Follow-up after renal transplantation with organs from donors after cardiac death

Similar documents
Non-heart beating donors

Reduced graft function (with or without dialysis) vs immediate graft function a comparison of long-term renal allograft survival

OUT OF DATE. Choice of calcineurin inhibitors in adult renal transplantation: Effects on transplant outcomes

Intruduction PSI MODE OF ACTION AND PHARMACOKINETICS

The New England Journal of Medicine KIDNEY TRANSPLANTATION FROM DONORS WITHOUT A HEARTBEAT

Emerging Drug List EVEROLIMUS

Pharmacology notes Interleukin-2 receptor-blocking monoclonal antibodies: evaluation of 2 new agents

Kidney transplantation 2016: current status and potential challenges

Quantification of the Early Risk of Death in Elderly Kidney Transplant Recipients

CURRICULUM VITAE July 5, Name Chang-Kwon Oh. Date of Birth August 15, 1961

Review Article: In-Depth Topic. Am J Nephrol 2003;23: DOI: /

Donor Scoring System for Cadaveric Renal Transplantation

Acute rejection and late renal transplant failure: Risk factors and prognosis

Kidneys from Donors after Cardiac Death Provide Survival Benefit

Progress in Pediatric Kidney Transplantation

Efficacy and Safety of Thymoglobulin and Basiliximab in Kidney Transplant Patients at High Risk for Acute Rejection and Delayed Graft Function

Use of non-heart-beating donors in renal transplantation

Summary of Results for Laypersons

Renal Transplant Registry Report 2008

Renal transplantation from extended criteria cadaveric donors: problems and perspectives overview

Summary of Results for Laypersons

Proteinuria and Mammalian Target of Rapamycin Inhibitors in Renal Transplantation

Risk factors associated with the deterioration of renal function after kidney transplantation

Transplantation in Australia and New Zealand

Our Experiences in Kidney Transplantation and Monitoring of Kidney Graft Outcomes

Ten-year outcomes in a randomized phase II study of kidney transplant recipients administered belatacept 4-weekly or 8-weekly

Echocardiography analysis in renal transplant recipients

For Immediate Release Contacts: Jenny Keeney Astellas US LLC (847)

The addition of anti-cd25 antibody induction to standard immunosuppressive therapy for kidney transplant recipients GUIDELINES SEARCH STRATEGY

Early Postoperative Urine Flow Predicts Delayed Graft Function Irrespective of Diuretic Use

Nephrology Dialysis Transplantation

This study is currently recruiting participants.

The recovery status from delayed graft function can predict long-term outcome after deceased donor kidney transplantation

BK virus infection in renal transplant recipients: single centre experience. Dr Wong Lok Yan Ivy

Assessment of Deceased Donor Kidneys Using a Donor Scoring System

Increasing Organ availability: From Machine Perfusion to Donors after Cardiac Death. Ayyaz Ali

Clinical Study Over Ten-Year Kidney Graft Survival Determinants

James E. Cooper, M.D. Assistant Professor, University of Colorado at Denver Division of Renal Disease and Hypertension, Kidney and PancreasTransplant

J Am Soc Nephrol 14: , 2003

Comparison of Serum Cystatin C and Creatinine Levels to Evaluate Early Renal Function after Kidney Transplantation

Renal transplantation

Increased Early Rejection Rate after Conversion from Tacrolimus in Kidney and Pancreas Transplantation

Kidney Transplant Outcomes In Elderly Patients. Simin Goral MD University of Pennsylvania Medical Center Philadelphia, Pennsylvania

The New England Journal of Medicine

Matching Older Kidneys with Older Patients Does Not Improve Allograft Survival

Case Report Beneficial Effect of Conversion to Belatacept in Kidney-Transplant Patients with a Low Glomerular-Filtration Rate

Serum samples from recipients were obtained within 48 hours before transplantation. Pre-transplant

Evaluation of the Cockroft Gault, Jelliffe and Wright formulae in estimating renal function in elderly cancer patients

Long-term outcome of third kidney transplants

In-situ v Normothermic Regional Perfusion for Abdominal Organs

Immunopathology of T cell mediated rejection

Organ rejection is one of the serious

Does Kidney Donor Risk Index implementation lead to the transplantation of more and higher-quality donor kidneys?

Donor Quality Assessment

How to improve long term outcome after liver transplantation?

