In vivo Color-Coded Imaging of the Interaction of Colon Cancer Cells and Splenocytes in the Formation of Liver Metastases

Similar documents
MELANOMA CANCER TEST

Hair Follicle Derived Blood Vessels Vascularize Tumors in Skin and Are Inhibited by Doxorubicin

Dual-color Imaging of Nascent Angiogenesis and its Inhibition in Liver Metastases of Pancreatic Cancer

Whole-Body Subcellular Multicolor Imaging of Tumor-Host Interaction and Drug Response in Real Time

INTRODUCTION. Journal of Surgical Research 132, (2006) doi: /j.jss

Research Article. Abstract. Introduction. Materialsand Methods

ANTICANCER RESEARCH 35: (2015)

Determination of Clonality of Metastasis by Cell-Specific Color-Coded Fluorescent-Protein Imaging

The Cyan Fluorescent Protein Nude Mouse as a Host for Multicolor-coded Imaging Models of Primary and Metastatic Tumor Microenvironments

Recruitment of Cancer-Associated Fibroblasts and Blood Vessels by Orthotopic Liver Tumors Imaged in Red Fluorescent Protein (RFP) Transgenic Nude Mice

Antimetastatic efficacy of adjuvant gemcitabine in a pancreatic cancer orthotopic model

Nestin-Linked Green Fluorescent Protein Transgenic Nude Mouse for Imaging Human Tumor Angiogenesis

Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models

Real-time Imaging of Tumor-Cell Shedding and Trafficking in Lymphatic Channels

Imaging Nuclear Cytoplasmic Dynamics in Primary and Metastatic Colon Cancer in Nude Mice

Development of the Transgenic Cyan Fluorescent Protein (CFP)-Expressing Nude Mouse for Technicolor Cancer Imaging

Tumor-educated Macrophages Promote Tumor Growth and Peritoneal Metastasis in an Orthotopic Nude Mouse Model of Human Pancreatic Cancer

Multi-organ metastatic capability of Chinese hamster ovary cells revealed by green fluorescent protein (GFP) expression

COVER STORIES. Hoffman, R.M. Visualization of GFP-expressing tumors and metastasis in vivo. BioTechniques 30, , 2001.

ANTICANCER RESEARCH 32: (2012)

2007 AACR Annual Meeting April 14-18, 2007 Los Angeles, CA PRESENTATION SCHEDULE

Selective metastatic tumor labeling with green fluorescent protein and killing by systemic administration of telomerase-dependent adenoviruses

Genetically Fluorescent Melanoma Bone and Organ Metastasis Models 1

Imaging the Interaction of Pancreatic Cancer and Stellate Cells in the Tumor Microenvironment during Metastasis

sensors ISSN by MDPI

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

BMC Cancer. Open Access. Abstract. BioMed Central

(A) RT-PCR for components of the Shh/Gli pathway in normal fetus cell (MRC-5) and a

this mutation. However, VEM was not effective. The PDOX model thus helped identify

Supplementary Material and Methods

HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates

(a) Significant biological processes (upper panel) and disease biomarkers (lower panel)

ANTICANCER RESEARCH 36: (2016)

Anumber of approaches have been taken to label

In vivo imaging with fluorescent proteins: the new cell biology $

1. The metastatic cascade. 3. Pathologic features of metastasis. 4. Therapeutic ramifications. Which malignant cells will metastasize?

HISASHI ISHIKURA, KAZUYA KONDO, TAKANORI MIYOSHI, YUJI TAKAHASHI, HARUHIKO FUJINO and YASUMASA MONDEN

Fluorescent LYVE-1 Antibody to Image Dynamically Lymphatic Trafficking of Cancer Cells In Vivo

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

TITLE: A PSCA Promoter Based Avian Retroviral Transgene Model of Normal and Malignant Prostate

Current methods of external imaging of internally growing. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases

Supplementary Figure 1. SA-β-Gal positive senescent cells in various cancer tissues. Representative frozen sections of breast, thyroid, colon and

TITLE: Notch in Pathological Angiogenesis and Lymphangiogenesis

An Imageable Metastatic Treatment Model of Nasopharyngeal Carcinoma

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

2008 LANDES BIOSCIENCE. DO NOT DISTRIBUTE.

Neoplasia literally means "new growth.

