Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance

Similar documents
2011, Editrice Kurtis

Decreased stature in gestational diabetes mellitus

Associations among Body Mass Index, Insulin Resistance, and Pancreatic ß-Cell Function in Korean Patients with New- Onset Type 2 Diabetes

Effects of 12-week high-intensity interval training on plasma visfatin concentration and insulin resistance in overweight men

Clinical Correlates of Circulating Visfatin Levels in a Community-Based Sample

Lipid Profiles and Serum Visfatin Concentrations in Patients with Type II Diabetes in Comparison with Healthy Controls

Low adiponectin concentration during pregnancy predicts postpartum insulin resistance, beta cell dysfunction and fasting glycaemia

Assessment of insulin sensitivity and beta-cell function from measurements in the fasting state and during an oral glucose tolerance test

Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome

The relationship between carbohydrate intake and glucose tolerance in pregnant women

Gestational diabetes mellitus (GDM) is any glucose. The Postpartum Metabolic Outcome of Women with Previous Gestational Diabetes Mellitus

Obesity and Insulin Resistance According to Age in Newly Diagnosed Type 2 Diabetes Patients in Korea

SERUM VISFATIN LEVELS IN PATIENTS WITH SUBCLINICAL AND NEWLY DIAGNOSED TYPE 2 DIABETES MELLITUS

Adipokine Serum visfatin level in pregnancy induced hypertension and uncomplicated pregnancy

Aerobic Exercise Training-Induced Decrease in Plasma Visfatin and Insulin Resistance in Obese Female Adolescents

Vishwanath Pattan Endocrinology Wyoming Medical Center

ARTICLE. Caroline K. Kramer & Chang Ye & Anthony J. G. Hanley & Philip W. Connelly & Mathew Sermer & Bernard Zinman & Ravi Retnakaran

A novel role for vitamin D: modulation of expression and function of the local renin angiotensin system in mouse pancreatic islets

Association of acanthosis nigricans with race and metabolic disturbances in obese women

Adiponectin/leptin ratio and insulin resistance in pregnancy

Changes and clinical significance of serum vaspin levels in patients with type 2 diabetes

Gestational Diabetes Mellitus (GDM) and Diabetes in Pregnancy: Diagnostic Recommendations, NSLHD

Clinical Study 1-Hour OGTT Plasma Glucose as a Marker of Progressive Deterioration of Insulin Secretion and Action in Pregnant Women

Diabetes and Cardiovascular Risks in the Polycystic Ovary Syndrome

BPA exposure during pregnancy: risk for gestational diabetes and diabetes following pregnancy

Specific insulin and proinsulin in normal glucose tolerant first-degree relatives of NIDDM patients

Pregnancy complications and glucose intolerance in women with polycystic ovary syndrome

Association of serum adipose triglyceride lipase levels with obesity and diabetes

The association between maternal insulin resistance in mid-pregnancy and neonatal birthweight in uncomplicated pregnancies

METABOLIC SYNDROME IN REPRODUCTIVE FEMALES

Adipose tissue INSR splicing in humans associates with fasting insulin level and is regulated by weight loss

Elevated Serum Levels of Adropin in Patients with Type 2 Diabetes Mellitus and its Association with

Eight Years Incidence of Diabetes Mellitus in Gestational Diabetic Patients. Abeer Al Saweer, MD, CABFM* Sameera Al Sairafi, MD, CABFM*

3. Metformin therapy for PCOS

Diabetes: Definition Pathophysiology Treatment Goals. By Scott Magee, MD, FACE

Association between Unexplained Recurrent Miscarriage and Insulin Resistance -

General Outline. General Outline. Pathogenesis of Metabolic Dysfunction in Sleep Apnea: The Role of Sleep Fragmentation and Intermittent Hypoxemia

POLYCYSTIC OVARY SYNDROME (PCOS), characterized

Racial and ethnic disparities in diabetes risk after gestational diabetes mellitus

Supplementary Online Content

METABOLIC RISK MARKERS IN WOMEN WITH POLYCYSTIC OVARIAN MORPHOLOGY

Increased Serum Visfatin Levels in Patients with Type2 Diabetic Patients

Fetal and Infant Growth and Glucose Tolerance in the Hertfordshire Cohort Study

The enteroinsular axis in the pathogenesis of prediabetes and diabetes in humans

Plasma Visfatin Concentrations in Polycystic Ovary Syndrome: Relationships with Indices of Insulin Resistance and Hyperandrogenism

Diabetic Medicine. Myo-inositol may prevent gestational diabetes in PCOS women. Preliminary data.