Effect of long-term steroid withdrawal in renal transplant recipients: a retrospective cohort study

Enteric-Coated Mycophenolate Sodium can be Safely Administered in Maintenance Renal Transplant Patients: Results of a 1-Year Study

Long-term cardiovascular risk in transplantation insights from the use of everolimus in heart transplantation

Kidney Transplantation in the Elderly. Kristian Heldal, MD, PhD Telemark Hospital Trust, Skien, Norway and University of Oslo

WHEN (AND WHEN NOT) TO START DIALYSIS. Shahid Chandna, Ken Farrington

General Introduction. 1 general introduction 13

The New Kidney Allocation System: What You Need to Know. Anup Patel, MD Clinical Director Renal and Pancreas Transplant Division Barnabas Health

Clinical Study Synopsis

RISK FACTORS FOR ACUTE TUBULAR NECROSIS IN 774 CADAVER RENAL TRANSPLANTATIONS

Literature Review: Transplantation July 2010-June 2011

The CARI Guidelines Caring for Australians with Renal Impairment. Assessment of donors with sub-optimal kidney function/structure GUIDELINES

Simultaneous Liver and Kidney Transplantation Using Donation After Cardiac Death Donors: A Brief Report

Significance of Basiliximab Induction Therapy in Standard-Risk Renal Transplant in Tacrolimus Era: A Meta-Analysis

CHAPTER 5 RENAL TRANSPLANTATION. Editor: Dr Rosnawati Yahya

Can modifications of the MDRD formula improve the estimation of glomerular filtration rate in renal allograft recipients?

Should red cells be matched for transfusions to patients listed for renal transplantation?

Kidney Transplant in the Elderly. Robert Santella, M.D., F.A.C.P.

Renal Data from the Arab World

Original Article. Introduction

CHAPTER 5 RENAL TRANSPLANTATION. Editor: Dr Goh Bak Leong

Chapter VII. Renal Transplantation: Access and Outcomes. Methods. Key Words: Gender in transplantation

Steroid Minimization: Great Idea or Silly Move?

CHAPTER 3 HEART AND LUNG TRANSPLANTATION. Editors: Mr. Mohamed Ezani Hj Md. Taib Dato Dr. David Chew Soon Ping

Influence of Donor Factors on Early Function of Graft Kidneys

Public Assessment Report. EU worksharing project paediatric data. Valcyte. Valganciclovir

Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation

A Risk Prediction Model for Delayed Graft Function in Deceased Donor Kidney Transplantation

MORTALITY IN PATIENTS ON DIALYSIS AND TRANSPLANT RECIPIENTS

Diabetes Mellitus GUIDELINES UNGRADED SUGGESTIONS FOR CLINICAL CARE IMPLEMENTATION AND AUDIT BACKGROUND

Date: 23 June Context and policy issues:

CHAPTER 5 RENAL TRANSPLANTATION. Editor: Dr Goh Bak Leong

SYNOPSIS CLINICAL STUDY REPORT

PRE-dialysis survey on anaemia management

Health technology Two prophylaxis schemes against organ rejection in renal transplantation were compared in the study:

LIVE KIDNEY DONOR RISK PREDICTION ; NEW PARADIGM, NEW CALCULATORS PEDRAM AHMADPOOR MD

Effect of donor age on the outcome of living-related kidney transplantation

TRANSPLANTATION OF KIDNEYS FROM DONORS WHOSE HEARTS HAVE STOPPED BEATING TRANSPLANTATION OF KIDNEYS FROM DONORS WHOSE HEARTS HAVE STOPPED BEATING

Out of date SUGGESTIONS FOR CLINICAL CARE (Suggestions are based on level III and IV evidence)

IV.13 Analysis of patient and graft survival. Guidelines. Commentary on Guidelines IV.13: Analysis of patient and graft survival

Prevalence and Management of Anemia in Renal Transplant Recipients: A European Survey

Ten-year survival of second kidney transplants: Impact of immunologic factors and renal function at 12 months

Victims of success: Do we still need clinical trials? Robert S. Gaston, MD CTI Clinical Trials and Consulting University of Alabama at Birmingham

Long-Term Post Transplantation Care. Pathogenesis and Management of Long Term Cardiovascular and Metabolic Complications in Renal Transplantation

Sirolimus versus Calcineurin Inhibitor-based Immunosuppressive Therapy in Kidney Transplantation A 4-year Follow-up

Transcription:

Transplant International ISSN 0934-0874 ORIGINAL ARTICLE Follow-up after renal transplantation with organs from donors after cardiac death Jeremy Chapman, 1 Andreas Bock, 2 Bertrand Dussol, 3 Lutz Fritsche, 4 Volker Kliem, 5 Yvon Lebranchu, 6 Federico Oppenheimer, 7 Erich Pohanka, 8 Maurizio Salvadori 9 and Gunnar Tufveson 10 1 Renal Unit, Westmead Hospital, Westmead, NSW, Australia 2 Kantonsspital, Nephrology Division, Aarau, Switzerland 3 Hôpital de la Conception, Marseille, France 4 Nephrologische Klinik, Charité Mitte, Berlin, Germany 5 Nephrologisches Zentrum Niedersachsen, Hann. Münden, Germany 6 CHU Tours, Hopital Bretonneau, Tours, France 7 Hopital Clinic de Barcelona, Unitat de Transplantament Renal, Barcelona, Spain 8 AKH, Universitaetsklinik für Innere Medizin, Klinische Abteilung für Nephrologie und Dialyse, Wien, Austria 9 Renal Unit, Careggi University Hospital, Florence, Tuscany, Italy 10 Department of Transplantation, Uppsala University Hospital, Uppsala, Sweden Keywords cyclosporine, donor after cardiac death, immunosuppression, kidney transplant, renal function. Correspondence Jeremy Chapman, MD, Renal Unit, Westmead Hospital, Westmead, NSW 2145, Australia. Tel.: +61 2 9845 6349; fax: +61 2 9845 8300; e-mail: jeremy_chapman@wsahs.nsw. gov.au Received: 15 February 2006 Revision requested: 4 March 2006 Accepted: 17 April 2006 doi:10.1111/j.1432-2277.2006.00337.x Summary Kidneys obtained from donors after cardiac death (DCD) are known to have higher rates of primary nonfunction and delayed graft function (DGF) than heart beating cadaveric donor (CAD) kidneys, but little is known about long-term function of DCD grafts that survive to 1 year. To investigate the outcomes of renal transplant recipients whose DCD graft functioned for at least 1 year, this study analyzed data collected from 326 DCD graft recipients and 340 CAD-matched controls enrolled in a prospective, multinational, observational study Neoral Ò - MOST (Multinational Observational Study in Transplantation) (Novartis, Basel, Switzerland). No differences were found in the demographics or immunosuppression between the two groups. All patients received a Neoral Ò -based immunosuppressive regimen. Donors after cardiac death graft recipients had a higher incidence of DGF (40% vs. 27% CAD; P < 0.001). One year glomerular filtration rate (GFR) and GFR-decline after 1 year were similar in DCD and CAD recipients (GFR 56 ml/min DCD vs. 59 ml/min CAD; GFR-decline )1.3 ml/min DCD vs. )1.4 ml/min CAD; P ¼ not significant). Multifactorial analyses confirmed that GFR at 1 year was significantly influenced by donor age and gender, DGF, and acute rejection; however, DCD status was not an independent risk factor in cyclosporine-treated patients with grafts that had functioned for at least 1 year. Introduction The escalating disparity between demand for and supply of kidneys for transplantation has necessitated expanding the range of donors through utilization of organs from nonheart beating donors, also called donors after cardiac death (DCD). Although DCD could increase the availability of donor kidneys by up to 30% [1], their use is limited by legal, ethical and logistical difficulties in organ retrieval, as well as concerns about poor long-term graft outcome. Warm ischemia is an almost inevitable consequence of DCD kidney retrieval and is known to be associated with higher rates of primary nonfunction and delayed graft function (DGF). The link between DGF and reduced short-term graft survival [2,3] has generated concern about the long-term outcome of patients transplanted with DCD kidneys. Journal compilation ª 2006 European Society for Organ Transplantation 19 (2006) 715 719 715

