ ร ราชพยาบาล

Neoplasie del laringe Diagnosi e trattamento

What is head and neck cancer? How is head and neck cancer diagnosed and evaluated? How is head and neck cancer treated?

TREATMENT TIME & TOBACCO: TWIN TERRORS Of H&N Therapy

5/20/ ) Haffty GB: Concurrent chemoradiation in the treatment of head and neck cancer. Hematol. Oncol. Clin: North Am.

Title. CitationJournal of Oral and Maxillofacial Surgery, 70(11): 2. Issue Date Doc URL. Type. File Information

Accepted 1 August 2008 Published online 23 December 2008 in Wiley InterScience ( DOI: /hed.

Adherence to preventive exercises and self-reported swallowing outcomes in post-radiation head and neck cancer patients

ORIGINAL ARTICLE. Harold Lau, MD; Tien Phan, MD; Jack MacKinnon, MD; T. Wayne Matthews, MD

ORIGINAL ARTICLE. Salvage Surgery After Failure of Nonsurgical Therapy for Carcinoma of the Larynx and Hypopharynx

Pharyngeal Effects of Bolus Volume, Viscosity, and Temperature in Patients With Dysphagia Resulting From Neurologic Impairment and in Normal Subjects

ORIGINAL ARTICLE. Swallowing after non-surgical treatment (radiation therapy / radiochemotherapy protocol) of laryngeal cancer

Emerging Role of Immunotherapy in Head and Neck Cancer

FLOOVIDEOFLUOROSCOPIC SWALLOW STUDIES: LOOKING BEYOND ASPIRATION. Brenda Sitzmann, MA, CCC-SLP (816)

Late Oropharyngeal Dysphagia Following Head and Neck Cancer Treatment ASHA 2014 Orlando, FL

New Evidence-Based Support of a 3 Ounce Water Swallow Challenge Protocol

The Role of Concurrent Chemo-radiotherapy in Patients with Head and Neck Cancers: A Review

De-Escalate Trial for the Head and neck NSSG. Dr Eleanor Aynsley Consultant Clinical Oncologist

Hypopharyngeal Squamous Cell Carcinoma: Three-Dimensional or Intensity-Modulated Radiotherapy? A Single Institution s Experience

Surgical Margins in Transoral Robotic Surgery for Oropharyngeal Squamous Cell Carcinoma

Lymph node ratio as a prognostic factor in head and neck cancer patients

Long Term Toxicities of Head & Neck Cancer Therapies. Faith Mutale Abramson Cancer Center University of Pennsylvania

HEAD AND NECK CANCER TREATMENT REGIMENS (Part 1 of 5)

Locally advanced head and neck cancer

Introduction. Rico N. Rinkel 1 Irma M. Verdonck-de Leeuw. Jan Buter 3 Remco de Bree. C. René Leemans 1

Reluctance or refusal to feed or eat. Understanding Feeding Aversion in a City Full of Foodies. Presentation Outline. Learning Objectives

Bidirectional esophageal dilatation in pharyngoesophageal stenosis postradiotherapy

NICE guideline Published: 10 February 2016 nice.org.uk/guidance/ng36

Gourin et al.: Long-Term Outcomes of Larynx Cancer Care in the Elderly

Bolus effects on patient awareness of swallowing difficulty and swallow physiology after chemoradiation for head and neck cancer

The PARADIGM Study: A Phase III Study Comparing Sequential Therapy (ST) to Concurrent Chemoradiotherapy (CRT) in Locally Advanced Head and Neck Cancer

Tratamiento Multidisciplinar de Estadios Localmente Avanzados en Cáncer de Pulmón

Transcription:

ORIGINAL ARTICLE Characteristics Associated With Swallowing Changes After Concurrent Chemotherapy and Radiotherapy in Patients With Head and Neck Cancer Joseph K. Salama, MD; Kerstin M. Stenson, MD; Marcy A. List, PhD; Loren K. Mell, MD; Ellen MacCracken, MS; Ezra E. Cohen, MD; Elizabeth Blair, MD; Everett E. Vokes, MD; Daniel J. Haraf, MD Objective: To define factors that acutely influenced swallowing function prior to and during concurrent chemotherapy and radiotherapy. Design: A summary score from 1 to 7 (the swallowing performance status scale [SPS]) of oral and pharyngeal impairment, aspiration, and diet, was assigned to each patient study by a single senior speech and swallow pathologist, with higher scores indicating worse swallowing. Generalized linear regression models were formulated to asses the effects of patient factors (performance status, smoking intensity, amount of alcohol ingestion, and age), tumor factors (primary site, T stage, and N stage), and treatment-related factors (radiation dose, use of intensity-modulated radiation therapy, response to induction chemotherapy, postchemoradiotherapy neck dissection, and preprotocol surgery) on the differences between SPS score before and after treatment. Setting: University hospital tertiary care referral center. Patients: The study included 95 patients treated under a multiple institution, phase 2 protocol who underwent a videofluorographic oropharyngeal motility (OPM) study to assess swallowing function prior to and within 1 to 2 months after the completion of concurrent chemotherapy and radiotherapy. Main Outcome Measures: Factors associated with swallowing changes after chemoradiotherapy. Results: The mean pretreatment and posttreatment OPM scores were 3.09 and 3.77, respectively. Patients with T3 or T4 tumors (odds ratio [OR], 0.38; 95% confidence interval [CI], 0.15-0.95; P=.04) and a performance status of 1 or 2 (OR, 0.37; 95% CI, 0.15-0.91; P=.03) were less likely to have worsening of swallowing after chemoradiotherapy. There was a trend for worse swallowing with increasing age (OR, 1.04; 95% CI, 0.99-1.09; P=.08). Only T stage (T3 or T4) was associated with improved swallowing after treatment (OR, 8.96; 95% CI, 1.9-41.5; P.001). Conclusion: In patients undergoing concurrent chemotherapy and radiotherapy, improved swallowing function over baseline is associated with advanced T stage. Arch Otolaryngol Head Neck Surg. 2008;134(10):1060-1065 Author Affiliations: Department of Radiation and Cellular Oncology (Drs Salama, Mell, Vokes, and Haraf), Section of Otolaryngology Head and Neck Surgery (Drs Stenson and Blair and Ms MacCracken), Cancer Research Center (Drs Salama, Stenson, List, Cohen, Blair, Vokes, and Haraf), Center for Speech and Swallowing Disorders (Ms MacCracken), and Section of Hematology/Oncology (Drs Cohen and Vokes), University of Chicago, Chicago, Illinois. DYSPHAGIA IS COMMON IN patients with advanced head and neck cancer. Studies have demonstrated that 38% of patients present with mild-moderate to moderate-severe swallowing impairment. 1 In addition, patients with hypopharyngeal and laryngeal primary tumors have been found to have worse swallowing at presentation. 1 While previous investigations have documented severity of dysphagia after definitive or adjuvant radiation therapy or concomitant chemoradiotherapy, 2,3 few studies have documented swallowing function changes from baseline in patients treated with concurrent chemotherapy and radiotherapy. Of the studies that have reported changes in swallowing function from baseline, most have focused on alterations occurring in the swallowing mechanism. New delayed initiation of the swallow trigger, uncoordinated timing of bolus propulsion, opening of the pharyngoesophageal segment, closure of the larynx, tongue base retraction, and vestibular penetration of barium have all been reported following concurrent chemotherapy and radiotherapy. 4-6 Additionally, increase from baseline in time to velopharyngeal and laryngeal closure and decreased oropharyngeal swallow efficiency have been reported. 7 While identification of changes in the swallowing mechanism are important to aid in therapeutic intervention for patients undergoing concurrent chemotherapy and radiotherapy, so is the identification of factors predicting improvement or decrement in swallowing function. Therefore, in this study, we sought to identify factors that influenced changes in swallowing during a course of concurrent chemotherapy and radiotherapy. 1060