Associations among Lifestyle Status, Serum Adiponectin Level and Insulin Resistance

Subsequent Pregnancy After Gestational Diabetes Mellitus. Frequency and risk factors for recurrence in Korean women

Fibroblast Growth Factor 21 (FGF21) in Human Cerebrospinal Fluid. Relationship With Plasma FGF21 and Body Adiposity

Estimates of Insulin Sensitivity Using Glucose and C-Peptide From the Hyperglycemia and Adverse Pregnancy Outcome Glucose Tolerance Test

Validation of a novel index to assess insulin resistance of adipose tissue lipolytic activity in. obese subjects

Glucagon secretion in relation to insulin sensitivity in healthy subjects

Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2

C-Reactive Protein Levels in Non-Obese Pregnant Women with Gestational Diabetes

LUP. Lund University Publications Institutional Repository of Lund University

Problems in PCOS pregnancy

Screening and Diagnosis of Diabetes Mellitus in Taiwan

Does metformin modify the effect on glycaemic control of aerobic exercise, resistance exercise or both?

Pregnancy outcomes in Korean women with diabetes

Insulin Secretion and Sensitivity during Oral Glucose Tolerance Test in Korean Lean Elderly Women

Correlation of TNF-a, TNFR1 and adiponectin levels with HOMA-IR in patients with gestational diabetes mellitus.

IDENTIFYING MOST INFLUENTIAL RISK FACTORS OF GESTATIONAL DIABETES MELLITUS USING DISCRIMINANT ANALYSIS

ORIGINAL ARTICLE. S Park 1, M-Y Kim 2, SH Baik 3, J-T Woo 4, YJ Kwon 1, JW Daily 1, Y-M Park 5, J-H Yang 2 and S-H Kim 6

The Role of Adipocytokines in Insulin Resistance in Normal Pregnancy: Visfatin Concentrations in Early Pregnancy Predict Insulin Sensitivity

MATERNAL GESTATIONAL DIABETES MELLITUS AND PLACENTAL LIPIDS

Energy Balance Equation

N Melchionda 1, G Forlani 1 *, G Marchesini 1, L Baraldi 1 and S Natale 1

A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP) Botnia study

Linköping University Post Print

GESTATIONAL DIABETES for GP Obstetric Shared Care Accreditation Seminar. Simon Kane March 2016

GLUCOSE TOLERANCE TEST: FOR THE DIAGNOSIS OF DIABETES MELLITUS

A high concentration of prorenin in early pregnancy is associated with development of pre-eclampsia in women with type 1 diabetes

Lessons from conducting research in an American Indian community: The Pima Indians of Arizona

Insulin Secretory Capacity and Insulin Resistance in Korean Type 2 Diabetes Mellitus Patients

Metabolic changes in menopausal transition

Maximizing the Role of WIC Nutritionists in Prevention of DM2 among High Risk Clients ESTHER G. SCHUSTER, MS,RD,CDE

Cut-Off Fasting Plasma Glucose Level To Determine Impaired Glucose Metabolism In Obesity

Research Article Risk of Type 2 Diabetes Mellitus following Gestational Diabetes Pregnancy in Women with Polycystic Ovary Syndrome

Study of the correlation between growth hormone deficiency and serum leptin, adiponectin, and visfatin levels in adults

Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population

Effect of Various Degrees of Maternal Hyperglycemia on Fetal Outcome

Is socioeconomic position related to the prevalence of metabolic syndrome? Influence of

ORIGINAL ARTICLE. Ying Zhang 1,2 *, Hao-hang Zhang 1,Jia-huiLu 1,Si-yuanzheng 1,TaoLong 1, Ying-tao Li 3,Wei-zhenWu 3, Fang Wang 3

COMPLICATIONS OF PRE-GESTATIONAL AND GESTATIONAL DIABETES IN SAUDI WOMEN: ANALYSIS FROM RIYADH MOTHER AND BABY COHORT STUDY (RAHMA)

Adiponectin, TG/HDL-cholesterol index and hs-crp. Predictors of insulin resistance.

