Information transmission

Similar documents
CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Respiration. Energy is everything!

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

BY: RASAQ NURUDEEN OLAJIDE

Respiration. Energy is everything!

Chemical Energy. Valencia College

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Chapter 9. Cellular Respiration and Fermentation

(A) Urea cycle (B) TCA cycle (C) Glycolysis (D) Pyruvate oxidation (E) Respiratory chain

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

III. 6. Test. Respiració cel lular

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Glycolysis Part 2. BCH 340 lecture 4

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

Chapter 13 Carbohydrate Metabolism

Metabolic engineering some basic considerations. Lecture 9

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217

Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation

Tricarboxylic Acid Cycle. TCA Cycle; Krebs Cycle; Citric Acid Cycle

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

MULTIPLE CHOICE QUESTIONS

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation

Development of efficient Escherichia coli succinate production strains

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

Chapter 5: Major Metabolic Pathways

Cellular Respiration: Harvesting Chemical Energy

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

7 Cellular Respiration and Fermentation

CHE 242 Exam 3 Practice Questions

Aerobic Fate of Pyruvate. Chapter 16 Homework Assignment. Chapter 16 The Citric Acid Cycle

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Citric acid cycle. Tomáš Kučera.

Integrative Metabolism: Significance

TCA CYCLE (Citric Acid Cycle)

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

METABOLISM Biosynthetic Pathways

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Cellular Respiration and Fermentation

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

METABOLISM Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI


BCH Graduate Survey of Biochemistry

(de novo synthesis of glucose)

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Review of Carbohydrate Digestion

Cellular Respiration and Fermentation

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

7 Pathways That Harvest Chemical Energy

Gluconeogenesis. Gluconeogenesis / TCA 11/12/2009. Free energy changes in glycolysis 11/13/2009

Biological oxidation II. The Cytric acid cycle

Module No. # 01 Lecture No. # 19 TCA Cycle

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION.

Krebs Cycle. Color Index: Original slides. Important. 436 Notes 438 notes. Extra information Biochemistry team 438. Red boxes are IMPORTANT!

Moh Tarek. Razi Kittaneh. Jaqen H ghar

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.

Aerobic Respiration. The four stages in the breakdown of glucose

E.coli Core Model: Metabolic Core

Cellular Respiration: Harvesting Chemical Energy Chapter 9

We must be able to make glucose

Unit 2: Metabolic Processes

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217

Vocabulary. Chapter 19: The Citric Acid Cycle

Dr. Abir Alghanouchi Biochemistry department Sciences college

Krebs cycle Energy Petr Tůma Eva Samcová

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Glycolysis. Intracellular location Rate limiting steps

MITOCHONDRIA LECTURES OVERVIEW

How Cells Release Chemical Energy. Chapter 7

Evidence for an Alternative Glycolytic Pathway in Rapidly Proliferating Cells. Matthew G. Vander Heiden, et al. Science 2010

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Cellular Respiration. The Details

Yield of energy from glucose

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

I tried to put as many questions as possible, but unfortunately only answers were found without the questions.

Chapter 16. The Citric Acid Cycle: CAC Kreb s Cycle Tricarboxylic Acid Cycle: TCA

Metabolic Pathways and Energy Metabolism

Active Learning Exercise 5. Cellular Respiration

Cellular Respiration: Harvesting Chemical Energy

Plant Respiration. Exchange of Gases in Plants:

Energetics of carbohydrate and lipid metabolism

Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18

Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions

Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I

Cellular Respiration: Harvesting Chemical Energy

Transcription:

1-3-3 Case studies in Systems Biology Goutham Vemuri goutham@chalmers.se Information transmission Fluxome Metabolome flux 1 flux flux 3 Proteome metabolite1 metabolite metabolite3 protein 1 protein protein 3 Interactome Transcriptome mrna A mrna B mrna C mrna D Genome gene A gene B gene C gene D Vemuri and Aristidou (5) Microbiol. Mol Biol Rev. 69():197-16 Tools in metabolic engineering Vemuri and Nielsen (6) 1

Number of publications 1-3-3 1 The post-genomic era 1 8 6 4 1995 1996 1997 1998 1999 1 Year Vemuri and Nielsen (6) 3 4 5 6 Case study 1 Overflow metabolism Overflow Metabolism ATP CO oxaloacetate malate citrate fumarate isocitrate succinate CO a-ketoglutarate ATP CO

1-3-3 Overflow Metabolism ATP CO oxaloacetate malate citrate fumarate isocitrate succinate CO a-ketoglutarate ATP CO Overflow Metabolism ATP CO oxaloacetate malate citrate fumarate isocitrate succinate CO a-ketoglutarate ATP CO Overflow Metabolism ATP CO oxaloacetate malate citrate fumarate isocitrate succinate CO a-ketoglutarate ATP CO 3

