Endosomal Proteolysis of the Ebola Virus Glycoprotein Is Necessary for Infection

Similar documents
Distinct Mechanisms of Entry by Envelope Glycoproteins of Marburg and Ebola (Zaire) Viruses

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

A Forward Genetic Strategy Reveals Destabilizing Mutations in the Ebolavirus Glycoprotein That Alter Its Protease Dependence during Cell Entry

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors

Identification of Mutation(s) in. Associated with Neutralization Resistance. Miah Blomquist

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

Virus Entry/Uncoating

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

Overview: Chapter 19 Viruses: A Borrowed Life

Host Cell Cathepsins Potentiate Moloney Murine Leukemia Virus Infection

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP

number Done by Corrected by Doctor Ashraf

Endosomal Proteolysis by Cathepsins Is Necessary for Murine Coronavirus Mouse Hepatitis Virus Type 2 Spike-Mediated Entry

Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, Padua, Italy

Attachment and Entry. Lecture 5 Biology W3310/4310 Virology Spring Who hath deceived thee so o-en as thyself? --BENJAMIN FRANKLIN

Downloaded by on April 28, Publication Date: April 24, 1984 doi: /bk

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia

MEEGID XII. Ebola viruses: from the wild to humans

Viral Capsids and Envelopes: Structure and Function

University of Groningen. Computational studies of influenza hemagglutinin Boonstra, Sander

The Ebola virus journey into the host cell Marceline Côté, Ph.D. Abstract Introduction

Lecture 2: Virology. I. Background

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Proteasomes. When Death Comes a Knock n. Warren Gallagher Chem412, Spring 2001

HIV INFECTION: An Overview

Emerging Viruses. Part IIb Follow Up from Part I Vaccines and Inhibitors

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Characterization of Influenza Hemagglutinin Mutants for the Elucidation of Key Residues Effect on Activation

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

Chapter 6- An Introduction to Viruses*

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Part I What Is a Virus?

7.013 Spring 2005 Problem Set 7

The humoral immune responses to IBV proteins.

Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity

PREDICTING SUSCEPTIBILITY AND RESISTANCE FOR HEPATITIS B VIRUS CAPSID ASSEMBLY EFFECTORS

Viral structure م.م رنا مشعل

Replication Defective Enterovirus Infections: Implications for Type I Diabetes

Human Immunodeficiency Virus

HUMAN IMMUNODEFICIENCY VIRUS

Julianne Edwards. Retroviruses. Spring 2010

Translation. Host Cell Shutoff 1) Initiation of eukaryotic translation involves many initiation factors

Overview of virus life cycle

1. Virus 2. Capsid 3. Envelope

Lecture 2 Evolution in action: the HIV virus

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Entry of Ebola Virus is an Asynchronous Process

SUPPLEMENTARY INFORMATION

HIV & AIDS: Overview

Plasmid-Driven Formation of Influenza Virus-Like Particles

Chapter 14 Part One Biotechnology and Industry: Microbes at Work

7.012 Quiz 3 Answers

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

IN VIVO STUDIES ON VIRAL VIRULENCE

Negative Strand RNA Virus Downloaded from by on 05/03/18. For personal use only. Negative Strand.

Incorporation of Fowl Plague Virus Hemagglutinin into Murine Leukemia Virus Particles and Analysis of the Infectivity of the Pseudotyped Retroviruses

MINIREVIEW. Recovery of Negative-Strand RNA Viruses from Plasmid DNAs: A Positive Approach Revitalizes a Negative Field

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

The chemical fate of biological pollutants in treatment processes

Temperature-Sensitive Mutants Isolated from Hamster and

Lipid raft-a gateway for passing through the cell membrane for pathogens

Antiviral Drugs Lecture 5

MedChem 401~ Retroviridae. Retroviridae

numbe r Done by Corrected by Doctor

Antiviral Chemotherapy

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

PROCEDURE Follow the instructions as you proceed through the Click and Learn, and answer the questions in the spaces provided.