Award Number: W81XWH TITLE: Dependency on SRC-Family Kinases for Recurrence of Androgen- Independent Prostate Cancer

1.The metastatic cascade. 2.Pathologic features of metastasis. 3.Therapeutic ramifications

ANTICANCER RESEARCH 36: (2016) Abstract. Background/Aim: Fluorescence-guided surgery /2016 $

Supplementary Fig. 1: ATM is phosphorylated in HER2 breast cancer cell lines. (A) ATM is phosphorylated in SKBR3 cells depending on ATM and HER2

Orthotopic transplant mouse models with green fluorescent protein-expressing cancer cells to visualize metastasis and angiogenesis

Supplementary Materials. for Garmy-Susini, et al, Integrin 4 1 signaling is required for lymphangiogenesis and tumor metastasis

Interactions between cancer stem cells and their niche govern metastatic colonization

Figure S1. Generation of inducible PTEN deficient mice and the BMMCs (A) B6.129 Pten loxp/loxp mice were mated with B6.

ASSOCIATION FOR ACADEMIC SURGERY, Characterization of HCT116 Human Colon Cancer Cells in an Orthotopic Model 1

Corning BioCoat Matrigel Invasion Chamber

Advantages of multi-color fluorescent proteins for whole-body and in vivo cellular imaging

Instructions. Fuse-It-mRNA easy. Shipping and Storage. Overview. Kit Contents. Specifications. Note: Important Guidelines

Pre-made Lentiviral Particles for intracelular labeling: (LocLight TM Living cell imaging lentivirus for sub-cellular localization)

VEGF receptor antisense therapy inhibits angiogenesis and peritoneal dissemination of human gastric cancer in nude mice

Ready-to-use Lentiviral Particles for intracelular labeling

CRIPTO-1 A POSSIBLE NEW BIOMARKER IN GLIOBLASTOMA MULTIFORME PIA OLESEN, MD, PHD STUDENT

Species Tumor Type Comment for in vivo work Lead Time for in vivo studies [weeks] MB-49-luc-2 Mouse urinary bladder carcinoma C57BL/6 2

Supplemental Material

Cell isolation. Spleen and lymph nodes (axillary, inguinal) were removed from mice

(a) Schematic diagram of the FS mutation of UVRAG in exon 8 containing the highly instable

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

IKK-dependent activation of NF-κB contributes to myeloid and lymphoid leukemogenesis by BCR-ABL1

Molecular Imaging for Cancer Visualization

TITLE: Targeted Eradication of Prostate Cancer Mediated by Engineered Mesenchymal Stem Cells

Pre-made Lentiviral Particles for Fluorescent Proteins

Cancer Biology Course. Invasion and Metastasis

LIST OF ORGANS FOR HISTOPATHOLOGICAL ANALYSIS:!! Neural!!!!!!Respiratory:! Brain : Cerebrum,!!! Lungs and trachea! Olfactory, Cerebellum!!!!Other:!

An epithelial-to-mesenchymal transition-inducing potential of. granulocyte macrophage colony-stimulating factor in colon. cancer

SUPPLEMENTARY INFORMATION

Neoplasia part I. Dr. Mohsen Dashti. Clinical Medicine & Pathology nd Lecture

Single and Multiplex Immunohistochemistry

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors

Cells and viruses. Human isolates (A/Kawasaki/173/01 [H1N1], A/Yokohama/2057/03 [H3N2],

Supplementary Figure 1. EC-specific Deletion of Snail1 Does Not Affect EC Apoptosis. (a,b) Cryo-sections of WT (a) and Snail1 LOF (b) embryos at