Relationship Between Leg Length and Gestational Diabetes Mellitus in Chinese Pregnant Women

Table S2: Anthropometric, clinical, cardiovascular and appetite outcome changes over 8 weeks (baseline-week 8) by snack group

Comparison of Oral Glucose Insulin Sensitivity with Other Insulin Sensitivity Surrogates from Oral Glucose Tolerance Tests in Chinese

Continuous Glucose Monitoring in Women With Type 1 Diabetes in Pregnancy Trial

Relationship between insulin resistance, obesity and serum prostate-specific antigen levels in healthy men

Paul Hofman. Professor. Paediatrician Endocrinologist Liggins Institute, The University of Auckland, Starship Children Hospital, Auckland

PREVALENCE OF INSULIN RESISTANCE IN FIRST DEGREE RELATIVES OF TYPE-2 DIABETES MELLITUS PATIENTS: A PROSPECTIVE STUDY IN NORTH INDIAN POPULATION

Emerging Areas Relating Vitamin D to Health

Association between Raised Blood Pressure and Dysglycemia in Hong Kong Chinese

Polycystic ovary syndrome (PCOS) Polycystic ovary syndrome: Why are women at increased risk of type 2 diabetes? Article.

Early life influences on adult chronic

Evaluation of first trimester fasting blood glucose as a predictor of gestational diabetes mellitus

Insulin resistance might play an important

A CLINICAL STUDY OF GESTATIONAL DIABETES MELLITUS IN A TEACHING HOSPITAL IN KERALA Baiju Sam Jacob 1, Girija Devi K 2, V.

Gestational Diabetes in Rural Antenatal Clinics:

Transcription:

Diabetologia (2007) 50:1033 1037 DOI 10.1007/s00125-007-0610-7 SHORT COMMUNICATION Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance K. C. Lewandowski & N. Stojanovic & M. Press & S. M. Tuck & K. Szosland & M. Bienkiewicz & M. Vatish & A. Lewinski & G. M. Prelevic & H. S. Randeva Received: 23 November 2006 / Accepted: 20 December 2006 / Published online: 2 March 2007 # Springer-Verlag 2007 Abstract Aims/hypothesis Concentrations of visfatin are increased in insulin-resistant conditions, but the relationship between visfatin and insulin and/or insulin resistance indices in pregnancy remains unclear. Insulin resistance in pregnancy is further accentuated in women with gestational diabetes mellitus (GDM). Thus we assessed serum levels of visfatin Electronic supplementary material The online version of this article (doi:10.1007/s00125-007-0610-7) contains supplementary material, which is available to authorised users. G. M. Prelevic and H. S. Randeva are both senior authors. K. C. Lewandowski : K. Szosland : A. Lewinski Department of Endocrinology and Metabolic Diseases, The Medical University of Lodz and Polish Mother s Memorial Research Institute, Lodz, Poland N. Stojanovic Department of Diabetes, Oldchurch Hospital, Essex, UK M. Bienkiewicz Department of Quality Control and Radiation Protection, The Medical University of Lodz, Lodz, Poland M. Press : G. M. Prelevic Department of Endocrinology, Royal Free Hospital, London, UK K. C. Lewandowski : M. Vatish : H. S. Randeva (*) Molecular Medicine Group, Department of Biological Sciences, The University of Warwick, Coventry CV4 7AL, UK e-mail: hrandeva@bio.warwick.ac.uk S. M. Tuck Department of Obstetrics, Royal Free Hospital, London, UK in pregnant women with varying degrees of glucose tolerance. Materials and methods Fasting visfatin levels were measured at 28 weeks of gestation in 51 women divided according to their response to a 50-g glucose challenge test (GCT) and a 75-g OGTT: control subjects (n=20) had normal responses to both a GCT and an OGTT; the intermediate group (IG; n=15) had a false-positive GCT, but a normal OGTT; the GDM group (n=16) had abnormal GCTs and OGTTs. Results There were no age or BMI differences between analysed groups. Across the subgroups there was a progressive increase in glucose and insulin at 120 min of the OGTT (p<0.01). This was accompanied by an increase in visfatin, from 76.8±14.1 ng/ml in the control subjects, to 84.0±14.7 ng/ml in the IG group and 93.1±12.3 ng/ml in the GDM group (p<0.01 for GDM vs control subjects). There was a positive correlation between visfatin and fasting insulin (r=0.38, p=0.007) and insulin at 120 min of the OGTT (r=0.39, p=0.006). Conclusions/interpretation An increase in fasting visfatin, the levels of which correlate with both fasting and postglucose-load insulin concentrations, accompanies worsening glucose tolerance in the third trimester of pregnancy. However, the significance of these findings, and in particular the role of visfatin in the regulation of insulin sensitivity during pregnancy, remains to be elucidated. Keywords Gestational diabetes mellitus. Glucose tolerance. Insulin resistance. Visfatin Abbreviations GCT glucose challenge test GDM gestational diabetes mellitus

