INFLUENZA-1. VL 6 Dec. 8 th Mohammed El-Khateeb

Similar documents
INFLUENZA. By :Nader Alaridah MD, PhD

Influenza viruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

INFLUENZA VIRUS. INFLUENZA VIRUS CDC WEBSITE

Human Influenza. Dr. Sina Soleimani. Human Viral Vaccine Quality Control 89/2/29. November 2, 2011 HVVQC ١

Orthomyxoviridae and Paramyxoviridae. Lecture in Microbiology for medical and dental medical students

Influenza: The Threat of a Pandemic

Respiratory Viruses. Respiratory Syncytial Virus

Influenza. Gwen Clutario, Terry Chhour, Karen Lee

Q: If antibody to the NA and HA are protective, why do we continually get epidemics & pandemics of flu?

Pandemic H1N1 2009: The Public Health Perspective. Massachusetts Department of Public Health November, 2009

Acute respiratory illness This is a disease that typically affects the airways in the nose and throat (the upper respiratory tract).

Nothing to disclose. Influenza Update. Influenza Biology. Influenza Biology. Influenza A 12/15/2014

INFLUENZA-2 Avian Influenza

Influenza Infection In Human. Dr. Zuhaida A. Jalil Surveillance Sector Disease Control Division, MOH Malaysia 3 May 2018

Influenza A 6/23/2010. Lisa Winston, MD UCSF / San Francisco General Hospital Divisions of Infectious Diseases and Hospital Medicine

Novel H1N1 Influenza. It s the flu after all! William Muth M.D. Samaritan Health Services 9 November 2009

Ralph KY Lee Honorary Secretary HKIOEH

Influenza B viruses are not divided into subtypes, but can be further broken down into different strains.

Influenza: The past, the present, the (future) pandemic

ORTHOMYXOVIRUSES INFLUENZA VIRUSES. (A,B and C)

PUBLIC HEALTH SIGNIFICANCE SEASONAL INFLUENZA AVIAN INFLUENZA SWINE INFLUENZA

VIROLOGY OF INFLUENZA. Subtypes: A - Causes outbreak B - Causes outbreaks C - Does not cause outbreaks

What is Influenza? Patricia Daly MD, FRCPC Medical Health Officer and Medical Director of Communicable Disease Control

دکتر بهروز نقیلی استاد بیماریهای عفونی مرکس تحقیقات بیماریهای عفونی و گرمسیری پاییس 88

INFLUENZA AND OTHER RESPIRATORY VIRUSES

AVIAN FLU BACKGROUND ABOUT THE CAUSE. 2. Is this a form of SARS? No. SARS is caused by a Coronavirus, not an influenza virus.

Patricia Fitzgerald-Bocarsly

Influenza. Paul K. S. Chan Department of Microbiology The Chinese University of Hong Kong

H1N1-A (Swine flu) and Seasonal Influenza

Influenza. Tim Uyeki MD, MPH, MPP, FAAP

Evolution of influenza

COUNTY OF MORRIS DEPARTMENT OF LAW & PUBLIC SAFETY OFFICE OF HEALTH MANAGEMENT

Swine Flu, Fiction or Reality

Swine Flu; Symptoms, Precautions & Treatments

Influenza. Paul K. S. Chan Department of Microbiology The Chinese University of Hong Kong

H1N1 Influenza. Influenza-A Basics. Influenza Basics. April 1, History of Influenza Pandemics. April 1 September 25, 2009

The "Flu" a case of low fever and sniffles that keeps you home in bed for a day a gastrointestinal upset ("stomach flu")

Influenza RN.ORG, S.A., RN.ORG, LLC

Update I had a little bird, It s name was Enza, I opened up the window, And In Flu Enza.