ATP CO CO 1-3-3 Overflow Metabolism glycerol (S. cerevisiae) ATP lactate (mammalian cells) ethanol (S. cerevisiae) CO acetate (E. coli) oxaloacetate malate citrate fumarate isocitrate succinate CO a-ketoglutarate ATP CO Hypothesis Limited capacity of TCA cycle enzymes Allosteric inhibition of the TCA cycle enzymes Glucose repression of genes of the TCA cycle oxaloacetate malate citrate fumarate isocitrate succinate CO a-ketoglutarate Overflow metabolism and redox Glucose + ADP + + + Pi NDHI NDHII + ATP + TCA cycle NDHI NDHII Pyruvate + GDP + FAD + 4 + 3CO + GTP + FADH + 4 4

1-3-3 Overflow metabolism and redox Glucose + ADP + + + Pi NDE1 NDE + ATP + TCA cycle NDI Pyruvate + GDP + FAD + 4 + 3CO + GTP + FADH + 4 -dependent product formation Berrios-Rivera et al., Metab. Eng., 4(3):17-9, Hypothesis Glucose + ADP + + + Pi Pyruvate + GDP + FAD + 4 + + ATP + 3CO + GTP + FADH + 4 oxidase nox + O + H O 5

METABOLISM 1-3-3 Methodology Transcription Metabolism Association Metabolic Models Biochemical Experiments New Functions Refinement Modify Interpretations New Hypotheses YES Phenotype explained correctly? NO Methodology Chemostats Physiological quantification (q S, Y x/s, q A, ) Intracellular quantification ([],[], metabolites, ) Global transcriptome profiling Response in E. coli Physiological Response qs (, ), YX/S (, ) 1.6 1.4 1. 1..8.6.4. NOX- NOX+ qo (, ), qco (, ) 4 3 1 NOX - NOX +...1..3.4.5.6 Specific Growth Rate (h-1)...4.6.8 1. 1. 1.4 1.6 Specific consumption rate (g/gh) Vemuri et al. (6) Appl. Environ. Microbiol. 7(5):3653-3661 6

1-3-3 Response in E. coli Overflow Metabolism.4 Specific acetate formation rate (g/gh).3..1....4.6.8 1. 1. 1.4 1.6 Specific uptake rate (g/gh) Vemuri et al. (6) Appl. Environ. Microbiol. 7(5):3653-3661 Response in E. coli Intracellular Response Molar / Ratio (, ).1.8.6.4.....4.6.8 1. 1. 1.4 1.6 Specific consumption rate (g/gh) NOX - 5 15 1 5.1..39.6.85 1.7 1.4 5 NOX + 15 1 5 16.1..47.75.98 1.5 1.34 14 Specific consumption rate (g/lh) 1 G6P (u mol / g DCW) 1 F6P (u mol/ g DCW) 8 PEP (u mol/ g DCW) Pyr (u mol/ g DCW) 6 ACoA (u mol / g DCW) Vemuri et al. (6) Appl. Environ. 4 Microbiol. 7(5):3653-3661 Response in E. coli 1. Transcriptional Response.8 log [ratio].6.4.. -. NOX - NOX + -.4 -.6 Glycolysis TCA cycle -.8 Pentose phosphate Respiration -1...4.6.8 1. 1. 1.4 1.6 qs (g/g DCW h) Vemuri et al. (6) Appl. Environ. Microbiol. 7(5):3653-3661 7

1-3-3 Regulation in E. coli Identifying targets for TFs.5. 1.5 1..5. -.5-1. -1.5. 1.. -1. -. -3. -4. -5. -6. -7. -8. (p = 1.5 E -43) (p = 1 E -17) arca Transport: Aerobic Respiratory Control 65 Cell envelop: Central metabolism: 9 46 Degradation Energy metabolism: of small molecules: 5 48 Unknown Fatty genes: acid biosynthesis: 11 1 Global regulatory functions: 8 Nucleotide Biosynthesis 36 Vemuri et al. (6) Appl. Environ. Microbiol. 7(5):3653-3661 Regulation in E. coli Acetate / ATP ArcA ATP ArcA ArcA TCA cycle genes ArcB ADP ArcB PO 4 Vemuri et al. Submitted Metabolic engineering in E. coli Physiological Response Increased growth rate Faster consumption Faster metabolism (higher q CO ) Reduced acetate formation Transcriptional Response TCA cycle genes not repressed Respiration genes not repressed Induction of amino acid genes Induction of probable global regulators Complete elimination of overflow metabolism in ΔarcA-NOX + US Pat Appl. 74918 8

1-3-3 Metabolic engineering in E. coli Recombinant protein production 4 1.4 3 1. -gal (U/g DCW) 1..8.6 Acetate (g/l) 1.4.. 4 6 8 1 1 14 Time (h) Vemuri et al. (6) Biotechnol. Bioeng. 94(3):538-54 Physiological Response 7 Ethanol 1.4 Glycerol 6 1. 5 CON NOX 1. CON NOX Ethanol (g/l) 4 3 Glycerol (g/l).8.6.4 1. 1 3 4 5 Time (h). 1 3 4 5 Time (h) Vemuri et al. PNAS, 7 Glycerol G3P DHAP TCA cycle Overkamp et al.,, J. Bacteriol. 18:83-83 9