1034 Diabetologia (2007) 50:1033 1037 HOMA IG IR IRI Introduction homeostasis model assessment intermediate group insulin resistance insulin resistance index Visfatin, a 52 kda cytokine, also known as pre-beta cell colony enhancing factor, is highly expressed in visceral fat, and exerts insulin-mimicking effects through activation of an insulin receptor, although in a manner distinct from that of insulin [1]. The role of visfatin in human physiology and pathophysiology remains to be elucidated, while, according to some authors, plasma concentrations of visfatin are elevated in obesity [2] and type 2 diabetes [3], which are states characterised by insulin resistance (IR) and typically also observed in gestational diabetes mellitus (GDM). There are also, however, data pointing to possible lower visfatin levels in obese subjects [4], and to visfatin s role in NAD biosynthesis [5]. Therefore, we hypothesised that concentrations of visfatin may be altered in GDM, possibly as a result of increased IR, typical for GDM. Hence we examined serum concentrations of visfatin in women with various degrees of glucose intolerance in pregnancy. Subjects and methods In our practice, all women at 28 weeks of gestation are screened for GDM and are evaluated with a 50-g glucose challenge test (GCT). Women with plasma glucose <7.8 mmol/l at 1 h after the GCT are regarded as normal and subjected to routine antenatal care. Women with plasma glucose 7.8 mmol/l after the GCT are subjected to a 75-g OGTT (for details of subjects and methods see the Electronic Supplementary Material [ESM]). GDM is diagnosed according to WHO criteria [6]. A cohort of 51 matched pregnant women was included in the present study and was taking no medication. Women were divided into three groups: matched control subjects (n=20, age 32± 4.0 years, BMI 26±4.0 kg/m 2 [mean±sd]) had normal responses to both a GCT and an OGTT; an intermediate group (IG) (n=15, age 33±4.0 years, BMI 27±4.2 kg/m 2 ) had a false-positive GCT, but normal OGTT; while the GDM group (n=16, age 33±3.9 years, BMI 28±4.1 kg/m 2 ) had both abnormal GCTs and OGTTs (see ESM). Our Ethics Committee approved our study, and having obtained informed consent we measured serum levels of fasting visfatin as well as glucose and insulin during the OGTT, with samples taken onto ice immediately, centrifuged and stored at 80 C. Serum visfatin was measured by an ELISA kit (Phoenix Pharmaceuticals, Burlingame, CA, USA; CV <6%). Insulin was measured by ELISA (DakoCytomation Ltd, Ely, Cambs, UK). IR was assessed by homeostasis model assessment (HOMA) [7] (where HOMA=[fasting insulin (pmol/l)] [fasting glucose (mmol/l)]/22.5, i.e. with insulin expressed in SI units (pmol/l instead of mu/ml) and the insulin resistance index (IRI) [8] (see ESM). Statistical analysis The data were analysed by means of simple descriptive statistics and non-parametric tests of significance: the Mann Whitney U test for comparison of distributions in two independent groups and the Kruskal Wallis in the case of more than two groups (see ESM). In all analyses, statistical significance was considered achieved at a value of p 0.05. All the calculations were derived by means of Statistica v6.0 software. Results Results of the study are summarised in Table 1 and Fig. 1, as well as in ESM Table 1 and Fig. 1. There was no evidence of pregnancy-related complications at the time of the study. There were no differences in age or BMI between the analysed groups (ESM Table 1). All women with GDM had glucose levels at 120 min of the OGTT >7.8 mmol/l. There was an increase in fasting insulin and HOMA index in both IG and GDM groups in comparison with the normal glucose tolerance control subjects (p<0.01); however, there were no statistical differences in fasting insulin, fasting glucose and HOMA between the IG and GDM groups (p> 0.10; Table 1). In contrast, there was no difference in IRI between control and IG groups (p=0.23). There was, however, a marked difference in the value of the IRI between the GDM and IG (p=0.015), and between the GDM and control group (p<0.001; Table 1). Worsening of glucose tolerance was accompanied by an increase in fasting visfatin, from 76.8±14.1 ng/ml in control subjects, to 84.0±14.7 ng/ml in IG and 93.1± 12.3 ng/ml in the GDM group (p<0.01 for GDM vs control subjects, with a trend towards higher visfatin levels for IG vs control subjects [p=0.07] and GDM vs IG [p=0.08]) (Table 1, Fig. 1). There were positive correlations between serum visfatin concentrations and fasting insulin (r s =0.38, p=0.007), insulin levels at 120 min of the OGTT (r s =0.39; p=0.006) (ESM Fig. 1a,b), glucose at 120 min of the OGTT (r s =0.35; p=0.012), HOMA (r s =0.35, p=0.012) and IRI (r s =0.32, p=0.02). In the multiple regression model the covariates including fasting insulin, insulin at 120 min of the OGTT and glucose at 120 min of the OGTT explained only 18% of variability of serum visfatin concentration.

