Thoracoscopic segmentectomy: hybrid approach for clinical stage I non-small cell lung cancer

Similar documents
Cheng-Yang Song, Takehiro Sakai, Daisuke Kimura, Takao Tsushima, Ikuo Fukuda

Ruijin robotic thoracic surgery: S segmentectomy of the left upper lobe

T3 NSCLC: Chest Wall, Diaphragm, Mediastinum

Totally thoracoscopic left upper lobe tri-segmentectomy

Parenchyma-sparing lung resections are a potential therapeutic

Thoracoscopic Lobectomy for Locally Advanced Lung Cancer. Masters of Minimally Invasive Thoracic Surgery Orlando September 19, 2014

Complex Thoracoscopic Resections for Locally Advanced Lung Cancer

SURGICAL TECHNIQUE. Radical treatment for left upper-lobe cancer via complete VATS. Jun Liu, Fei Cui, Shu-Ben Li. Introduction

VATS after induction therapy: Effective and Beneficial Tips on Strategy

Uniportal video-assisted thoracoscopic right upper posterior segmentectomy with systematic mediastinal lymphadenectomy

Novel Asymmetrical Linear Stapler (NALS) for pathologic evaluation of true resection margin tissue

Accomplishes fundamental surgical tenets of R0 resection with systematic nodal staging for NSCLC Equivalent survival for Stage 1A disease

Sleeve lobectomy for lung adenocarcinoma treated with neoadjuvant afatinib

Thoracoscopic anterior segmentectomy of the right upper lobe (S 3 )

Superior and Basal Segment Lung Cancers in the Lower Lobe Have Different Lymph Node Metastatic Pathways and Prognosis

Thoracoscopic S 6 segmentectomy: tricks to know

Video-assisted thoracic surgery right upper lobe bronchial sleeve resection

Uniportal video-assisted thoracoscopic surgery segmentectomy

Uniportal complete video-assisted thoracoscopic surgery lobectomy with partial pulmonary arterioplasty for lung cancer with calcified lymph node

Robotic thoracic surgery: S 1+2 segmentectomy of left upper lobe

Thoracoscopic wedge resection and segmentectomy for smallsized pulmonary nodules

Uniportal video-assisted thoracic surgery for complicated pulmonary resections

Treatment of Clinical Stage I Lung Cancer: Thoracoscopic Lobectomy is the Standard

Adam J. Hansen, MD UHC Thoracic Surgery

ROBOT SURGEY AND MINIMALLY INVASIVE TREATMENT FOR LUNG CANCER

The right middle lobe is the smallest lobe in the lung, and

Is uniportal thoracoscopic surgery a feasible approach for advanced stages of non-small cell lung cancer?

Prognostic prediction of clinical stage IA lung cancer presenting as a pure solid nodule

History of Limited Resection for Non-small Cell Lung Cancer

Case Report Surgical Resection for a Second Primary Lung Cancer Originating Close to the Initial Surgical Margin for Lung Squamous Cell Carcinoma

Thoracoscopic left upper lobectomy with systematic lymph nodes dissection under left pulmonary artery clamping

Navigational bronchoscopy-guided dye marking to assist resection of a small lung nodule

Robotic-assisted right upper lobectomy

Meta-analysis of intentional sublobar resections versus lobectomy for early stage non-small cell lung cancer

Minimally Invasive Esophagectomy

In 1989, Deslauriers et al. 1 described intrapulmonary metastasis

Since the randomized phase III trial conducted by the Lung

Reasons for conversion during VATS lobectomy: what happens with increased experience

Indications for sublobar resection for localized NSCLC

Lung cancer pleural invasion was recognized as a poor prognostic

Lymph node dissection for lung cancer is both an old

Pulmonary segmentectomy was first carried out for bronchiectasis in the

Lung cancer is a major cause of cancer deaths worldwide.

Whack-a-mole strategy for multifocal ground glass opacities of the lung

Transcervical uniportal pulmonary lobectomy

VATS segmentectomy: an underused option?