A Just in Time Primer on H1N1 Influenza A and Pandemic Influenza developed by the National Association of State EMS Officials and Revised by the

Influenza 2009: Not Yet The Perfect Storm

ECMO and the 2013 Influenza A H1N1 Epidemic

1918 Influenza; Influenza A, H1N1. Basic agent information. Section I- Infectious Agent. Section II- Dissemination

A Virus is a very small organism which can only be viewed under the electron microscope.

INFLUENZA. Rob Young (James. J. Reid) Faculty of Medicine University of Auckland (Otago)

Influenza. By Allison Canestaro-Garcia. Disease Etiology:

Running head: INFLUENZA VIRUS SEASON PREPAREDNESS AND RESPONSE 1

The pages that follow contain information critical to protecting the health of your patients and the citizens of Colorado.

2009 (Pandemic) H1N1 Influenza Virus

Diagnosis of Seasonal and Pandemic Influenza. Objectives. Influenza Infections 11/7/2014

THIS ACTIVITY HAS EXPIRED. CME CREDIT IS NO LONGER AVAILABLE

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Influenza vaccines. Cheryl Cohen

Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans

Cover Page. The handle holds various files of this Leiden University dissertation

Influenza: Seasonal, Avian, and Otherwise

Current Vaccines: Progress & Challenges. Influenza Vaccine what are the challenges?

U.S. Human Cases of Swine Flu Infection (As of April 29, 2009, 11:00 AM ET)

Conflict of Interest and Disclosures. Research funding from GSK, Biofire

Seasonal Influenza. Provider Information Sheet. Infectious Disease Epidemiology Program

Avian Influenza: Armageddon or Hype? Bryan E. Bledsoe, DO, FACEP The George Washington University Medical Center

Influenza: A seasonal disease FACTFILE

Influenza Exposure Medical Response Guidance for the University of Wisconsin-Madison

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Coronaviruses cause acute, mild upper respiratory infection (common cold).

Influenza: Questions and Answers

Viral Infections of the Respiratory System. Dr. MONA BADR Assistant Professor College of Medicine & KKUH

Training Your Caregiver: Flu Prevention and Treatment for Disabled and the Elderly

Overview of the Influenza Virus

LECTURE OUTLINE. B. AGENT: Varicella-zoster virus. Human herpes virus 3. DNA virus.

Novel H1N1 Influenza A Update. William Muth MD 2 Oct 2009

1/31/2013 DISEASE BASICS. Influenza; Implications for Public Health Professionals. Influenza: An Age-Old Disease, A Disease for All Ages

Novel H1N1 Influenza A: Protecting the Public

Influenza and the Flu Shot Facts for Health Care Workers

Pandemic Influenza influenza epidemic: realization of a worst-case scenario

The Cold, the Flu or INFLUENZA!

Influenza. Alan P. Agins, Ph.D Objectives. Influenza Update: Influenza. Disclosures. Influenza Virus.

INFLUENZA VACCINATION AND MANAGEMENT SUMMARY

Viral respiratory illness

How many students at St. Francis Preparatory School in New York City have become ill or been confirmed with swine flu?

Outline. Seasonal Influenza & Pneumonia National & State Statistics Novel Influenza A H1N1

Module 1 : Influenza - what is it and how do you get it?

Influenza Update for Iowa Long-Term Care Facilities. Iowa Department of Public Health Center for Acute Disease Epidemiology

بسم هللا الرحمن الرحيم

American Academy of Pediatrics Section on Telehealth Care

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

PARAMYXOVIRUS FAMILY properties of attachment protein

Revised Recommendations for the Use of Influenza Antiviral Drugs

Influenza Fact Sheet

INTERNATIONAL SOCIETY FOR HEART AND LUNG TRANSPLANTATION a Society that includes Basic Science, the Failing Heart, and Advanced Lung Disease

INFLUENZA A VIRUS. Structure of the influenza A virus particle.