Diabetologia (2007) 50:1033 1037 1035 Table 1 Descriptive statistics for the levels of insulin and glucose parameters as well as HOMA and IRI in the three groups of women: control; intermediate (i.e. false-positive GCT); and GDM Variable and group n Mean 95% CI Median SD Minimum Maximum Differences between groups p value a Glucose: OGTT 0 min (mmol/l) Control 20 4.1 3.9 4.3 4.1 0.4 3.6 4.9 Intermediate 15 4.2 4.1 4.4 4.2 0.3 3.7 4.7 0.03 GDM 16 4.6 4.1 5.1 4.4 1.0 3.6 8.0 **C Glucose: OGTT 120 min (mmol/l) Control 20 5.7 5.1 6.3 5.7 1.2 3.7 7.7 Intermediate 15 6.4 5.8 7.0 6.7 1.0 4.4 7.6 0.0001 GDM 16 9.5 8.9 10.2 9.6 1.0 8.0 11.6 ***C, ***IN Insulin: OGTT 0 min (pmol/l) Control 20 36.7 25.8 47.5 31.2 232 14.4 118.2 Intermediate 15 63.8 42.1 85.6 50.8 39.2 25.1 163.3 **C 0.0012 GDM 16 61.2 48.2 74.2 56.8 24.4 22.9 119.5 ***C Insulin: OGTT 120 min (pmol/l) Control 20 303.7 238.8 368.5 274.2 138.5 95.3 566.5 Intermediate 15 485.3 334.1 636.4 417.2 261.8 106.1 1081.6 *C 0.0003 GDM 16 719.8 494.8 944.8 576.3 422.2 313.3 1820.4 ***C HOMA (pmol/l mmol/l) Control 20 6,88 4.56 9.20 5.55 4.95 2.30 24.69 Intermediate 15 12,30 7.78 16.82 9.73 8.16 4.36 31.94 **C 0.0014 GDM 16 13,29 8.62 17.96 11.95 8.76 3.63 42.50 ***C IRI Control 20 0.68 0.57 0.80 0.65 0.25 0.3 1.10 Intermediate 15 0.93 0.77 1.09 0.93 0.29 0.31 1.38 0.001 GDM 16 1.67 1.29 1.70 1.69 0.38 0.91 1.97 ***C, *IN Visfatin (ng/ml) Control 20 76.8 70.2 83.4 79.2 14.1 42.5 93.8 Intermediate 15 84.0 75.9 92.2 88.3 14.7 56.2 98.9 0.009 GDM 16 93.1 86.2 99.9 90.3 12.3 67.0 113.3 **C C, compared with control group; IN, compared with intermediate group. Significant differences in mean values in two groups, assessed by means of a Mann Whitney test, are indicated by asterisks: *p 0.05, **p 0.01, ***p 0.001. a p value represents the significance level of the Kruskal Wallis test for comparison of distributions of these characteristics in three independent groups. Discussion In this paper, we demonstrate an increase in fasting visfatin concentrations with a worsening degree of glucose intolerance, with higher levels in women with GDM (see ESM). During the preparation of our paper, Krzyzanowska et al. [9] reported raised visfatin levels in GDM. In contrast to their data, we found a significant correlation between visfatin and fasting insulin and HOMA. Furthermore, we are the first to demonstrate a significant correlation between visfatin and insulin during the OGTT. Pregnancy is associated with alterations in insulin resistance and sensitivity, the latter declining with increasing gestation. Given its reported insulin mimetic effects [1, 5], visfatin may well counteract the high glucose levels, particularly in GDM. However, the results of our study show that such an interpretation, although theoretically correct, is more complex. First, the variations of insulin and Fig. 1 Visfatin levels (means±sem) in control, intermediate (i.e. false-positive GCT) and GDM groups. **p<0.01, significantly higher in comparison with the control group (Mann Whitney U test)