Video-assisted thoracoscopic subsegmentectomy for small-sized pulmonary nodules

Complete surgical excision remains the greatest potential

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Techniques and difficulties dealing with hilar and interlobar benign lymphadenopathy in uniportal VATS

LYMPH NODE METASTASIS IN SMALL PERIPHERAL ADENOCARCINOMA OF THE LUNG

HISTORY SURGERY FOR TUMORS WITH INVASION OF THE APEX 15/11/2018

Segmentectomy for selected ct1n0m0 non small cell lung cancer: A prospective study at a single institute

Han-Yu Deng 1,2#, Chang-Long Qin 1#, Gang Li 2#, Guha Alai 2, Yidan Lin 2, Xiao-Ming Qiu 1, Qinghua Zhou 1. Original Article

Although the international TNM classification system

Robotic-assisted right inferior lobectomy

Video-assisted thoracoscopic surgery lingular segmentectomy with pericardial resection and reconstruction

Persistent Spontaneous Pneumothorax for Four Years: A Case Report

Slide 1. Slide 2. Slide 3. Investigation and management of lung cancer Robert Rintoul. Epidemiology. Risk factors/aetiology

The Shanghai Pulmonary Hospital uniportal subxiphoid approach for lung segmentectomies

Two cases of combined thoracoscopy and open chest surgery for locally advanced lung carcinoma

Single-Incision Thoracoscopic Lobectomy and Segmentectomy With Radical Lymph Node Dissection

OBJECTIVES. Solitary Solid Spiculated Nodule. What would you do next? Case Based Discussion: State of the Art Management of Lung Nodules.

MEDIASTINAL LYMPH NODE METASTASIS IN PATIENTS WITH CLINICAL STAGE I PERIPHERAL NON-SMALL-CELL LUNG CANCER

ORIGINAL PAPER. Marginal pulmonary function is associated with poor short- and long-term outcomes in lung cancer surgery

Charles Mulligan, MD, FACS, FCCP 26 March 2015

Standard treatment for pulmonary metastasis of non-small

Indocyanine green fluorescence-navigated thoracoscopic anatomical segmentectomy

Video-Mediastinoscopy Thoracoscopy (VATS)

The accurate assessment of lymph node involvement is

Validation of the T descriptor in the new 8th TNM classification for non-small cell lung cancer

Short-Term Results of Thoracoscopic Lobectomy and Segmentectomy for Lung Cancer in Koo Foundation Sun Yat-Sen Cancer Center

Sublobar Resection Provides an Equivalent Survival After Lobectomy in Elderly Patients With Early Lung Cancer

Three Dimensional Computed Tomography Lung Modeling is Useful in Simulation and Navigation of Lung Cancer Surgery

Video-assisted thoracic surgery pneumonectomy: the first case report in Poland

Posterior uniportal video-assisted thoracoscopic surgery for anatomical lung resections

Mastering Thoracoscopic Upper Lobectomy

Risk factor analysis of locoregional recurrence after sublobar resection in patients with clinical stage IA non small cell lung cancer

Clinical significance of skipping mediastinal lymph node metastasis in N2 non-small cell lung cancer

Long-term respiratory function recovery in patients with stage I lung cancer receiving video-assisted thoracic surgery versus thoracotomy

Sagar Damle, MD University of Colorado Denver May 23, 2011

The role of indocyanine green fluorescence for intersegmental plane identification during video-assisted thoracoscopic surgery segmentectomies

VATS Segmentectomy. Duke Masters Course Sept 2015

Original Article Clinical predictors of lymph node metastasis in lung adenocarcinoma: an exploratory study

Surgical atlas of thoracoscopic lobectomy and segmentectomy

In non small cell lung cancer, metastasis to lymph nodes, the N factor, is

PET/CT in lung cancer

Radiographically determined noninvasive adenocarcinoma of the lung: Survival outcomes of Japan Clinical Oncology Group 0201

VATS Metastasectomy. Inderpal (Netu) S. Sarkaria, MD, FACS

LONG-TERM SURGICAL OUTCOMES OF 1018 PATIENTS WITH EARLY STAGE NSCLC IN ACOSOG Z0030 (ALLIANCE) TRIAL

N.E. Verstegen A.P.W.M. Maat F.J. Lagerwaard M.A. Paul M.I. Versteegh J.J. Joosten. W. Lastdrager E.F. Smit B.J. Slotman J.J.M.E. Nuyttens S.