METHODS From November 1998 to August 2002, 222 patients with stage III or IV advanced head and neck cancer were treated under a multipleinstitution, phase2protocolofconcurrentchemotherapy and radiotherapy. Organ preservation was the primary goal of the treatment protocol. Resection of small tonsillar or oral cavity primary tumors was allowed, as was pretherapy modified radical neck dissections. Two 21-day cycles of induction paclitaxel (135 mg/m 2 over 3 hours) and carboplatin (area under the curve, 2; given after paclitaxel) were followed by 4 cycles (for resected cases) or 5 cycles (for unresected cases) of concurrent chemotherapy and radiotherapy. Each chemoradiotherapy cycle consisted of 1 weekly dose of paclitaxel (100 mg/m 2 after the first dose of radiation), continuous infusion fluorouracil (600 mg/ m 2 for 5 days), oral hydroxyurea (500 mg every 12 hours for 6 days), and twice daily radiation therapy (1.5 Gy per fraction with a minimum 6-hour interfraction interval) followed by a 9-day break. The total radiation dose to gross disease was initially 75 Gy, but later decreased to 72 to 75 Gy based on the response to induction chemotherapy. Initially patients were treated with 3-dimensional conformal radiotherapy, but later some patients were treated with intensity-modulated radiotherapy (IMRT). Following the completion of concurrent chemotherapy and radiotherapy, patients with N2 or higher-stage neck disease underwent a planned neck dissection. Details of the protocol have been outlined previously. 8 Of the 222 patients enrolled, 132 eligible patients were treated at our institution. Our study population consisted of 95 of the 132 who had swallowing function assessed both prior to the initiation of concurrent chemotherapy and radiotherapy and within 1 to 2 months after the completion of chemoradiotherapy. Each assessment consisted of an anterior and lateral videofluorographic OPM study, as described previously. 9,10 Briefly, a recording was made by the speech pathologist while patients swallowed small amounts of liquid barium, paste barium, and a barium-coated cookie. Slow motion, frame-by-frame analysis was used to evaluate oral, pharyngeal, laryngeal, and cricopharyngeal function. In addition, attention was given to the presence and cause of aspiration as well as laryngeal sensitivity, response to therapeutic techniques, and percentage aspiration. Multiple components of swallowing were summarized on the OPM record and recorded in a computerized database storage and reporting system, as described previously. 1 Using this standardized format, interrater variability was low, and intrarater variability nonexistent because all studies were conducted at the University of Chicago Speech and Swallowing Center by the senior speech pathologist (E.M.) for reliable and consistent reporting. A sample OPM report is provided as Figure 1. Individualized therapy was provided based on the results of the OPM study and directed to specific disorders documented during the videofluorographic procedure. In addition, therapeutic techniques were applied during the OPM study to assess response to maneuvers and change in swallow physiology and aspiration. Patients were provided with base-of-thetongue and laryngeal motility exercises, which they were encouraged to perform during treatment. A safe oral diet with a variety of food textures based on OPM results was encouraged with the goal of maintaining optimal flexibility and range of motion of pharyngeal structures. Changes in patient swallowing were defined in 2 ways: (1) worsening of swallowing was defined as a posttherapy swallowing performance scale (SPS) score higher than the pretherapy SPS score; (2) improvement in swallowing was defined as a posttherapy SPS score lower than the pretherapy score. The SPS score is a summary score from 1 to 7 of oral impairment, pharyngeal impairment, aspiration, and diet, with higher scores indicating worse swallowing, as outlined in Table 1. This rating scale is designed to summarize the clinical results of the OPM study, and the score provides an overall clinical picture of swallowing function. Because reliable SPS results depend on skilled clinical interpretation, the score is not an additive or formulaic summary. For each patient, the SPS score prior to and following concurrent chemotherapy and radiotherapy was extracted from the OPM report. Generalized linear modeling was used to model changes in the logspsscore.backwardstepwiselogisticregression(p.10threshold) was used to model improved or worsened swallowing. Covariates included patient factors (performance status, smoking intensity, amount of alcohol ingestion, and age), tumor factors (primary site, T stage, and N stage), and treatment-related factors (radiationdose, useofimrt, responsetoinductionchemotherapy, and preprotocol surgery). Statistical analysis was conducted using Stata 7.0 software (StataCorp LP, College Station, Texas). RESULTS Clinicopathologic characteristics are summarized in Table 2, while treatment-related characteristics are summarized in Table 3. Most of the patients had a good performance status (Eastern Cooperative Oncology Group [ECOG] score, 0-1), laryngeal (23%; n=22) or oropharyngeal primary tumors (52%; n=49), advanced T stage (57% T3 or T4; n=54), and advanced nodal disease (75% N2 or N3; n=54). Furthermore, 92% of patients did not have prior surgery (n=87), and 80% had a response to induction chemotherapy (n=76). When compared with patients treated on the same protocol but not included in this analysis, our patients were more likely to have been treated with IMRT (57% [n=54] vs 34%) (P.01) and to have an ECOG performance status of 0 (57% [n=51] vs 24%) (P.01). Otherwise, there were no statistical differences among patients included and other patients. In general, swallowing function decreased from baseline in patients after concurrent chemotherapy and radiotherapy. Specifically, 59 patients had a worse SPS score after treatment (60%), 17 had no change in their SPS score (17%), and 19 had an improvement in their SPS score (19%). The mean pretreatment SPS score was 3.09, and the mean posttreatment SPS score was 3.77 (P.01 by the Wilcoxon test). As listed in Table 4 and illustrated in Figure 2, for 82% of patients whose swallowing changed, for worse or better (n=78), the change was only 1 to 2 points on the SPS scale. The median and mean change values during chemoradiotherapy were 1 and 1.7 points (range, 1-5 points), respectively. Most patients with laryngeal primary tumors had T3 (14%; n=3) or T4 (82%; n=18) tumors. When patients with laryngeal cancer were analyzed separately, the mean pretreatment SPS score was 4.3 (range, 1-7), and the mean posttreatment SPS score was 4.2 (range, 2-7). While 4 patients had no change in their swallowing after chemoradiotherapy, 10 had a decrement, and 8 had improvement in their swallowing. The median and mean changes in swallowing scores were 0 and 0.1 (range, 0-5), respectively. When factors associated with worsening of swallowing were analyzed, only a trend for worse swallowing with increasing age was found (odds ratio [OR], 1.04; 95% confidence interval [CI], 0.99-1.09) (P=.08). Surprisingly, patients with T3 or T4 tumors (OR, 0.38; 95% CI, 1061