1036 Diabetologia (2007) 50:1033 1037 glucose explain only 18% of the variation of serum visfatin in the multivariate model. This implies that other, yet unidentified, factors are likely to determine most of the variation of serum visfatin in pregnancy. Second, there are major differences in the assessment of IR. For example, if one takes into account only fasting glucose and insulin (HOMA), then women with GDM and those in the IG group are more IR than control subjects, with no significant difference between GDM and IG groups. On the other hand, if post-glucose-load glycaemia and insulinaemia are accounted for (IRI), then this reveals a marked difference between the GDM group and both the IG and control groups. Therefore, mathematical models (HOMA vs IRI) used to calculate IR indices in pregnancy may give discrepant results, and thereby a relationship between visfatin and calculated IR indices. Very recently, unlike our findings and those by Krzyzanowska et al. [9], Chan et al. [10] havereportedlower visfatin levels in women of Chinese origin with GDM. The precise reason for these differences is unclear. However, the study design by Chan et al. was different: the time of GDM testing was about 24 instead of 28 weeks; different criteria were used to diagnose GDM; and no fasting or post-ogtt glucose values or insulin resistance parameters were assessed in their study. Furthermore, subjects of Far Eastern origin have significant differences in insulin sensitivity in comparison with subjects of Europid origin [11], and therefore it is not possible to directly compare the results of our study with the study by Chan et al. [10]. Currently the data on a relationship between visfatin and insulin sensitivity in humans are conflicting. Some authors report a lack of correlation between plasma visfatin and insulin/homa [2, 4], while others [3], like us [12], have observed a significant correlation between plasma visfatin and fasting insulin and HOMA. Moreover, Haider et al. [13] report a significant decrease of plasma visfatin concentrations in obese subjects after gastric banding, where individual changes in insulin resistance and visfatin were significantly associated (r= 0.43, p<0.05). In addition, in the present study we describe for the first time a significant correlation between visfatin and insulin, and visfatin and glucose concentrations at 120 min of the OGTT in pregnant women. Given that our subjects with GDM had a more pronounced rise in glucose after OGTT than both IG and control groups, this raises the possibility that higher visfatin levels in GDM could be related to the visfatin response to hyperglycaemia. Such a hypothesis is supported by the results of Haider et al. [14], who demonstrated that glucose infusion (under clamp conditions) could increase visfatin concentrations. Recently, it has also been shown that subjects with established type 2 diabetes have significantly raised visfatin levels when compared with newly diagnosed type 2 diabetic subjects [15]. These findings are of interest, as GDM, like type 2 diabetes, is characterised by relative hyperglycaemia and the metabolic defects of insulin resistance [16]. Limitations of our study include its cross-sectional design, and therefore to ascertain the association between the worsening of glucose tolerance during the pregnancy paralleled by the raise of visfatin, a longitudinal study design is necessary with additional data such as any correlation with cord blood visfatin and birthweight. Finally, it is unclear as to the precise source of visfatin and the mechanisms regulating its production; it would be useful to test the hypothesis of inflammation and insulin resistance in GDM and their impact on visfatin. In summary, our study demonstrates significantly higher serum visfatin levels in women with GDM as well as a positive correlation between serum visfatin and both fasting and post-glucose-load insulin. The precise significance of our findings remains to be elucidated, and it remains to be established whether visfatin may also be involved in regulation of insulin sensitivity during human pregnancy. Duality of interest regard to this study. References The authors have no duality of interest with 1. Fukuhara A, Matsuda M, Nishizawa M et al (2005) Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307:426 430 2. Berndt J, Kloting N, Kralisch S et al (2005) Plasma visfatin concentrations and fat-specific mrna expression in humans. Diabetes 54:2911 2916 3. Chen MP, Chung FM, Chang DM et al (2006) Elevated plasma level of visfatin/pre-b cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 91:295 299 4. Pagano C, Pilon C, Olivieri M et al (2006) Reduced plasma visfatin/pre B-cell colony enhancing factor in obesity is not related to insulin resistance in humans. J Clin Endocrinol Metab 91:3165 3170 5. Kim M-K, Lee JH, Kim H et al (2006) Crystal structure of visfatin/pre-b cell colony-enhancing factor/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol 362:66 77 6. WHO consultation (1999) Definition, diagnosis, and classification of diabetes mellitus and its complications. Report of a WHO consultation. Part 1: Diagnosis and classification of diabetes mellitus. WHO/NCD/NCS/99.2. WHO, Geneva 7. Matthews DR, Hosker JP, Rudensky AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412 419 8. Matsuda M, DeFronzo R (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing. Diabetes Care 9:1462 1470 9. Krzyzanowska K, Krugluger W, Mittermayer F et al (2006) Increased visfatin concentrations in women with gestational diabetes mellitus. Clin Sci (Lond) 110:605 609