ABSTRACT INTRODUCTION. Yang Zhang 1,2, Yihua Sun 1,2, Haiquan Chen 1,2,3,4

Lungebevarende resektioner ved lungecancer metode og resultater

Robotic-assisted left inferior lobectomy

Video-assisted thoracoscopic lobectomy using a standardized three-port anterior approach - The Copenhagen experience

Surgical resection is the first treatment of choice for

Feasibility of four-arm robotic lobectomy as solo surgery in patients with clinical stage I lung cancer

Minimally invasive lobectomy and thoracic lymph node

Robotic-assisted McKeown esophagectomy

Transcription:

Original rticle Thoracoscopic segmentectomy: hybrid approach for clinical stage I non-small cell lung cancer Koyo Shirahashi 1, Hirotaka Yamamoto 1, Mitsuyoshi Matsumoto 1, Yusaku Miyamaoto 1, Hiroyasu Komuro 1, Kiyoshi Doi 1, Hisashi Iwata 2 1 Department of General and Cardiothoracic Surgery, Graduate School of Medicine, Gifu University, Gifu, Japan; 2 Department of General Thoracic Surgery, Center of Respiratory Disease, Gifu University Hospital, Gifu, Japan Contributions: (I) Conception and design: H Iwata; (II) dministrative support: M Matsumoto; (III) Provision of study materials or patients: K Doi, H Iwata; (IV) Collection and assembly of date: Y Miyamaoto, H Komuro; (V) Data analysis and interpretation: K Shirahashi, H Yamamoto; (VI) Manuscript writing: ll authors; (VII) Final approval of manuscript: ll authors. Correspondence to: Hisashi Iwata, MD, PhD. Department of General Thoracic Surgery, Center of Respiratory Disease, Gifu University Hospital, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan. Email: ihisashi@gifu-u.ac.jp. ackground: Recently, minimally invasive surgical approaches have been developed, typified by video-assisted thoracic surgery (VTS). meticulous surgical procedure to prevent local recurrence is required during segmentectomy for clinical stage I non-small-cell primary lung cancer. In this article, we demonstrated the validity of hybrid VTS segmentectomy. Methods: Of these 125 patients, 62 (49.6%) underwent intensively radical segmentectomy (RS). The remaining 63 (50.4%) patients underwent palliative segmentectomy (PS). We used two 2-cm ports and performed a muscle-sparing mini-thoracotomy in which a partially open metal retractor allowed direct, thoracoscopic visualization as hybrid VTS segmentectomy in 63.2% of our cases. Results: The consolidation/tumor ratio obtained with thin-sliced computed tomography was significantly lower in RS cases than in PS cases (P=0.001). The proportion of pathological stage I cases was significantly higher in RS cases (95.2%) than in PS cases (66.7%; P<0.01). Five-year overall survival (OS) for clinical stage I was 100.0% in RS cases and 73.5% in PS cases (log-rank P<0.001). Five-year disease-free survival (DFS) was 95.5% and 55.7%, respectively (log-rank P<0.001). Conclusions: During segmentectomy, the most critical consideration is establishment of sufficient surgical margins around the cancer. Our hybrid approach that includes meticulous surgical manipulations may produce sufficient surgical margins. Keywords: Hybrid VTS; thoracoscopic VTS; segmentectomy; lung cancer Submitted Feb 13, 2018. ccepted for publication Mar 12, 2018. doi: 10.21037/jtd.2018.03.111 View this article at: http://dx.doi.org/10.21037/jtd.2018.03.111 Introduction Recently, sublobar resection including radical segmentectomy (RS) for clinical stage I small-sized non-small-cell primary lung cancer has become an important issue, and use of this procedure has been increasing (1-3). Video-assisted thoracic surgery (VTS) segmentectomy is an ideal surgical procedure (4). Cao et al. (5) reported a systematic meta-analytical review comparing sublobar resection with lobectomy in non-small cell lung cancer. They found no significant difference in overall survival (OS) or disease-free survival (DFS) in the intentional segmentectomy group compared with lobectomy, but significantly worse outcomes for segmentectomy in the compromised group. We therefore consider meticulous anatomical segmentectomy for maintaining tumor surgical margins as the most important issue for obtaining desirable outcomes in lung cancer. Recently, minimally invasive surgical approaches, typified