THE UNIVERSITY OF CHICAGO Center for Speech and Swallowing Disorders Oropharyngeal Motility (OPM) Study Data Entry Form UNIT # NAME PHYSICIAN TAPE # BIRTHDAY 1 VISIT# AGE CLINICIAN TYPE INS. 1. Rationale for the Study, Brief History Notes STUDY DATE CONSENT DATE SYMPTOM ONSET TX ONSET 12/20/99 REPORT DATE OBSERVATIONS 2. Current Diet 10. Reflex Time 17. Cerv. Esoph. 0 = Non PO 1 = Liquid 2 = Soft 0 = No reflex 1 = Normal 1 = Dilation 2 = Fistula 3 = Pureed 4 = Normal 2 = Delayed 3 = Zenkers 4 = Reflux + = Other 3. % Intake via #2 4. Tube in Use 0 = None 1 = NG Tube 2 = G Tube 3 = J Tube 4 = IV 5. Oral Prep Impairment 0 = Normal 2 = Moderate 0 = Normal 2 = Moderate 1 = Mild 3 = Severe 11. Reflex Strength 0 = No reflex 1 = Weak 2 = Adequate 3 = Normal 12. Pharyngeal Impairment 0 = Normal 2 = Moderate 6. Oral Prep Problems 13. Pharyngeal 1 = Bolus hold 1 = Prolonged transit time 2 = Bolus form 3 = Mastication 2 = Laryngeal elevation 4 = Lip closure 5 = Suckle lag 3 = Velar elevation 6 = Nipple hold 4 = Laryngeal closure 7 = Aversive Behaviors 5 = Vallecular stasis + = Other (below) 6 = Pyriform stasis 7 = Reduced peristalsis 8 = Suck/swallow ratio 9 = Swallow/resp. coordination 7. Oral Impairment + = Other (below) 1 = Mild 3 = severe 8. Oral Problems 1 = Poor bolus control 2 = Piecemeal deglutition 3 = Prolonged transit time 4 = Oral stasis 5 = Poor suck rate 6 = Poor suck amplitude 7 = Poor suck maintenance 8 = Poor tongue coordination + = Other (below) 9. Oral Transit Time (seconds) 14. Pharyngeal Symmery 0 = Normal 1 = bolus to right 2 = bolus to left 15. Pharyngeal Transit Time (seconds) 16. Cerv. Esoph. Impairment 0 = normal 2 = moderate 1 = Mild 3 = Severe 1 = mild 3 = severe 18. Aspiration 0 = Nose (skip 19-21 below) 1 = Pre-reflex 2 = Mid-reflex 3 = Post-reflex 19. Asp. Location 1 = Laryngeal vestibule 2 = Trachea 20. Asp. Sensitivity 1 = good 2 = fair 3 = poor 21. % Aspiration 22. Response to Therapy Technique 1 = good 2 = fair 3 = poor 23. Material Asp. 0 = All 1 = Liquid 2 = Paste 3 = Cookie + = Other (below) 24. Follow-up 25. Suction Needed 26. Suction Provided 27. Swallowing Perfomance Status Scale 1. Normal 2. WFL - abnormal oral or pharyngeal stage but able to eat regular diet without modifications or swallowing precautions. 3. Mild impairment - mild dysfunction in oral or pharyngeal stage. Requires modified diet or therapeutic swallowing precautions. 4. Mild-moderate impairment - need for therapeutic precautions - mild dysfunction in oral or pharyngeal stage, requires modified diet and therapeutic precautions to minimize aspiration risk. 5. Moderate impairment - moderate dysfunction in oral or pharyngeal stage, aspiration noted on exam, requires modified diet and swallowing precautions to minimize risk of aspiration. 6. Moderate-severe dysfunction - requires supplemental central feeding support - moderate dsyfunction is oral or pharyngeal stage, Aspiration noted on exam, requires modified diet and swallowing precaution to minimize risk of aspiration, needs supplemental enteral feeding support. 7. Severe impairment - severe dysfunction with significant aspiration or inadequate oropharyngeal transit to esophagus, NPO, requires primary enteral feeding support. 28. Recommended Diet 0 = General diet. 1 = Mechanical soft diet. 2 = Supraglottic diet. 3 = Puree diet. 4 = Liquid only. 30. Additional Recommendations (be brief and concise) RECOMMENDATIONS 29. Swallowing Precautions 5 = Thick liquids only. 0. No precautions needed. 6 = Thick warm liquids only. 1. Upright pos. (45 degree angle). 7 = Thin cold liquids only. 2. 1/2 to 1 tsp/swallow. 8 = No liquids. 3. Eat slowly (empty mouth between each bolus). 4. Double swallow. 5. Alternate consistencies. 6. Cough/swallow occasionally. 7. Supraglottic swallow. 8. Thermal stim. 5-10 times. 9. Chin tuck position. A. Stay upright 15-20 min after meal. B. Mendelsohn maneuver. C. Low flow nipple. D. Fast flow nipple. E. Frequent rest periods. F. Straight upper body support. G. Instruct caregiver. H. Postural adjustments (see below). Figure 1. Oropharyngeal motility study data entry form. 1062