Diabetologia (2007) 50:1033 1037 1037 10. Chan TF, Chen YL, Lee CH et al (2006) Decreased plasma visfatin concentrations in women with gestational diabetes mellitus. J Soc Gynecol Investig 13:364 367 11. Wijeyaratne CN, Balen AH, Barth JH, Belchetz PE (2002) Clinical manifestations and insulin resistance (IR) in polycystic ovary syndrome (PCOS) among South Asians and Caucasians: is there a difference? Clin Endocrinol (Oxf) 57:343 350 12. Tan BK, Chen J, Digby JE et al (2006) Increased visfatin messenger ribonucleic acid and protein levels in adipose tissue and adipocytes in women with polycystic ovary syndrome: parallel increase in plasma visfatin. J Clin Endocrinol Metab 91:5022 5028 13. Haider DG, Schinler K, Schaller G, Prager G, Wolzt M, Ludvik B (2006) Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab 91:1578 1581 14. Haider DG, Schaller G, Kapitis S, Maier C, Luger A, Wolzt M (2006) The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia 49:1909 1914 15. Lopez-Bermejo A, Chico-Julia B, Fernandez-Balsells M et al (2006) Serum visfatin increases with progressive beta-cell deterioration. Diabetes 55:2871 2875 16. Buchanan TA (2001) Pancreatic B-cell defects in gestational diabetes: implications for the pathogenesis and prevention of type 2 diabetes. J Clin Endocrinol Metab 86:989 993