2 Shirahashi et al. Hybrid VTS approach for segmentectomy 4th ICS 8 cm 7th ICS 2 cm 5th ICS 8 cm 4th ICS 2 cm 7th ICS 2 cm 125 patients, 62 (49.6%) underwent intensively RS for pure grand glass nodule (GGN), more than 50% GGN and <2 cm in diameter, solid tumors <10 mm in diameter, or as part of a Japanese clinical study [the Japan Clinical Oncology Group/West Japan Oncology Group (JCOG0802/ WJOG4607L)] (8). The remaining 63 (50.4%) patients underwent palliative segmentectomy (PS). Hybrid VTS procedure Figure 1 Our hybrid VTS. () 2-cm port is placed in the 7th intercostal spaces (ICS) along the anterior axillary line combined with a muscle-sparing mini-thoracotomy with a 4- to 8-cm incision in the 4th intercostal space along the anterior axillary line for upper or middle lobe resection; () two 2-cm ports are placed in the 4th and 7th intercostal spaces along the anterior axillary line combined with a muscle-sparing mini-thoracotomy with a 4- to 8-cm incision in the 5th intercostal space along the posterior axillary line for lower lobe resection. VTS, video-assisted thoracic surgery. by VTS, have been developed. Swanson et al. (6) defined VTS lobectomy: to encompass a true anatomic lobectomy with individual ligation of lobar vessels and bronchus as well as hilar lymph node dissection or sampling using the video screen for guidance, two or three ports, and no retractor use or rib spreading. We call this procedure thoracoscopic VTS. Conversely, Okada et al. (7) described a method for a mini-thoracotomy that spares muscles, uses a 4- to 10-cm incision, and includes video assistance for direct visualization during lung surgery. They have named this method hybrid VTS. In this article, we demonstrate the validity of hybrid VTS segmentectomy. Methods Patients The Institutional Review oard at the Graduate School of Medicine, Gifu University approved this study (approval no. 29-100). Of 686 patients who underwent lobectomy or segmentectomy from 2004 to 2016 (434 men, 252 women; mean age, 69.1±9.6 years) with clinical stage I primary lung cancer, lobectomy was performed in 561 patients, and segmentectomy was performed in 125 patients. Of these For our hybrid VTS procedure, we used 2-cm port is placed in the 7th intercostal spaces (ICS) along the anterior axillary line, plus a mini-thoracotomy to spare muscles with a metal retractor that was minimally opened. When resecting the middle or upper lobe, we made an incision that was 4 8 cm in length in the 4th intercostal space along the anterior axillary line (Figure 1). When removing the lower lobe, the incision was made in the 5th intercostal space along the posterior axillary line with two 2-cm ports, which were placed in the 4th and 7th ICS along the anterior axillary line (Figure 1). In all cases of hybrid VTS, a direct, thoracoscopic view was established (9). To approach the upper or middle lobe, the surgeon typically stands on the ventral side of the patient. dorsal approach is needed when resecting the lower lobe. In addition, we used forceps (GEISTER Medizintechnik GmbH, Tuttlingen, Germany), electrocautery, and ultrasonic scissors (HRMONIC CE; Ethicon Endo- Surgery, Cincinnati, OH). For detection of the intersegmental plane, we performed an original method (10). riefly, we separated the segmental pulmonary artery and vein. We then filled the segment with pure oxygen for 5 min and immediately closed the segmental bronchus with surgical staples. fter a couple of minutes, the intersegmental plane was easily detected. stapler or electrocautery was then used along this plane for the segmentectomy. Statistical analysis We analyzed our data using SPSS software (version 24; SPSS, Chicago, IL, US). The frequencies of categorical variables were assessed with the χ 2 test. When the sample size was small, Fisher s exact test was performed. OS was defined as the time from the operation until death from any cause or the last follow-up. DFS was defined as the time from the operation to the first recurrence, death from any cause, or the last follow-up. OS and DFS were examined