Buy The Complete Version of This Book at Booklocker.com:

ACIP Recommendations

NEWS RELEASE FOR INFORMATION CONTACT: Tel [203] Tel [203]

HSE National Immunisation Office Influenza

What is the Flu? The Flu is also called Influenza (In-flu-en-za) It is caused by an infection of the. Nose Throat And lungs

Developed by the Healthcare Worker Immunization Strategy Committee

Disclosures. No support One off-label recommendation

Malik Sallam. Ola AL-juneidi. Ammar Ramadan. 0 P a g e

Guidance for Influenza in Long-Term Care Facilities

Transcription:

INFLUENZA-1 VL 6 Dec. 8 th 2013 Mohammed El-Khateeb

Importance of Influenza One of the most important Emerging and Reemerging infectious diseases Causes high morbidity and mortality in communities (epidemics) and worldwide (pandemics) Epidemics are associated with excess mortality

Discovery of Influenza Virus First isolated from a pig in 1931 (swine flu) Isolated from human in 1933

Myxoviruses Orthomyxo viruses Smaller Segmented RNA genome Liable to Agic variation Paramyxo viruses Larger Single piece of RNA Not liable to Agic variation Influenza viruses Parainfluenza Mumps vairus Measles virus Respiratory syncytial virus Myxo = affinity to mucin

Characteristics of Influenza Pleomorphic Types A, B, C Diameter 80-120 nm Pleomorphic, spherical, filamentous particles Single-stranded RNA Segmented genome, 8 segments in A and B Virus Hemagglutinin and Neuraminidase on surface of the virion

Influenza Viruses Replicate in mucus membranes Target tissue: upper & lower respiratory tract Cause influenza: acute respiratory disease that may occur in epidemics or even pandemics

Virus Structure and Replication

Influenza Structure 8 segments of single-stranded RNA Segments combine with nucleoprotein (NP) to form the ribonucleoprotein core M1 matrix protein surrounds the core Lipid coat surrounds the matrix Embedded in the lipid membrane are 2 important viral proteins: hemaglutinin (HA) and neuraminidase (NA) RNA segments + nucleocapsid = a nucleocapsid with helical symmetry

Influenza A Virus Structure NS 2 Lipid Bilayer NA (Neuraminidase) HA (Hemagglutinin) M 2 (Ion channel) M 1 (Matrix protein) Infected cell protein NS 1 PB1, PB2, PA (Transcriptase complex) NP (Nucleocapsid)

Antigenic structure& Classification I- Type Specific Ag ( core Ag): Three serotypes: A,B & C according to internal structure ptns ( nucleocapsid & matrix). These ptns don t cross react II- Strain ( subtype) specific Ag: Two surface glycoptns, HA & NA are used to subtype the virus Influenza strains are named after their types of HA & NA surface ptns e.g. H1N1

Neuraminidase (N) Cleaves neuraminic acid to release virus progeny from infected cells Haemagglutinin (H) Binds to host cell surface receptor

Fusion with Host Membrane The flu virus binds onto sugars on the surfaces of epithelial cells such as nose, throat, and lungs of mammals and intestines of birds.

Influenza virus Replication cycle

Influenza Viral Budding Matrix protein (M) interacts with HA and NA HA are glycoproteins on envelope Interaction occurs at the level of their cytoplasmic tail M protein also interacts with helical nucleocapsid proteins RNP

Viral Types and Pathogenicity

Types of Influenza virus I- Type A virus: Infects humans as well as animals Undergoes continuous Antigenic variations Many animal species have their own influenza A virus Pigs & birds are the reservoirs playing a role in occurrence of influenza epidemics

Types of Influenza virus II- Type B virus: Causes milder disease Infects human only Only undergo antigenic drift Not known to undergo antigenic shift III- Type C virus: Agntigenically stable Known to cause only minor respiratory disease; probably not involved in epidemics

Pathogenesis Viral NA degrades the protective mucin layer Allowing the virus to enter the cells Epithelial cells of respiratory tract Replication inside the cells Cilia damage Epithelial desquamation The infection is limited to the respiratory tract There are proteases there essential for HA to be active Despite systemic symptoms, no viremia Those symptoms are due to cytokines production