Viruses. Rotavirus (causes stomach flu) HIV virus

Gamma-interferon-inducible, lysosome/endosome-localized thiolreductase, GILT, has anti-retroviral activity and its expression is counteracted by HIV-1

Advances in gene encoding proteins of human herpesvirus 6

HIV Anti-HIV Neutralizing Antibodies

Inhibition of HIV-1 Integration in Ex Vivo-Infected CD4 T Cells from Elite Controllers

Dr. Ahmed K. Ali. Outcomes of the virus infection for the host

Viral reproductive cycle

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes.

This training module is required for all personnel listed on an IBC protocol that describes work utilizing viral vectors (both replication competent

Chapter 19: The Genetics of Viruses and Bacteria

Coronaviruses cause acute, mild upper respiratory infection (common cold).

Human Genome Complexity, Viruses & Genetic Variability

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

HIV: RECEPTORS AND CO-RECEPTORS

Salivary mucinmuc5b inhibits HIV-1 subtype C in an in vitro pseudoviral assay

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase.

2.1 VIRUSES. 2.1 Learning Goals

Structure of viruses

Cristina Cassetti, Ph.D.

III. What are the requirements for taking and passing this course?

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

Cathepsin B & L Are Not Required for Ebola Virus Replication

Ebola virus crisis. Prof. Viktor Volchkov. Molecular basis of viral pathogenicity

D. J. Dargan,* C. B. Gait and J. H. Subak-Sharpe

Immunodeficiency. (2 of 2)

Microbiology 507. Immune Response to Pathogens. Topics in Molecular Pathogenesis and Immunology. Zakaria Hmama, PhD UBC - Department of Medicine

Studies of Entry, Reverse Transcription, and Regulation of Splicing in Retroviruses

Virus Entry. Steps in virus entry. Penetration through cellular membranes. Intracellular transport John Wiley & Sons, Inc. All rights reserved.

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm.

Transcription:

Endosomal Proteolysis of the Ebola Virus Glycoprotein Is Necessary for Infection Kartik Chandran, 1 Nancy J. Sullivan, 2 Ute Felbor, 3 Sean P. Whelan, 4 James M. Cunningham 1,4 * 1 Department of Medicine, Brigham and Women s Hospital and Harvard Medical School, Boston, MA 02115, USA. 2 Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. 3 Institute of Human Genetics, Biozentrum, Am Hubland, D-97074 Würzburg, Germany. 4 Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA. *To whom correspondence should be addressed. E-mail: jcunningham@rics.bwh.harvard.edu Ebola virus (EboV) causes rapidly fatal hemorrhagic fever in humans, and there is currently no effective treatment. We found that infection of Vero cells by vesicular stomatitis viruses bearing the EboV glycoprotein (GP) requires the activity of endosomal cysteine proteases. Using selective protease inhibitors and protease-deficient cell lines, we identified an essential role for cathepsin B (CatB), and an accessory role for cathepsin L (CatL) in EboV GP-dependent entry. Biochemical studies demonstrate that CatB and CatL mediate entry by carrying out proteolysis of the EboV glycoprotein subunit GP1 and support a multistep mechanism that explains the relative contributions of these enzymes to infection. CatB and CatB/CatL inhibitors diminish multiplication of infectious EboV-Zaire in cultured cells and may merit investigation as anti-ebov drugs. EboV is a member of the Filoviridae family of enveloped viruses with nonsegmented negative-sense RNA genomes (1). EboV infection is initiated by fusion between viral and host cell membranes, which is mediated by the viral membrane glycoprotein, GP (2, 3). Mature GP is a trimer of three disulfide-linked GP1-GP2 heterodimers generated by proteolytic cleavage of the GP0 precursor polypeptide during virus assembly (4 6). The membrane-distal subunit, GP1, mediates viral adhesion to host cells and is proposed to regulate the transmembrane subunit GP2, which carries out membrane fusion (7 9). The processing and function of EboV GP are analogous to those of other type I envelope glycoproteins, such as human immunodeficiency virus (HIV) Env and influenza virus HA (4, 7, 10 12). Based on current models of infection by these viruses (11), a specific signal within susceptible cells, such as receptor binding or exposure to acid ph, triggers the destabilization of inter-subunit contacts, conformational rearrangement of the transmembrane subunits, and membrane fusion. The triggering signal for the EboV GP1-GP2 trimer is unknown. Specifically, an essential EboV receptor analogous to CD4/CCR5 for HIV Env has not been identified (13). EboV infection is blocked by inhibitors of endosomal acidification (2, 3), indicating that this virus uses an aciddependent pathway to enter cells. However, acid ph does not induce GP-dependent cell membrane fusion (8), as might be expected from studies of acid ph-triggered influenza virus and retroviruses (14, 15). These findings suggested the possibility that a critical host factor for EboV entry is dependent upon acid ph. The nonenveloped mammalian reoviruses provide such a precedent: they require the activity of acid-dependent endosomal proteases to enter cells (16 18). To test the possibility that acid-dependent endosomal proteases are also host factors for EboV GP-dependent entry, we assessed the capacity of broad-spectrum protease inhibitors to block infection by vesicular stomatitis virus (VSV) particles pseudotyped with EboV GP (VSV-GP). The cysteine protease inhibitor E-64d specifically reduced VSV- GP infection in Vero African green monkey kidney epithelial cells by >99.9% (fig. S1). A similar profile of inhibition was observed with more highly infectious VSV particles containing a form of EboV GP that lacks the mucinlike/variable domain in GP1 (VSV-GP Muc) (19). These findings indicate that one or more cysteine protease in Vero cells is required for EboV GP-dependent entry. Cathepsin B (CatB) and cathepsin L (CatL) are E-64dsensitive cysteine proteases that are present in endosomes and lysosomes and active at acid ph in the broad range of mammalian cells susceptible to EboV infection (2, 20, 21). To examine the roles of these enzymes, we studied the effect of a selective CatB inhibitor [CA074 (22)] and a CatL/CatB inhibitor [FYdmk (23)] on VSV-GP Muc infection of Vero cells. Infection was inhibited in a manner that correlated closely with inactivation of CatB but not CatL (Fig. 1, A and B). We next measured VSV-GP Muc infectivity in murine embryo fibroblasts (MEFs) derived from wild-type and CatBdeficient (CatB / CatL +/+ ) mice (24, 25) (Fig. 1C). We observed a >90% reduction in EboV GP Muc-dependent infection of CatB / CatL +/+ MEFs, but no reduction in VSV G-dependent infection (26). VSV-GP Muc infection was / www.sciencexpress.org / 14 April 2005 / Page 1 / 10.1126/science.1110656