Journal of Thoracic Disease, 2018 3 Table 1 Pre-operative characteristics of clinical stage I cases Characteristics RS (n=62) PS (n=63) P value ge (years) 66±10 73±8 <0.001 Sex (%) 0.015 Male 29 (46.8) 43 (68.3) Female 33 (53.2) 20 (31.7) Size of tumor (mm) <0.001 Range 6 25 3 54 Mean 15±5 21±9 FDG-PET (SUV) 1.2±1.5 5.6±6.5 <0.001 C/T ratio (%) 52±37 73±37 0.001 CE (ng/ml) 3.0±2.1 6.2±8.3 0.004 %VC 113±18 106±19 0.045 FEV1.0 (ml) 1,945±893 1,823±748 0.410 Clinical stage (%) 0.001 I 60 (96.8) 48 (76.2) I 2 (3.2) 15 (23.8) RS, radical segmentectomy; PS, palliative segmentectomy; C/T ratio, consolidation/tumor (C/T) ratio obtained with thinsliced computed tomography; FDG-PET, 2-deoxy-2 [ 18 F] fluorodeoxyglucose positron emission tomography; SUV, standardized uptake value; CE, carcinoembryonic antigen; %VC, % vital capacity; FEV1.0, forced expiratory volume in 1 s. with Kaplan-Meier curves, which were statistically analyzed using log-rank tests. P<0.05 was considered to indicate a significant difference. Table 2 Intra- and postoperative conditions of clinical stage I cases Parameters RS (n=62) PS (n=63) P value Operative time (min) 260±81 248±87 0.424 lood loss (ml) 42±49 82±192 0.107 Transfusion (cases) (%) 0 (0.0) 3 (4.8) 0.125 pproach 0.071 Thoraco 2 (3.2) 2 (3.2) Hybrid 45 (72.6) 34 (54.0) Open 15 (24.2) 27 (42.8) Pathological stage (%) <0.001 I & I 59 (95.2) 42 (66.7) II & II 3 (4.8) 15 (23.8) III & III 0 (0.0) 3 (4.8) IV 0 (0.0) 3 (4.8) Histology (%) 0.001 denocarcinoma 59 (95.2) 44 (69.8) Squamous cell carcinoma 2 (3.2) 13 (20.6) Others 1 (1.6) 6 (9.5) Chest tube duration (days) ll complications (cases) (%) Respiratory complications (cases) (%) 2.4±0.8 3.5±3.2 0.009 16 (25.8) 20 (31.7) 0.554 6 (9.7) 12 (19.0) 0.136 RS, radical segmentectomy; PS, palliative segmentectomy. Results ge was significantly lower in RS cases than in PS cases (P<0.001). The proportion of female patients was significantly higher in RS cases than in PS cases (P=0.015). Tumor size was significantly smaller in PS cases (15±5 mm) than in RS cases (21±9 mm; P<0.001). Tumor standardized uptake value from 2-deoxy-2 [ 18 F] fluorodeoxyglucose positron emission tomography was significantly lower in RS cases (1.2±1.5) than in PS cases (5.6±6.5; P<0.001). Carcinoembryonic antigen was significantly lower in RS cases (3.0±2.1 ng/ml) than in PS cases (6.2±8.3 ng/ml; P=0.004). The consolidation/tumor ratio obtained with thin-sliced computed tomography was significantly lower in RS cases (52%±37%) than in PS cases (73%±37%; P=0.001). The proportion of clinical stage I cases was significantly higher in RS cases (96.8%) than in PS cases (76.2%; P=0.001) (Table 1). Similarly, pathological stage I and I cases were significantly more frequent among RS cases (95.2%) than among PS cases (66.7%; P<0.001). denocarcinoma was significantly more common among RS cases (95.2%) than among PS cases (69.8%; P=0.001). Duration of chest tube placement was significantly shorter in RS cases (2.4±0.8 days) than in PS cases (3.5±3.2 days; P=0.009) (Table 2). Five-year OS for clinical stage I was 100.0% in RS cases and 73.5% in PS cases (log-rank P<0.001). Five-year DFS was 95.5% and 55.7%, respectively (log-rank P<0.001) (Figure 2).