Renal transplantation from DCD organs Chapman et al. Prediction of long-term renal graft outcome from DCD comes mainly from single-center studies using small numbers of patients with limited follow-up [4,5]. The aim of the present study was to examine outcomes in a larger cohort of renal transplant recipients whose DCD graft functioned for at least 1 year post-transplantation, and to investigate the effect of demographic and transplant-related risk factors on graft function. Materials and methods Study design Neoral Ò -MOST (Multinational Observational Study in Transplantation) is an international, prospective, observational study that was established to investigate the use and impact of different immunosuppressive regimens based on Neoral Ò (cyclosporine A microemulsion, Novartis Pharma AG, Basel, Switzerland) on clinical outcomes after solid organ transplantation. The renal section of the study involved 155 centers in 38 countries located in Europe, Asia-Pacific, Latin-America, Canada, and Australia. To qualify for enrolment, participants needed to have received a cyclosporine-based immunosuppressive regimen at transplantation (Neoral Ò ) with no investigational drugs at enrolment and throughout follow-up. All participants gave informed consent. This study received appropriate Ethics Committee approval in accordance with the Declaration of Helsinki. A range of prospective data were collected from de novo patients at routine clinic visits; there were up to four assessments within 12 months post-transplantation and then one or two assessments per year over a follow-up period lasting 2 5 years within the study. Data collected at each visit included details of any medical condition, vital signs, serum creatinine, and details of the patient s immunosuppressive regimen and post-transplant complications. For patients who were enrolled in their maintenance period, prospective data collection was complemented with retrospective key data at transplantation and at 1 year post-transplantation. Controls The selection of matched controls was based on the date of transplantation of each DCD kidney. The recipient of a heart beating cadaveric donor (CAD) kidney transplanted at the same center either immediately before or after the DCD transplant was used as a control. Analysis The analysis focused on long-term function of DCD kidneys once they had survived for 1 year and, thus, enrolled patients, with prospectively collected data, who had DCD renal grafts functioning for at least 1 year post-transplantation. Statistical method Glomerular filtration rate at 1 year post-transplantation was estimated using calculated creatinine clearance (via Cockcroft-Gault [6]) normalized to body surface area. Analysis of covariance (ancova) was used to assess the relevance of different factors for GFR at 1 year. Multifactorial analyses included only patients for whom all parameters used in the model were available. Results A total of 666 patients were enrolled into the study, 326 recipients of DCD grafts and 340 matched CAD controls. Of these, 377 patients (184 DCD and 193 CAD) provided sufficient data for analysis. Patient demographic and background details were comparable between the two groups see Table 1. Regarding causes of donor death, there was a difference in causes classified as other or unknown ; however, no further detailed information was available from the data collected in MOST. Recipients of DCD grafts were of a similar age to their CAD counterparts, DCD graft donors were slightly younger (median of 36 years vs. 38 years for CAD donors; P ¼ not significant), and both recipient groups received similar immunosuppressive therapy, both initially and at 1 year. The only significant difference was the expected higher incidence of DGF experienced in the DCD graft recipients (40% vs. 27% for CAD group; P < 0.001). Graft survival at 1 year was, by definition 100%, with approximately 3% graft loss in each group by 5 years. There was no statistically significant difference between the GFR values in the two groups at 1 year (56 ml/min for DCD recipients vs. 59 ml/min for CAD recipients). Furthermore, both groups showed a similar decline in renal function after 1 year ()1.3 ml/min for DCD recipients vs. )1.4 ml/min CAD recipients; P ¼ not significant) (Fig. 1). Multifactorial analyses on DCD and matched CAD controls confirmed that DCD (i.e. nonheart beating donor) graft status had no independent effect on GFR at 1 year; however, donor gender, DGF and acute rejection were significant predictors of 1 year GFR (Table 2). Donor age was also a significant predictor of GFR at year 1(P < 0.001). Amongst DCD graft recipients, the key factors influencing calculated GFR were donor age (P < 0.001), and DGF (Table 3). Post-transplantation GFR is affected by a multitude of factors, not all of which can be captured in this setting; so, the limited model fit obtained was not unexpected. 716 Journal compilation ª 2006 European Society for Organ Transplantation 19 (2006) 715 719