Pathogenesis A person becomes infected when they inhale microdroplets containing the virus Upper and lower respiratory tract epithelial cells have sialic acid molecules to which the HA binds As the virus causes the cells to die, inflammation occurs a cough reflex results thereby spreading the virus again Additional flu-like symptoms (sneezing, fever, chills, muscle aches, headaches, fatigue) occur as a result of interferon production triggered by the presence of dsrna during viral replication

Pathogenicity Acute, highly contagious respiratory illness Seasonal, pandemics; among top 10 causes of death in some countries Most commonly among elderly and small children Causes rapid shedding of cells, stripping the respiratory epithelium; severe inflammation Weakened host defenses predispose patients to secondary bacterial infections, especially pneumonia

Immunology

Surface Antigens and Immunity Immunity reduces likelihood of infection and severity of disease Antibodies are specific to different types of surface antigens Changes in H and N antigens allow the virus to evade previously developed immune responses Antigenic changes: drift and shift

Hemagglutinin Structure: trimer of lollipops with fibrous stem anchored in the membrane and globular protein sphere containing the sialic acid receptor site Function: Sialic acid receptor sites bind to host cell s glycoproteins allowing for infection to occur

Neuraminidase Structure: Box-shaped tetramer with stalk that anchors it to the cellular membrane Function: Cleaves off sialic acid molecules from the surface of cells thereby preventing infected cells from recapturing budding virus molecules.

Surface Antigens Haemagglutinin Binds to host cell surface receptor The target of neutralizing Abs Haemagglutinates RBCs from various animal species Neuraminidase Cleaves neuraminic acid to release virus progeny from infected cells Degrades the protective layer of mucin in the respiratory tract Plays a minimal role in immunity to influenza

Antigenic Variation Ag Variations occurs only in infuenza A because it has a wide host range, giving influenza A the opportunity for a major reorganization of its genome & hence its surface Ags Pigs are susceptible to avian, human & swine influenza viruses and they potentially may be infected with influenza viruses from different species. If this happens, it is possible for the genes of these viruses to mix and create a new virus

Antigenic Variation 1- antigenic shift It is the process in which the genetic segment encoding for envelope glycoproteins (HA&NA) is replaced by another one from a different strain through genetic reassortment causing replacement of the original HA or NA by a new one Genetic reassortment: the exchange of genetic material between viruses inside a host cell

Duck Influenza Virus Human Influenza Virus Antigenic Shift event Human Influenza Virus with Duck HA This is responsible for appearance of completely new strains to which no one is immune & not covered by annual vaccinations Immune system Has no recall for Duck HA

Example of antigenic shift H2N2 virus circulated in 1957-1967 H3N2 virus appeared in 1968 and completely replaced H2N2 virus Human H3N2 Chicken H5N1 H5N2 influenza A

Host and Lineage Origins For The Gene Segments of 2009 A(H1N1) Virus 30

Influenza Antigenic Changes Antigenic Drift Minor change, same subtype Caused by point mutations in gene, minor change of an amino acid sequence of HA or NA. Occurs in influenza A & B produce new strains are referred to as antigenic shifts May result in epidemic Example of antigenic drift In 2003-2004, A/Fujian/411/2002-like (H3N2) virus was dominant A/California/7/2004 (H3N2) began to circulate and became the dominant virus in 2005

Influenza Antigenic Changes Antigenic Shift Major change, new subtype Caused by exchange of gene segments May result in pandemic Example of antigenic shift H2N2 virus circulated in 1957-1967 H3N2 virus appeared in 1968 and completely replaced H2N2 virus

Clinical Findings and Diagnosis

Mode of transmission Highly contagious disease with person to person transmission Three modes of transmission Contact Air- Borne Droplet Direct Indirect Short Incubation Period 1-3 days