Table 1. Swallowing Performance Status Scale Score Severity Description 1 Normal swallowing Normal swallowing 2 Within functional limits Abnormal oral or pharyngeal stage; able to eat regular diet without modifications or swallowing precautions 3 Mild impairment Mild dysfunction in oral or pharyngeal stage; requires modified diet without need for therapeutic swallowing precautions 4 Mild-moderate impairment 5 Moderate impairment 6 Moderate-severe dysfunction Need for therapeutic precautions; requires modified diet and therapeutic precautions to minimize aspiration risk Moderate dysfunction in oral or pharyngeal state; aspiration noted on examination; requires modified diet and swallowing precautions to minimize risk of aspiration Requires supplemental enteral feeding support; moderate dysfunction in oral or pharyngeal stage; aspiration noted on examination; requires modified diet and swallowing precautions to minimize risk of aspiration; needs supplemental feeding support 7 Severe impairment Severe dysfunction with significant aspiration or inadequate oropharyngeal transit to esophagus; nothing by mouth; requires primary enteral feeding support 0.15-0.95) (P=.04) and an ECOG performance status of 1 to 2 (OR, 0.37; 95% CI, 0.15-0.91) (P=.03) were less likely to have worse swallowing after a course of concurrent chemotherapy and radiotherapy. Only advanced T stage (T3 or T4 tumors) was associated with improved swallowing after chemoradiotherapy (OR, 8.96; 95% CI, 1.6-41.6) (P.001). A total of 51 patients had gastrostomy tubes placed before, during, or within 6 months of the completion of concurrent chemotherapy and radiotherapy (54%). This included 11 patients with gastrostomy tube placement prior to the initiation of protocol treatment (12%), 36 patients with gastrostomy tubes placed during the course of concurrent chemotherapy and radiotherapy (38%), and 4 had gastrostomy tube placement within 6 months of completing concurrent chemotherapy and radiotherapy (4.2%). At final follow-up, 12 patients had gastrostomy tubes in place (13%), and 77 patients were free of gastrostomy tubes (81%). In the remaining 6 patients, information on gastrostomy tube status was not available. COMMENT Multiple studies have demonstrated improved locoregional control and in some cases survival with definitive or adjuvant chemoradiotherapy over radiotherapy. 11-14 As Table 2. Clinicopathologic Characteristics a Characteristic Patients, No. (%) Performance status 0 51 (54) 1 42 (44) 2 2 (2) Primary tumor site Oral cavity 8 (8) Oropharynx 49 (52) Nasopharynx 4 (4) Hypopharynx 5 (5) Larynx 22 (23) Other 7 (7) T stage Tx 7 (7) T1 15 (16) T2 19 (20) T3 16 (17) T4 38 (40) N stage N0 14 (15) N1 12 (13) N2a 14 (15) N2b 21 (22) N2c 19 (20) N3 15 (16) a The median (range) patient age was 58 (35-77) years. Table 3. Treatment-Related Factors a Characteristic Patients, No. (%) IMRT Yes 54 (57) No 41 (43) Response to induction CTX CR 29 (31) PR 47 (50) SD 6 (6) Unevaluable 13 (14) Surgery preprotocol Yes 8 (8) No 87 (92) Abbreviations: CR, complete response; CTX, chemotherapy; IMRT, intensity-modulated radiation therapy; PR, partial response; SD, stable disease. a The mean (range) radiation dose was 72.5 (59.0-75.0) Gy. Table 4. Absolute Change in SPS Score Absolute Difference in SPS Score Patients, No. (%) 0 17 (18) 1 44 (46) 2 20 (21) 3 10 (11) 4 2 (2) 5 2 (2) Abbreviation: SPS, swallowing performance status scale (a summary score from 1 to 7). control and survival continue to improve in patients with advanced head and neck cancer, functional, cosmetic, and quality-of-life issues become more important. While con- 1063