1-3-3 Glycerol generation 5 4 Glycerol (g/l) 3 1 1 3 4 5 Time (h) NDE1 NDE GUT NDE1 NDE GUT - NOX Vemuri et al. PNAS, 7 Vemuri et al. PNAS, 7 Altering mitochondrial level 7 Ethanol 1.4 Glycerol 6 1. Ethanol (g/l) 5 4 3 CON NOX AOX Glycerol (g/l) 1..8.6 CON NOX AOX.4 1. 1 3 4 5 Time (h). 1 3 4 5 Time (h) Vemuri et al. PNAS, 7 1

Specific Activity (U/mg prot) / Ratio 1-3-3 Critical dilution rate DECISION SIGNAL Feed Reservoir Ethanol Sensor AOX =.33 h -1 CON =.9 h -1 NOX =.7 h -1 Vemuri et al. PNAS, 7 Steady-state response Strain Dilution Rate (h-1) q S Yield b q O q CO q eth q gly.1 C-limited 1.1.49.75.7 ND ND CON.7 C-limited 3.7.46 7.46 8.3 ND ND.1 N-Limited 4.83.11 4.4 1.11 6.16.4.1 C-limited 1.5.45 3.1 3.14 ND ND NOX.6 C-limited 4.4.39 1.77 11.7 ND ND.1 N-Limited 5.73.9 5.8 17.7 5.6..1 C-limited 1.18.47.99 3. ND ND AOX.3 C-limited 3.87.43 9.8 1.9 ND ND.1 N-Limited 5.7.11 5.54 17. 4.1.5 ND: Not Detected Vemuri et al. PNAS, 7 Intracellular response 1.8.5 1.5 1..9.6.3.4.3..1. C-lim (.1 h -1 ) N-lim (.1 h -1 ) C-lim (D crit) C-lim (.1 h -1 ) N-lim (.1 h -1 ) C-lim (D crit) CON NOX AOX Vemuri et al. PNAS, 7 11

1-3-3 Transcriptional response Metabolic pathways PGI F6P FBP PFK Fructose 6P NH3 Glucose 6P GABAxt NH3xt GABAxt Metabolic graph Reporter metabolites Transcription data TCA Cycle PGI Enzyme interaction FBP PFK graph Subnetwork structures Patil and Nielsen (5) PNAS 1(8):685-689 Transcriptional response Reporter metabolites in response to oxidase sn-glycerol 3-phosphate 3-Phosphonooxy - mitochondrial Acetaldehyde - mitochondrial 3-Phospho-D-glyceroyl phosphate Acetaldehyde Myristic acid Palmitate Stearate CYS xt - mitochondrial (3S)-3-Hydroxyacyl-CoA Glycerone phosphate p-value a 5.38E-9.18E-8 3.16E-3 3.98E-3 5.17E-3 6.6E-3 9.18E-3 9.5E-3 1.E- 1.E- 1.E- 1.E- 1.48E- 1.49E- 1.78E- Reporter metabolites in response to alternate oxidase p-value a - mitochondrial 7.48E-8 - mitochondrial 6.E-5 Orotate 1.37E-3 CoA - mitochondrial 1.53E-3 Oxaloacetate - mitochondrial.3e-3 Acetaldehyde - mitochondrial.5e-3 Oxygen - mitochondrial.85e-3 -Nonaprenyl-3-methyl-6- methoxy-1,4-benzoquinone.85e-3 mitochondrial -Phospho-D-glycerate 4.4E-3 Glyoxylate 4.6E-3 Ubiquinone-9 mitochondrial 4.74E-3 H+ - mitochondrial 6.58E-3 Malate 7.8E-3 Orotidine 5'-phosphate 8.8E-3 Isocitrate 9.8E-3 Vemuri et al. PNAS, 7 Subnetwork analysis NOX vs CON Glycerol pathway Ethanol generation Fatty acid oxidation oxidation Glyoxylate shunt Glycolysis Gluconeogenesis Vemuri et al. PNAS, 7 1

1-3-3 Subnetwork analysis AOX vs CON Glycolysis Gluconeogenesis Ethanol synthesis TCA cycle oxidation ATP translocation Fatty acid synthesis Glyoxylate shunt Nucleotide biosynthesis Vemuri et al. PNAS, 7 Enzymatic analysis.9 G3P DH.6 Glucose.3 6 ADH CON NOX AOX 4 Glycerol CON NOX AOX Pyruvate Ethanol.1 h -1 D crit Oxaloacetate Isocitrate 1 8 4 IDH -Ketoglutarate CON NOX AOX Vemuri et al. PNAS, 7 Conclusion Integrating data is context-dependent Transcriptional regulation is responsible for acetate formation in E. coli Allosteric inhibition of the TCA cycle enzymes in S. cerevisiae Compartmentalization causes overflow of different metabolites Absence of PDC in E. coli is likely why the acetate is overflow metabolite 13