Duration of shedding In otherwise healthy adults with influenza infection, viral shedding can be detected 24 to 48 hours before illness onset, but is generally at much lower titers than during the symptomatic period In a review of 56 studies of 1280 healthy adults who were experimentally challenged with influenza virus, shedding of influenza virus increased sharply one-half to one day following exposure, peaked on the second day, and then rapidly declined The average duration of shedding was 4.8 days Shedding ceased after six or seven days in most studies but occurred for up to 10 days in some. Studies of natural infection in healthy adults have shown similar results

High fever Clinical Findings Non-productive as well as productive cough Shortness of breath Dyspnoea Hypoxia Evidence of lower respiratory tract disease with opacities, consolidation, and infiltrates noted on chest imaging More severe infections (i.e. pneumonia) are sometimes associated with Influenza because of the increased susceptibility to other infections as a result of a damaged airway

Primary influenza pneumonia Primary influenza pneumonia occurs when influenza virus infection directly involves the lung, typically producing a severe pneumonia. Clinical suspicion for primary influenza pneumonia should be raised when symptoms persist and increase instead of resolving in a patient with acute influenza. High fever, dyspnea, and even progression to cyanosis can be seen

Host Defenses Interferon signals for cells to inhibits protein synthesis Anti-HA antibodies bind and stay with the virus as it makes its way through the cell and somehow interferes with the replication process Anti-NA antibodies stop the molecule from shaving off the sialic acid residues

Complications Septic shock, Respiratory failure, Acute respiratory distress syndrome, Refractory hypoxemia, Acute renal dysfunction, Multiple organ dysfunction, Rhabdomyolysis, Encephalopathy, Bacterial and fungal infections such as ventilatorassociated pneumonia and blood-stream infection sometimes by multi-drug resistant bacteria

Groups at high risk for influenza complication Children <2 years* Adults 65 years of age Persons with chronic pulmonary (including asthma), cardiovascular (except hypertension), renal, hepatic, hematologic (including sickle cell disease), metabolic (including diabetes mellitus), neurologic, neuromuscular, and neurodevelopmental disorders (including disorders of the brain, spinal cord, peripheral nerve and muscle such as cerebral palsy, epilepsy, stroke, intellectual disability [mental retardation], moderate to severe developmental delay, muscular dystrophy, or spinal cord injury) Immunosuppression (including immunosuppression caused by medications or by human immunodeficiency virus) Women who are pregnant or postpartum (within 2 weeks after delivery) Children <19 years of age and receiving long-term aspirin therapy Native Americans and Alaskan Natives Morbidly obese (body mass index [BMI] 40 for adults or BMI >2.33 standard deviations above the mean for children) Residents of nursing homes and other chronic care facilities

Diagnosis Nose and throat swabs are used and then examined by: Direct Immunoflourescent Cell culture and embryonted egg inoculation Serum tests can also be performed to test for HA antibodies

Lab Tests Leukocyte counts have been normal or low Leukopenia Lymphopenia Moderate thrombocytopenia in some cases

Epidemiology

WHO Definitions Epidemic: Human-to-human spread of the virus into at least two countries in one WHO region Pandemic: Human-to-human spread of the virus with community level outbreaks in at least one other country in a different WHO region than initial epidemic Attack rate: Numbers of cases of infection per unit of population Virulence: Severity of illness caused by a particular virus WHO. http://www.who.int/csr/disease/avian_influenza/phase/en. Accessed July 28, 2009. Gallaher WR. Virology Journal. 2009, 6:51 doi:10.1186/1743-422x-6-51. 44

Influenza Epidemiology Reservoir Transmission Human, animals (type A only) Respiratory Probably airborne Temporal pattern Peak December - March in Temperate area May occur earlier or later Communicability Maximum 1-2 days before to 4-5 days after onset

Natural History of Influenza Viruses Serum antibody prevalence Virus isolation B H3N8 H3N2 H2N? H2N2 H1N1 H1N1 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 Topley and Wilson s Microbiology and Microbial Infections. 9th ed, Vol 1, Virology. Mahy and Collier, eds, 1998, Arnold, page 387, with permission.