4 Shirahashi et al. Hybrid VTS approach for segmentectomy Overall survival Disease-free survival 1.0 0.8 Radical (n=62) 1.0 0.8 Radical (n=62) Survival 0.6 0.4 0.2 Log rank P<0.001 Palliative (n=63) 0.6 0.4 0.2 Log rank P<0.001 Palliative (n=63) 0.0 0.0 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Months after surgery Patients at risk RS 62 39 30 19 9 2 1 1 62 39 30 18 9 2 1 1 PS 63 34 19 13 6 1 1 63 32 17 10 5 1 Figure 2 Survival curve for clinical stage I non-small cell lung cancer with the Kaplan-Meier method. () Overall survival of RS and pathological stage I PS patients; () disease-free survival of RS and pathological stage I PS patients. RS, radical segmentectomy; PS, palliative segmentectomy. Discussion The hybrid VTS lobectomy uses both direct and video visualization, whereas thoracoscopic VTS lobectomy uses only video visualization. propensity-matched analysis (11) of these methods showed that the former involves shorter operation times and no differences in bleeding, chest tube duration, or complications, as well as no significant differences in OS or DFS. In another study (12), only surgical time (better with muscle-sparing thoracotomy) and hospitalization time (better with VTS) were different between groups. These researchers found no differences in the most important results, including complications after surgery, DFS, and OS. We believe that this muscle-sparing thoracotomy is similar to the hybrid VTS procedure, and that hybrid VTS is broadly equivalent to thoracoscopic VTS in terms of the reduced invasiveness. The most critical consideration with segmentectomy is establishment of an adequate tumor margin. Khullar et al. (13) showed that lobectomy is superior to sublobar resection because insufficient lymphadenectomy and positive sublobar tumor margins often result from the latter procedure. To acquire adequate margins, Tsubota et al. (14) proposed an extended segmentectomy in which the line of resection is placed on the segment adjacent to the affected segment. The absence of positive margins was seen when the margin distance exceeded the maximum tumor diameter, as reported in a multicenter, prospective study (15). Two types of segmentectomy have been described (10): simple, in which only one intersegmental plane is resected (e.g., superior or lingual segmentectomy); and complicated, in which two or more intersegmental planes are resected (e.g., anterior segmentectomy). In the simple segmentectomy, such as a right superior (S6) segmentectomy (Figure 3), the solid line shown in Figure 3 represents an ideal dividing intersegmental plane. However, the dashed lines should be avoided to maintain surgical margins. We suggest that this procedure can be accomplished with both thoracoscopic VTS and hybrid VTS. Conversely, in the complicated segmentectomy, such as a right anterior (S3) segmentectomy, when the tumor is located at a in Figure 4, we can divide along the intersegmental plane represented by the solid line. However, when the tumor is located at b in Figure 4, division must be made along the dashed line, extending into the adjacent segment according to the extended segmentectomy proposed by Tsubota et al. (14). When the tumor is located in a deep position, such as c in Figure 4, more careful division to maintain the surgical margins is required. More than two intersegmental planes are present in the complicated type shown in Figure 4. When division along with an intersegmental vein is performed (Figure 4C), the solid line represents an ideal dividing line for maintaining surgical margins. The dashed lines are insufficient to maintain adequate surgical margins. We believe that a three-dimensional, steric understanding