Chapman et al. Renal transplantation from DCD organs Table 1. Study participants: demographic and background details (n ¼ 666). Median (interquartile range) or % DCD-graft recipients (n ¼ 326) CAD-graft recipients (n ¼ 340) Recipient age (range), years 44 (33 51) 44 (34 54) NS Donor age (range), years 36 (22 46) 38 (23 51) NS Donor gender Female 29% 33% NS Male 71% 67% Cause of donor death Head trauma 28% 45% NS Stroke/cerebrovascualr accident 12% 25% NS Cerebral anoxia 6% 4% 0.002 Other 32% 9% Unknown 22% 17% Warm ischemia time (range), hours 30 (0 77) 20 (0 90) Cold ischemia time (range), hours 18 (11 23) 19 (15 24) NS Period of transplantation 1995 86 (26%) 87 (25%) 1996 1999 137 (42%) 142 (42%) 2000 103 (32%) 111 (33%) Delayed graft function (DGF) 40% 27% <0.001 Acute rejection within year 1 31% 26% NS Immunosuppressive regimen at year 1 Dual therapy 23% 23% Triple therapy (MMF) 34% 32% Triple therapy (Aza) 35% 38% Other 8% 7% CAD, cadaveric (heart-beating) donor; DCD, donors after cardiac death (nonheart beating); NS, not statistically significant; MMF, mycophenolate mofetil (Hoffman La Roche; Basel, Switzerland). GFR (ml/min/1.73 m 2 ) Patient numbers 90 80 70 60 50 40 30 20 10 0 CAD DCD * * * CAD graft recipients DCD graft recipients * P = not significant * * 1 2 3 4 5 Time post-transplantation (years) 220 223 99 89 82 79 62 76 50 49 Figure 1 Renal function (GFR) in recipients of grafts from donors after cardiac death (DCD) versus cadaveric donors (CAD) at 1 year post-transplantation. Recipients of grafts from DCD and the heart beating CAD control group showed a similar decline in GFR after 1 year ()1.3 ml/min for DCD group versus )1.4 ml/min CAD group; P ¼ not significant [NS]). Discussion This multicenter, matched-pair analysis of 377 renal transplants found that DCD status did not affect longterm renal outcome in functioning grafts, and DCD grafts that survived to 1 year post-transplantation (on a cyclosporine microemulsion-based regimen) maintained similar renal function to that of CAD control grafts. This is consistent with data from other studies [5,7,8] and lends further support to the routine transplantation of kidneys from DCD [9,10]. The rate of DGF was significantly higher among DCD graft recipients, concurring with previous reports [9, 11]; however, donor status did not independently affect graft function at 1 year in the surviving grafts. Although the detrimental effect of DGF on renal allograft survival has often been cited as the basis of clinical reluctance to use DCD kidneys, studies have yielded conflicting results and the issue remains controversial. A report by Shoskes [12] concluded DGF was an important independent predictor of poor graft survival in cadaveric renal transplantation: in the absence of early rejection, DGF reduced extrapolated Journal compilation ª 2006 European Society for Organ Transplantation 19 (2006) 715 719 717