Hemagglutinin Subtypes of Influenza A Virus Subtype Human Swine Horse Bird H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 Adapted from Levine AJ. Viruses. 1992;165, with permission.

History: Known Flu Pandemics Name of pandemic Date Deaths Asiatic Flu 1889-1890 1 million Spanish Flu 1918-1920 40-100 million Asian Flu 1957-1958 1-1.5 million Hong Kong Flu 1968-1969 0.75-1 million Information taken from en.wikipedia.org/wiki/influenza

Human Influenza Virus Type and Variant Forms Type H/N Subtype Strain/History A H1N1 Spanish Flu Pandamic 1918 A/ New Jersey/76 swine flu A/USSR /77 / 90 A/Texas/36/91 H2N2 A/Singapores/57/Avian flu A/Japan/62 A/ Taiwan/64 H3N2 A/Hong Kong/68 Pandemic A/Johanasseburg/33/94 B None B/Harbin/07/94 C None JHB/2/66

Pandemic Influenza Viruses Pandamic Subtype 1889 H2N? 1899 H3N8 1918 H1N1 1957 H2N2 1968 H3N2 1977 H1N1

Treatment and Prevention

Influenza Vaccines Whole virus vaccines: inactivated forms of virus with the predicted HA, are grown in embryonated eggs Subunit vaccine: uses both HA and NA subunits extracted from recomibinant virus forms Split-virus vaccines: purified HA (lessens the side-effects) Recommended for health care workers, elderly/ people in nursing homes, asthmatics, chronic lung disease patients, some pregnant women, and anyone who is susceptible to infection

Influenza Vaccines Inactivated subunit (TIV) Intramuscular Trivalent Annual Live attenuated vaccine (LAIV) Intranasal Trivalent Annual

Inactivated Vaccine Effectiveness by Age and Risk Group Age/Risk group Outcome Effectiveness* 6m-16 years, healthy Influenza 50-90% 18-64 years, healthy Influenza 50-90% >65 years, community Influenza 30-70% Elderly, nursing home Influenza 30-40% Elderly, nursing home Hospitalization 30-60% *Effectiveness may be lower when vaccine and circulating strains antigenically different. Source: CDC.

Approved Monovalent Vaccines for Novel H1N1 Influenza 57

WHO recommends annual vaccination for (in order of priority) Nursing-home residents (the elderly or disabled) Elderly individuals People with chronic medical conditions Other groups such as pregnant women, health care workers, those with essential functions in society, as well as children from ages six months to two years

Antiviral Treatment Recommendations Treatment with oseltamivir (Tamiflu) or zanamivir is recommended for: All patients requiring hospitalization Patients at increased risk of complications Children 0-4 years Pregnant women Persons with immune suppression, chronic pulmonary (including asthma), cardiovascular (except hypertension), renal, hepatic, hematological (including sickle cell disease), neurologic, neuromuscular, or metabolic disorders (including diabetes mellitus) or > 65 years Early treatment is the key Clinicians should not wait for confirmatory tests to treat Postexposure prophylaxis should generally not be used Consider for high-risk person with close unprotected exposure Do not use if more than 48 hours after exposure 59

When Healthy: Healthy Habits Avoid close contact with those who are sick Wash your hands often Avoid touching your eyes, nose and mouth to decrease the spread of germs When Ill: Cover your mouth and nose with a tissue (or upper sleeve) when you sneeze or cough Stay home from work or school when you are sick

Key facts Influenza is an acute viral infection that spreads easily from person to person. Influenza circulates worldwide and can affect anybody in any age group. Influenza causes annual epidemics that peak during winter in temperate regions. Influenza is a serious public health problem that causes severe illnesses and deaths for higher risk populations. An epidemic can take an economic toll through lost workforce productivity, and strain health services. Vaccination is the most effective way to prevent infection.