Journal of Thoracic Disease, 2018 5 Figure 3 Simple-type segmentectomy. () Right superior (S6) segmentectomy, with only one dividing intersegmental plane; () solid line represents an ideal dividing line for maintaining surgical margins. Dashed lines represent planes that are insufficient to maintain surgical margins. C Figure 4 Complicated-type segmentectomy. () Right anterior (S3) segmentectomy, with two dividing intersegmental planes; () dividing intersegmental planes require more than two lines to maintain surgical margins; (C) solid line represents an ideal dividing line for maintaining surgical margins in the division along with the intersegmental vein. Dashed lines represent planes that are insufficient to maintain surgical margins. of the intersegmental planes is required, and that hybrid VTS with direct visualization is suitable for achieving this understanding. We have previously reported the feasibility of segmentectomy in non-small-cell lung cancer with GGN (16). This study is a follow-up to the previous study (16) with additional cases. In this study, we performed hybrid VTS segmentectomy in 63.2% of our cases. Only one ipsilateral other-lobe relapse was seen in RS (Table 3). Conversely, PS showed several relapse patterns. We encountered one PS case of left lower superior segmentectomy after a previous left upper lobectomy. This patient underwent local radiation to prevent a complete pneumonectomy (Table 3). Surgery in this case was performed using an open approach. Thoracoscopic VTS segmentectomy has been reported by D mico (17), mainly for the simple type. Recently, Ghaly et al. (18) showed that thoracoscopic VTS segmentectomy for clinical stage I lung cancer decreases the

6 Shirahashi et al. Hybrid VTS approach for segmentectomy Table 3 Relapse patterns Patterns RS (n=1) Ipsilateral Number and Ms. Tomoko Kamiya for their secretarial support. This study was supported by grants and endowments from the Department of General and Cardiothoracic Surgery, Graduate School of Medicine, Gifu University. Other lobe 1 PS (n=11) Ipsilateral Mediastinal lymph nodes 4 Residual lobe 1 Other lobe 2 Parietal pleura 1 Contralateral Lobe 1 ilateral multiple metastasis 1 rain metastasis 1 RS, radical segmentectomy; PS, palliative segmentectomy. duration of hospitalization and pulmonary complications. They demonstrated that both 5-year DFS and OS were longer with VTS than with open thoracotomy. Median surgical margins with VTS were 1.4 cm (range, 0.6 2 cm) and with thoracotomy were 1.5 cm (range, 0.8 2.7 cm). Locoregional recurrence rates were 7.7% and 12.7%, respectively. In several Japanese studies, locoregional recurrence rates have been reported as 0 5% (19-21). We suggest that determination of whether thoracoscopic VTS segmentectomy without direct visualization or rib spreading can produce sufficient tumor margins is critical, especially for complicated segmentectomy (10). To achieve meticulous surgery, the hybrid VTS segmentectomy appears sufficient for obtaining adequate tumor margins. Conclusions During segmentectomy, the most critical consideration is establishment of sufficient surgical margins around the cancer. Our hybrid approach that includes meticulous surgical manipulations may produce sufficient surgical margins. cknowledgements The authors would like to thank Ms. Yoshimi Hayashi Footnote Conflicts of Interest: The authors have no conflicts of interest to declare. Ethical Statement: The Institutional Review oard at the Graduate School of Medicine, Gifu University approved this study (approval no. 29-100). References 1. Okada M, Koike T, Higashiyama M, et al. Radical sublobar resection for small-sized non-small cell lung cancer: a multicenter study. J Thorac Cardiovasc Surg 2006;132:769-75. 2. Okada M. Radical sublobar resection for lung cancer. Gen Thorac Cardiovasc Surg 2008;56:151-7. 3. Iwata H. Therapeutic strategy for small-sized lung cancer. Gen Thorac Cardiovasc Surg 2016;64:450-6. 4. Gossot D, Lutz J, Grigoroiu M, et al. Thoracoscopic anatomic segmentectomies for lung cancer: technical aspects. J Vis Surg 2016;2:171. 5. Cao C, Chandrakumar D, Gupta S, et al. Could less be more?- systematic review and meta-analysis of sublobar resections versus lobectomy for non-small cell lung cancer according to patient selection. Lung Cancer 2015;89:121-32. 6. Swanson SJ, Herndon JE 2nd, D'mico T, et al. Video- ssisted Thoracic Surgery Lobectomy: Report of CLG 39802 Prospective, Multi-Institution Feasibility Study. J Clin Oncol 2007 25:4993-7. 7. Okada M, Sakamoto T, Yuki T, et al. Hybrid Surgical pproach of Video-ssisted Minithoracotomy for Lung Cancer Significance of Direct Visualization on Quality of Surgery. Chest 2005;128:2696-701. 8. Nakamura K, Saji H, Nakajima R, et al. phase III randomized trial of lobectomy versus limited resection for small-sized peripheral non-small cell lung cancer (JCOG0802/WJOG4607L).Jpn J Clin Oncol 2010;40:271-4. 9. Yamamoto H, Shirahashi K, Matsumoto M, et al. Hybrid approach for VTS pulmonary resection. Video-assist Thorac Surg 2017;2:40. 10. Iwata H, Shirahashi K, Mizuno Y, et al. Surgical technique of lung segmental resection with two intersegmental