enhanced by expression of CatB but not CatL. Together, these results indicate that CatB is an essential host factor for EboV GP-dependent entry. Inactivation of both CatB and CatL with high concentrations of FYdmk (Fig. 1B) or with a combination of CA074 and FYdmk (fig. S5) inhibited VSV-GP Muc infection more effectively than inactivation of CatB alone with CA074 (Fig. 1A and table S1), suggesting a role for CatL in entry. To investigate this possibility, we measured VSV-GP Muc infectivity in MEFs derived from CatB/CatLdeficient (CatB / CatL / ) mice (27) (Fig. 1D). We observed a >99% reduction in EboV GP Muc-dependent infection of CatB / CatL / MEFs, but no reduction in VSV G-dependent infection (26). VSV-GP Muc infection was enhanced by expression of CatB but not CatL, providing additional evidence for the essential role of CatB. Although CatL is neither necessary nor sufficient for entry, we observed a synergistic increase in infection upon coexpression of CatL with CatB, suggesting that CatL enhances infection by contributing to the CatB-dependent entry mechanism. To further investigate the roles of CatB and CatL in EboV GP-dependent entry, we examined the effect of the purified enzymes on VSV-GP Muc at ph 5.5 and 37 C (Fig. 2, A and B). Both enzymes cleaved the GP1 subunit to yield an ~18 kd N-terminal fragment (GP1 18K ); however, CatL mediated GP1 GP1 18K cleavage much more efficiently than CatB under these selected conditions. After complete GP1 GP1 18K cleavage by CatL, VSV particles remained fully infectious and dependent upon cellular CatB activity in Vero cells (Fig. 2C) and MEFs (26), indicating that GP1 GP1 18K cleavage is not the step in entry which specifically requires CatB. Based on these findings, we pursued the hypothesis that VSV particles containing GP1 18K are an intermediate in the CatB-dependent entry pathway. This hypothesis predicts that the GP1 18K -containing particles should bypass a block to infection of cells in which presumptive GP1 cleavage by cellular CatB and/or CatL is inhibited. Accordingly, we treated cells with inhibitor to reduce CatB activity to ~10% and CatL activity to ~0%, and then challenged with CatLtreated VSV particles containing increasing amounts of GP1 18K (Fig. 2D). Infection of these cells was enhanced in a GP1 18K -dependent manner, indicating that GP1 cleavage is an essential step in entry. In contrast, we observed little or no GP1 18K -dependent enhancement of infection in cells with ~100% CatL or ~100% CatB, indicating that the required intracellular cleavage of GP1 that is mimicked by in vitro GP1 GP1 18K cleavage is mediated by CatL and/or CatB. VSV particles containing GP1 18K remain dependent upon cellular CatB (Fig. 2, C and D), indicating the existence of a downstream CatB-dependent step. Purified CatB but not CatL efficiently digested CatL-derived GP1 18K to fragments not detected by immunoblot (Fig. 2E) and inactivated infectivity by >90% (Fig. 2F). While more work is needed to uncover the mechanistic details of this CatB-dependent step, our results are consistent with a simple model in which CatBmediated digestion of GP1 18K in vitro inactivates VSV particles by relieving GP1-dependent constraints on GP2 and inducing premature deployment of the fusion machinery. In this scheme, EboV GP1 digestion by cellular CatB and CatL is functionally equivalent to fusion-triggering signals for other viruses, such as binding of retroviruses to receptor (15) and exposure of influenza virus to acidic ph (14) (also see supporting online text). Taken together, our findings indicate that GP1 proteolysis by CatB and CatL during entry is a multistep process. We propose that this process is initiated by cleavages of GP1 by CatB and/or CatL to remove C-terminal sequences (figs. S3 and S4 and supporting online text) and generate an N- terminal GP1 18K -like species which is then digested by CatB to trigger membrane fusion and entry. Our data suggest that CatL contributes to infection, particularly when CatB activity is low, by virtue of its ability to mediate initial GP1 cleavages, but is insufficient for entry because further digestion of GP1 requires CatB. The C-terminal region of GP1 contains highly variable and heavily glycosylated sequences including the mucin-like/variable domain (6) that promote viral adhesion (9) and may shield viral particles from immune recognition, but may have to be removed first to allow further GP1 digestion. An analogous multistep strategy is utilized by HIV: CD4 receptor binding is required for Env to be triggered by the CCR5 coreceptor (11). Even more striking parallels exist between the enveloped Ebola virus and the nonenveloped mammalian reovirus: reovirus entry also requires stepwise proteolysis of viral surface proteins by endosomal cysteine proteases (16 18). Human fatalities from EboV infection range from 50 90%, and treatment is currently restricted to supportive care (1). Development of an antiviral therapy for EboV is therefore a high priority. To examine whether endosomal cysteine proteases are potential anti-ebov targets, we measured the effects of E-64d and CA074 on growth of the Zaire strain of Ebola virus. Vero cells were pretreated with these inhibitors and exposed to virus for 1 hour. Inhibitor and unbound virus were then removed and viral growth was monitored. The yields of infectious EboV progeny (Fig. 3A) and expression of cell-associated GP1 (Fig. 3B) were markedly reduced in inhibitor-treated cells, suggesting that EboV multiplication in Vero cells is sensitive to inhibitors of endosomal cysteine proteases in general, and of CatB in particular. Further investigation of the antiviral efficacy of such inhibitors may therefore be warranted. The wealth of existing knowledge regarding the design (21) and in vivo / www.sciencexpress.org / 14 April 2005 / Page 2 / 10.1126/science.1110656