Patients, No. 35 30 25 20 15 10 5 0 4 3 2 1 0 1 2 3 5 SPS Score Change Figure 2. Frequency of change in swallowing performance status scale (SPS) score (SPS score before treatment minus SPS score after treatment). Improvement in swallowing is indicated by a positive value, worsening by a negative value. trol is improved with concurrent chemotherapy and radiotherapy, rates of dysphagia are also higher, as seen in the report of Radiation Therapy Oncology Group (RTOG) 91-11 11 in which 23% of patients treated with concomitant cisplatin and radiotherapy were able to swallow only soft foods compared with 9% of patients receiving sequential cisplatin/fluorouracil irradiation and 15% of patients receiving radiotherapy alone. Quality-of-life studies demonstrate that for patients with advanced head and neck cancer, difficulties and embarrassment caused by eating in public, distorted speech, hoarseness, and mouth pain are important predictors of overall quality of life. 15 Furthermore, after being cured of my cancer and living as long as possible, patients prioritize being able to swallow all foods and liquids only behind having no pain, returning to regular activities, and having a normal amount of energy. Given the high level of importance that patients place on swallowing, we sought to determine in this study the factors that could predict detrimental or improved swallowing outcomes following a course of chemoradiotherapy. One of the interesting findings from our study populationwasthepreservationoffunctioninpatientswithadvanced laryngeal cancer. Recent reports demonstrate that patients with larynx cancer treated with concurrent chemotherapy and radiotherapy had improved quality of life over surgically treated patients and that patients with an intact larynx were morelikelytoobtainnutritionorallywithoutsupplements. 16 Furthermore, patients with advanced larynx cancer treated withconcurrentchemotherapyandradiotherapywerefound to have intelligible communication and efficient swallowing. 6 Our analysis demonstrated that patients with laryngeal cancer had a worse mean baseline swallowing score than the entire study population. However, after treatment, these patients had little change in their swallowing score compared with a mean decrement of 0.78 in the population as a whole. These results indicate that patients with advanced laryngeal cancer treated with concurrent chemotherapy and radiotherapy may be able to preserve swallowing function. Perhaps the most interesting finding from this analysis is that patients with more advanced T stages were less likely to have worsened swallowing and more likely to have improved swallowing after a course of concurrent chemotherapy and radiotherapy. To our knowledge, this has not been reported in the literature. Our group s prior investigations with pretherapy swallowing studies revealed no association between T stage and aspiration status, cervical esophageal impairment, pharyngeal impairment, oral impairment, and SPS score. 1 Other investigators have not found an association between T stage and dysphagia, but the population studied was heterogeneous and included patients treated with definitive and adjuvant radiation and chemoradiation. 2,17 Our finding that patients with advanced T stages were less likely to have worsening of their swallowing and more likely to have improved swallowing will aid practitioners in counseling patients as to expectations during treatment. However, it must be noted that patients were strongly encouraged to maintain oral intake as long as possible during treatment and did not undergo routine percutaneous endoscopic gastrostomy tube placement. This strategy was used to encourage patients to exercise the swallowing mechanism throughout treatment. Our investigation found no correlation between the use of IMRT and swallowing dysfunction. However, this is not surprising, since our main goal of IMRT was to decrease the dose to the parotid glands, skin, larynx, and oral cavity, while no attempt was made to spare the pharyngeal constrictors owing to their close proximity to the retropharyngeal nodal region. Other investigators have found that radiation dose to the upper, middle, and lower pharyngeal constrictors and the supraglottic and glottic larynx have been associated with swallowing dysfunction. 18 Preliminary results from patients treated prospectively with IMRT to spare these structures demonstrated statistically significant correlations between aspiration risk and partial volumes of the pharyngeal constrictors and glottic and supraglottic larynx receiving radiation doses between 50 and 65 Gy. Furthermore, dose to the pharyngeal constrictors was associated with stricture risk and worsening of liquid and solid swallowing. 19 We are currently investigating the interactions of chemotherapy and IMRT in regard to swallowing function, neck fibrosis, and saliva flow. Patients analyzed in the present study were more likely to have been treated with IMRT, which may enhance the applicability of these results because 76% to 82% of practitioners are currently using IMRT to treat patients with head and neck cancer. 20 These data indicate that 54% of patients required gastrostomy tube nutritional assistance during the course of or shortly after concurrent chemotherapy and radiotherapy (n=51). These numbers are consistent with the entire protocol cohort from which these patients were drawn in which 62% of patients had gastrostomy tubes placed prior to (26%) or during (36%) the course of chemoradiotherapy. However, at final follow-up, only 13% had gastrostomy tubes in place (n=12). This is probably owing to many causes, the first of which is that patients with gastrostomy tubes in place are more likely to have multiple swallowing assessments and therefore would have data making them eligible for this analysis. Furthermore, mucosal healing and swallowing therapy enable patients to regain swallowing function. Our study is limited by the retrospective nature of the analysis as well as the short follow-up period. The goal of 1064