Journal of Thoracic Disease, 2018 7 planes. Interact Cardiovasc Thorac Surg 2013;16:423-5. 11. Iwata H, Shirahashi K, Yamamoto H, et al. Propensity score-matching analysis of hybrid video-assisted thoracoscopic surgery and thoracoscopic lobectomy for clinical stage I lung cancer. Eur J Cardiothorac Surg 2016;49:1063-7. 12. Kuritzky M, swad I, Jones RN, et al. Lobectomy by Video-ssisted Thoracic Surgery vs Muscle-Sparing Thoracotomy for Stage I Lung Cancer: Critical Evaluation of Short- and Long-Term Outcomes. J m Coll Surg 2015;220:1044-53. 13. Khullar OV, Liu Y, Gillespie T, et al. Survival fter Sublobar Resection vs. Lobectomy for Clinical Stage I Lung Cancer: n nalysis from the National Cancer Data ase. J Thorac Oncol 2015;10:1625-33. 14. Tsubota N, yabe K, Doi O, et al. Ongoing prospective study of segmentectomy for small lung tumors. Study Group of Extended Segmentectomy for Small Lung Tumor. nn Thorac Surg 1998;66:1787-90. 15. Sawabata N, Ohta M, Matsumura, et al. Optimal distance of malignant negative margin in excision of nonsmall cell lung cancer: a multicenter prospective study. nn Thorac Surg 2004;77:415-20. 16. Iwata H, Shirahashi K, Mizuno Y, et al. Feasibility of segmental resection in non-small-cell lung cancer with ground-glass opacity. Eur J Cardiothorac Surg 2014;46:375-9. 17. D mico T. Thoracoscopic segmentectomy: technical considerations and outcomes. nn Thorac Surg 2008;85:S716-8. 18. Ghaly G, Kamel M, Nasar, et al. Video-ssisted Thoracoscopic Surgery Is a Safe and Effective lternative to Thoracotomy for natomical Segmentectomy in Patients With Clinical Stage I Non-Small Cell Lung Cancer. nn Thorac Surg 2016;101:465-72. 19. Okada M, Yoshikawa K, Hatta T, et al. Is segmentectomy with lymph node assessment an alternative to lobectomy for non-small cell lung cancer of 2 cm or smaller? nn Thorac Surg 2001;71:956-60. 20. Yamashita S, Tokuishi K, nami K, et al. Thoracoscopic segmentectomy for T1 classification of non-small cell lung cancer: a single center experience. Eur J Cardiothorac Surg 2012;42:83-8. 21. Koike T, Koike T, Yamato Y, et al. Prognostic predictors in non-small cell lung cancer patients undergoing intentional segmentectomy. nn Thorac Surg 2012;93:1788-94. Cite this article as: Shirahashi K, Yamamoto H, Matsumoto M, Miyamoto Y, Komuro H, Doi K, Iwata H. Thoracoscopic segmentectomy: hybrid approach for clinical stage I nonsmall cell lung cancer.. doi: 10.21037/ jtd.2018.03.111