pharmacology (28) of these inhibitors may facilitate development of an anti-ebov therapy. References and Notes 1. T. W. Geisbert, P. B. Jahrling, Nat. Med. 10, S110 (2004). 2. R. J. Wool-Lewis, P. Bates, J. Virol. 72, 3155 (1998). 3. A. Takada et al., Proc. Natl. Acad. Sci. U.S.A. 94, 14764 (1997). 4. V. E. Volchkov, Curr. Top. Microbiol. Immunol. 235, 35 (1999). 5. A. Sanchez et al., J. Virol. 72, 6442 (1998). 6. S. A. Jeffers, D. A. Sanders, A. Sanchez, J. Virol. 76, 12463 (2002). 7. W. Weissenhorn, A. Carfi, K. H. Lee, J. J. Skehel, D. C. Wiley, Mol. Cell 2, 605 (1998). 8. H. Ito, S. Watanabe, A. Sanchez, M. A. Whitt, Y. Kawaoka, J. Virol. 73, 8907 (1999). 9. G. Simmons et al., Virology 305, 115 (2003). 10. J. J. Skehel, D. C. Wiley, Annu. Rev. Biochem. 69, 531 (2000). 11. L. J. Earp, S. E. Delos, H. E. Park, J. M. White, Curr. Top. Microbiol. Immunol. 285, 25 (2005). 12. V. N. Malashkevich et al., Proc. Natl. Acad. Sci. U.S.A. 96, 2662 (1999). 13. G. Simmons et al., J. Virol. 77, 13433 (2003). 14. F. Boulay, R. W. Doms, I. Wilson, A. Helenius, EMBO J. 6, 2643 (1987). 15. W. Mothes, A. L. Boerger, S. Narayan, J. M. Cunningham, J. A. Young, Cell 103, 679 (2000). 16. D. H. Ebert, J. Deussing, C. Peters, T. S. Dermody, J. Biol. Chem. 277, 24609 (2002). 17. M. L. Nibert, Ph.D. thesis, Structure and function of reovirus outer capsid proteins as they relate to early steps in infection, Harvard University (1993) 18. K. Chandran, M. L. Nibert, Trends Microbiol. 11, 374 (2003). 19. Experiments in Figs. 1 and 2 were performed with VSV- GP Muc, and similar results with VSV-GP are reported in figs. S1 to S5. 20. B. Turk, V. Turk, D. Turk, Biol. Chem. 378, 141 (1997). 21. H. H. Otto, T. Schirmeister, Chem. Rev. 97, 133 (1997). 22. M. Murata et al., FEBS Lett. 280, 307 (1991). 23. E. Shaw, Methods Enzymol. 244, 649 (1994). 24. J. Deussing et al., Proc. Natl. Acad. Sci. U.S.A. 95, 4516 (1998). 25. Materials and methods are available as supporting material on Science Online. 26. K. Chandran, J.M. Cunningham, Data not shown. 27. U. Felbor et al., Proc. Natl. Acad. Sci. U.S.A. 99, 7883 (2002). 28. T. Zhang et al., Immunology 100, 13 (2000). 29. We thank J-Y. Yang, V. Spivak, and P. Popernack for technical support; C. Peters and AstraZeneca for knockout mice; T. S. Dermody and N. Fehrenbacher for protease plasmids and MEFs; and M. A. Agosto, S. C. Harrison, T. W. Geisbert, T. Ivanovic, P. B. Jahrling, J. Jané-Valbuena, M. Lazar, W. Mothes, G. J. Nabel, M. L. Nibert, T. Raz, and S. Viswanathan for helpful discussions. Supported by grants from the NIH (J.M.C. and N.J.S.), the Cystic Fibrosis Foundation (S.P.W), and departmental funds (S.P.W.). K.C. is supported by the New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research. U.F. is supported by an Emmy Noether grant from the Deutsche Forschungsgemeinschaft. Supporting Online Material www.sciencemag.org/cgi/content/full/1110656/dc1 Materials and Methods SOM Text Figs. S1 to S5 Table S1 References 3 February 2005; accepted 1 April 2005 Published online 14 April 2005; 10.1126/science.1110656 Include this information when citing this paper. Fig. 1. Endosomal cysteine proteases CatB and CatL are host factors for VSV-GP Muc infection. (A and B) (Top) Effect of CatB-selective inhibitor CA074 (A) and CatL/CatB inhibitor FYdmk (B) on infectivities of VSV-G and VSV- GP Muc in Vero cells. (Bottom) CatB (A) and CatL (B) enzymatic activities in CA074- and FYdmk-treated Vero cells. Infectivities (infectious units [iu]/ml) are relative to infectivity of the same virus in DMSO-treated Vero cells (set to 100%) (25). (C) Wild-type (WT) and CatB-deficient (CatB / CatL +/+ ) mouse embryo fibroblasts (MEFs) were not transfected (none), or transfected with plasmid DNAs encoding β-galactosidase (β-gal), CatB (CatB), or CatL (CatL). After 24 hours, cells were exposed to VSV-GP Muc (~1 iu/cell), and the percentage of infected cells was determined 24 hours later by flow cytometry (25). (D) Capacity of VSV-GP Muc to infect CatB/CatL-deficient (CatB / CatL / ) MEFs was determined as in (C). Infectivities from two replicates are shown in (A) and (B) and are representative of four independent experiments. Error bars, S.D from at least three replicates. Fig. 2. Endosomal cysteine proteases act directly on EboV GP Muc to mediate infection of Vero cells. (A and B) Purified CatB (A) and CatL (B) cleave GP Muc to an ~18 kd polypeptide (GP1 18K ). VSV-GP Muc was incubated with enzyme for 1 hour at ph 5.5 and 37 C. Mock-treated VSV particles containing GP1 (open arrowhead) and CatL-treated VSV particles containing GP1 18K (18K) (filled arrowhead) / www.sciencexpress.org / 14 April 2005 / Page 3 / 10.1126/science.1110656