this study was only to assess what factors were associated with swallowing changes during a course of chemoradiotherapy. Swallowing function for these patients will continue to evolve with longer follow-up. Furthermore, the tools used to assess swallowing limit the analysis. The SPS itself has not been validated by statistical analysis; rather, it is a quick, clinically relevant scoring system for patients with head and neck cancer and a simple, single-step technique for classifying swallowing functional status. While other more specific measures are available to score videofluorographic swallowing test results (eg, oropharyngeal swallow efficiency), these methods are extremely labor intensive and are best suited for the laboratory setting. By design, our study was only intended to assess acute swallowing changes of concurrent chemotherapy and radiotherapy. Further investigation will be needed to determine long-term swallowing changes. However, all the patient data was collected prospectively by a single senior speech pathologist (E.M.). Furthermore, all patients described in this study were managed uniformly with organ-preserving intent by an experienced multidisciplinary team of head and neck surgeons, medical oncologists, and a single radiation oncologist(d.j.h.). The value of the SPS might have been more limited if it had been administered by multiple raters, with subjective scoring changes leading to interobserver variability. However, because all of the OPM findings were interpreted by a single senior speech pathologist, our data were obtained without interobserver variability. To validate these conclusions, we plan on expanding our data set with patients treated at our institution with similar chemoradiotherapy regimens. In addition, swallowing function continues to change over time in patients treated with chemoradiotherapy for head and neck cancer. Therefore, we plan to determine which factors are associated with chronic swallowing function changes and esophageal stricture. In conclusion, we found that patients with advanced T stages (T3 and T4) and worse performance status (ECOG 1 and 2) were less likely to have worsening of swallowing during a course of concurrent chemotherapy and radiotherapy. Additionally, patients with T3 or T4 tumors were more likely to have an improvement in swallowing function after the completion of their treatment. Patients with advanced laryngeal tumors, while initially presenting with worse swallowing function, had less of a decrement in swallowing function after chemoradiotherapy. Submitted for Publication: October 15, 2006; final revision received October 24, 2007; accepted October 30, 2007. Correspondence: Joseph K. Salama, MD, Department of Radiation and Cellular Oncology, 5758 S Maryland Ave, MC 9006, Chicago, IL 60637 (jsalama@radonc.uchicago.edu). Author Contributions: Dr Salama had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Salama, List, Mell, Blair, Vokes, and Haraf. Acquisition of data: Salama, Stenson, Mell, MacCracken, Cohen, Blair, and Vokes. Analysis and interpretation of data: Salama, Stenson, List, Mell, Cohen, and Haraf. Drafting of the manuscript: Salama, Mell, Vokes, and Haraf. Critical revision of the manuscript for important intellectual content: Salama, Stenson, List, Mell, MacCracken, Cohen, Blair, Vokes, and Haraf. Statistical analysis: Mell. Administrative, technical, and material support: Stenson, List, MacCracken, Cohen, Blair, Vokes, and Haraf. Study supervision: Salama, Stenson, List, Cohen, and Haraf. Financial Disclosure: None reported. PreviousPresentation: Thisarticlewaspresentedatthe2006 AmericanHeadandNeckSocietyAnnualMeeting&Research Workshop; August 18, 2006; Chicago, Illinois. REFERENCES 1. Stenson KM, MacCracken E, List M, et al. Swallowing function in patients with head and neck cancer prior to treatment. Arch Otolaryngol Head Neck Surg. 2000; 126(3):371-377. 