Renal transplantation from DCD organs Chapman et al. Table 2. Multifactorial analysis of factors influencing normalized glomerular filtration rate (GFR) at year 1 in recipients of renal grafts from DCD and matched heart beating CAD controls with donor age as a covariate (only patients with complete information are included; n ¼ 377). Risk factor (a) DCD renal graft 0.113 DGF 0.002 Cytomegalovirus infection within year 1 0.719 Acute rejection within year 1 <0.001 Donor gender 0.051 R 2 ¼ 0.198 (moderate fit) Significant risk factors Adjusted mean (95% CIs) (b) DGF Present 52.6 (49.8 55.4) 0.002 Absent 57.7 (55.0 60.4) Acute rejection within year 1 Present 52.3 (49.2 55.3) 0.001 Absent 58.0 (55.7 60.4) Donor gender Male 56.8 (54.5 59.0) 0.051 Female 53.5 (50.5 56.6) CI, confidence intervals. Table 3. Multifactorial analysis of factors influencing normalized GFR at year 1 in recipients of renal grafts from DCD with donor age a covariate (only patients with complete information are included; n ¼ 184). Risk factor Adjusted mean (95% CIs) [for significant risk factors only] DGF 0.008 Present 52.3 (48.7 55.9) Absent 58.4 (54.5, 62.3) CMV infection within year 1 0.966 Acute rejection within year 1 0.589 Donor gender 0.385 R 2 ¼ 0.133 (moderate fit) CI, confidence intervals. graft half-life from 12.9 to 8.0 years and decreased 1 year graft survival from 91% to 75%. Conversely, a recent study by Brook et al. [8] found that high rates of DGF associated with DCD renal allografts did not lead to poor graft survival when compared with grafts with DGF from heart beating donors (graft survival at 3 years: 84% DCD vs. 73% heart beating donors; P < 0.05). Kidneys injured by prolonged ischemia and DGF, such as those from DCD, experience higher rates of graft loss and acute rejection [13]. Although the rate of acute rejection recorded in this study was higher in DCD graft recipients (31% DCD vs. 26% CAD), the difference was not statistically significant. Donor age was a significant predictor of GFR at 1 year. Previous studies have shown that increased donor age adversely influences renal allograft function [14,15]. Kidneys from CADs aged >50 years [14] and from DCD donors aged >55 years [15] have significantly reduced long-term graft survival. This is presumed to be due to a decrease in the number of functional nephrons secondary to glomerulosclerosis, resulting in impaired functional reserve. The influence of immunosuppressive therapy on outcome in DCD kidney grafts has also been investigated. Delayed introduction and/or dose reduction of nephrotoxic immunosuppression in the early postoperative period have been used to decrease additional injury to DCD renal grafts that may already be damaged from prolonged warm ischemia time [5,8]. In summary, the findings from this Neoral Ò -MOST study corroborate and enhance data from previous studies supporting the use of DCD kidney transplants despite the acknowledged worse short-term outcomes. DCD graft status had no independent effect on GFR at 1 year posttransplantation in surviving grafts. Renal function in DCD grafts that survived to 1 year post-transplant was comparable with that from CAD grafts over the next 4 years, implying that long-term graft survival will also be comparable. Acknowledgements These data have been collected by 155 renal transplantation centers participating in the Neoral Ò -MOST renal study. The statistical analyses were performed by Oxford Pharmaceutical Sciences, Oxford, UK. This study was funded by Novartis Pharma AG. References 1. Sanchez-Fructuoso AI, Prats D, Torrente J. Renal transplantation from non-heart beating donors: a promising alternative to enlarge the donor pool. J Am Soc Nephrol 2000; 11: 350. 2. Ojo AO, Wolfe RA, Held PJ, Port FK, Schmoulder RL. Delayed graft function: risk factors and implications for renal allograft survival. Transplantation 1997; 63: 968. 3. Shoskes Da, Cecka JM. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 1998; 66: 1697. 4. Newstead CG, Willis W, Talbot D, et al. for the British Transplant Society. Guidelines relating to solid organ 718 Journal compilation ª 2006 European Society for Organ Transplantation 19 (2006) 715 719

Chapman et al. Renal transplantation from DCD organs transplants from non-heart beating donors [WWW document]. URL http://www.bts.org.uk [accessed on 4 December 2004]. 5. Weber M, Dindo D, Demartines N, Ambuhl PM, Clavein PA. Kidney transplantation from donors without a heartbeat. N Engl J Med 2002; 347: 348. 6. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31. 7. Wijnen RM, Booster MH, Stubenitsky BM, De Boer J, Heineman E, Kootstra G. Outcome of transplantation of non-heart-beating donor kidneys. Lancet 1995; 345: 1067. 8. Brook NR, White SA, Waller JR, Veitch PS, Nicholson ML. Non-heart beating donor kidneys with delayed graft function have superior graft survival compared with conventional heart-beating donor kidneys that develop delayed graft function. Am J Transplant 2003; 3: 614. 9. Koffman G, Gambaro G. Renal transplantation from nonheart-beating donors: a review of the European experience. J Nephrol 2003; 16: 334. 10. Keizer KM, de Fijter JW, Haase-Kromwijk BJ, Weimar W. Non-heart-beating donor kidneys in the Netherlands: allocation and outcome of transplantation. Transplantation 2005; 79: 1195. 11. Sanchez-Fructuoso A, Prats Sanchez D, Marques Vidas M, Lopez De Novales E, Barrientos Guzman A. Non-heart beating donors. Nephrol Dial Transplant 2004; 19(Suppl. 3): iii26. 12. Shoskes DA, Cecka JM. Deleterious effects of delayed graft function in cadaveric renal transplant recipients independent of acute rejection. Transplantation 1998; 66: 1697. 13. Shoskes DA, Halloran PF. Ischaemic injury induces altered MHC gene expression in kidney by an interferon-gamma dependent pathway. Transplant Proc 1991; 27: 599. 14. Vianello A, Mastrosimone S, Calconi G, et al. Influence of donor on cadaver kidney graft function and survival: univariate and multivariate analysis. Nephron 1993; 65: 541. 15. Hattori R, Ono Y, Yoshkimura N, et al. Long-term outcome of kidney transplant using non-heart beating donor: multicenter analysis of factors affecting graft survival. Clin Transplant 2003; 17: 518. Journal compilation ª 2006 European Society for Organ Transplantation 19 (2006) 715 719 719