were used in (C) and (D). (C) VSV particles containing GP1 18K are highly infectious and fully dependent upon cellular CatB activity. Cells were not treated (filled bars) or pretreated with E-64d (300 µm) (open bars) to inactivate CatB. Approximate CatB activity (B%) in these cells is indicated above the bars. (D) VSV particles containing GP1 18K bypass a block to GP1 cleavage within cells. Cells were treated with inhibitors to obtain the approximate levels of cellular CatB (B%) and CatL (L%) activity shown (also see Fig. 1 and table S1). Open bars, 300 µm E-64d. Filled black bars, 10 µm FYdmk. Filled grey bars, 40 µm CA074. Striped bars, 1 µm FYdmk. Cells were then infected with VSV- GP Muc containing GP1 only, GP1 18K only, or increasing amounts of GP1 18K (wedge) (generated by incubation with increasing concentrations of CatL for 1 hour at ph 5.5 and 37 C). (E) Purified CatB efficiently digests CatL-derived GP1 18K. VSV-GP Muc was incubated with the indicated enzymes for 1 hour at ph 5.5 and 37 C. CatB, 40 µg/ml. CatL, 20 µg/ml. CatB and CatL together (CatB + CatL). CatL followed by CatB (CatL CatB) (30 min each). (F) Digestion of CatL-derived GP1 18K by CatB inactivates VSV-GP Muc. Infectivities of VSV particles from (E). Averages of two replicates are shown in (C) and (D) and are representative of three independent experiments. Error bars, S.D from three replicates. M r, relative molecular weight in kd (K). Fig. 3. Endosomal cysteine protease inhibitors diminish EboV-Zaire multiplication in Vero cells. (A)Yields of infectious EboV-Zaire released from cells treated with DMSO (No drug), 300 µm E-64d (to inactivate endosomal cystein proteases), or 90 µm CA074 (to selectively inactivate CatB) for 4 hours.growth medium containing inhibitors was removed from cells at the indicated time (arrowhead) and replaced with fresh medium lacking inhibitors. pfu/ml, plaque-forming units per ml. Averages from two replicates are shown. (B) GP expression in EboV-infected cells from (A). β-actin was used as a loading control. / www.sciencexpress.org / 14 April 2005 / Page 4 / 10.1126/science.1110656