2. Nguyen NP, Moltz CC, Frank C, et al. Dysphagia severity following chemoradiation and postoperative radiation for head and neck cancer. Eur J Radiol. 2006; 59(3):453-459. 3. Smith RV, Goldman SY, Beitler JJ, Wadler SS. Decreased short- and long-term swallowing problems with altered radiotherapy dosing used in an organsparing protocol for advanced pharyngeal carcinoma. Arch Otolaryngol Head Neck Surg. 2004;130(7):831-836. 4. Graner DE, Foote RL, Kasperbauer JL, et al. Swallow function in patients before and after intra-arterial chemoradiation. Laryngoscope. 2003;113(3):573-579. 5. Eisbruch A, Lyden T, Bradford CR, et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for headand-neck cancer. Int J Radiat Oncol Biol Phys. 2002;53(1):23-28. 6. Carrara-de Angelis E, Feher O, Barros AP, Nishimoto IN, Kowalski LP. Voice and swallowing in patients enrolled in a larynx preservation trial. Arch Otolaryngol Head Neck Surg. 2003;129(7):733-738. 7. Logemann JA, Rademaker AW, Pauloski BR, et al. Site of disease and treatment protocol as correlates of swallowing function in patients with head and neck cancer treated with chemoradiation. Head Neck. 2006;28(1):64-73. 8. Haraf DJ, Rosen FR, Stenson K, et al. Induction chemotherapy followed by concomitant TFHX chemoradiotherapy with reduced dose radiation in advanced head and neck cancer. Clin Cancer Res. 2003;9(16, pt 1):5936-5943. 9. Logemann JA, Bytell DE. Swallowing disorders in three types of head and neck surgical patients. Cancer. 1979;44(3):1095-1105. 10. Lazarus C, Logemann JA, Gibbons P. Effects of maneuvers on swallowing function in a dysphagic oral cancer patient. Head Neck. 1993;15(5):419-424. 11. Forastiere AA, Goepfert H, Maor M, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med. 2003; 349(22):2091-2098. 12. Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350(19):1937-1944. 13. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350(19):1945-1952. 14. Adelstein DJ, Li Y, Adams GL, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21(1):92-98. 15. List MA, Siston A, Haraf D, et al. Quality of life and performance in advanced head and neck cancer patients on concomitant chemoradiotherapy: a prospective examination. J Clin Oncol. 1999;17(3):1020-1028. 16. Fung K, Lyden TH, Lee J, et al. Voice and swallowing outcomes of an organpreservation trial for advanced laryngeal cancer. Int J Radiat Oncol Biol Phys. 2005;63(5):1395-1399. 17. Nguyen NP, Frank C, Moltz CC, et al. Impact of dysphagia on quality of life after treatment of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2005;61(3): 772-778. 18. Eisbruch A, SchwartzM, RaschC, etal. Dysphagiaandaspirationafterchemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys. 2004;60(5):1425-1439. 19. Eisbruch A. Intensity-modulated radiotherapy (IMRT) aiming to reduce dysphagia: early dose-effect correlations. Paper presented at: American Head and Neck Society 2006 Annual Meeting & Research Workshop on the Biology, Prevention, & Treatment of Head & Neck Cancer; August 18, 2006; Chicago, IL. 20. Mell LK, Mehrotra AK, Mundt AJ. Intensity-modulated radiation therapy use in the U.S., 2004. Cancer. 2005;104(6):1296-1303. 1065