Disorders of Cell Growth & Neoplasia

SUPPLEMENTARY INFORMATION

Integrin v 3 targeted therapy for Kaposi s sarcoma with an in vitro evolved antibody 1

Argininosuccinate synthetase 1 suppression and arginine restriction inhibit cell

SUPPLEMENTARY INFORMATION

Instructions. Fuse-It-Color. Overview. Specifications

TITLE: Crosstalk Between Cancer Cells and Bones Via the Hedgehog Pathway Determines Bone Metastasis of Breast Cancer

CONTRACTING ORGANIZATION: Rush University Medical Center Chicago, IL 60612

Influenza virus exploits tunneling nanotubes for cell-to-cell spread

CD4 + T cells recovered in Rag2 / recipient ( 10 5 ) Heart Lung Pancreas

of an untreated HS-stained BAEC monolayer viewed using a laser confocal microscope; Bar = 10 µm.

SUPPORTING INFORMATIONS

GFP-LC3 +/+ CLU -/- kda CLU GFP. Actin. GFP-LC3 +/+ CLU -/- kda CLU GFP. Actin

Supplemental information

Supplementary Table 1. Characterization of HNSCC PDX models established at MSKCC

NBP Protocol. Orders: Support: Web: NBP

Nature Biotechnology: doi: /nbt Supplementary Figure 1

Impact of hyper-o-glcnacylation on apoptosis and NF-κB activity SUPPLEMENTARY METHODS

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

Transcription:

In vivo Color-Coded Imaging of the Interaction of Colon Cancer Cells and Splenocytes in the Formation of Liver Metastases Michael Bouvet, 1 Kazuhiko Tsuji, 1,2 Meng Yang, 2 Ping Jiang, 2 Abdool R. Moossa, 1 and Robert M. Hoffman 1,2 1 Department of Surgery, University of California, San Diego; and 2 AntiCancer, Inc., San Diego, California Research Article Abstract The role of host cells in tumor progression and metastasis is critical. Intrasplenic injection of tumor cells has long been known as an effective method of developing liver metastases in nude mice, whereas portal vein (PV) injection of tumor cells can result in rapid death of the tumor cells. Host cells were thought to playa role in these phenomena. We report here that after splenic injection of tumor cells, splenocytes cotraffic with the tumor cells to the liver and facilitate metastatic colonyformation. Human colon cancer cells that express green fluorescent protein (GFP) linked to histone H2B in the nucleus and red fluorescent protein (RFP) in the cytoplasm (HCT-116-GFP-RFP) were injected in either the PV or spleen of nude mice and imaged at the subcellular level in vivo. Extensive clasmocytosis (destruction of the cytoplasm) of the cancer cells occurred within 6 hours after PV injection and essentiallyall the cancer cells died. In contrast, splenic injection of these tumor cells resulted in the aggressive formation of liver and distant metastasis. GFP spleen cells were found in the liver metastases that resulted from intrasplenic injection of the tumor cells in transgenic nude mice ubiquitouslyexpressing GFP. When GFP spleen cells and the RFP cancer cells were coinjected in the PV, liver metastasis resulted that contained GFP spleen cells. These results suggest a novel tumor-host interaction that enables efficient formation of liver metastasis via intrasplenic injection. (Cancer Res 2006; 66(23): 11293-7) Introduction The cellular mechanisms by which a cancer cell undergoes metastasis are largely unknown (1). Site-specific metastases are regulated by normal host cells as well as the cancer cells. This process has been poorly understood in the past due to lack of appropriate models and due to the inability to visualize tumor-host interaction on a cellular basis in real time in the live mouse. To image tumor-host interactions that regulate metastasis, we developed previously a transgenic nude mouse ubiquitously expressing green fluorescent protein (GFP; ref. 2). With this mouse, it is possible to image the role of host cells in metastasis. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse, in which the h-actin promoter drives GFP expression in essentially all tissues. In the adult mice, the organs all brightly expressed GFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, duodenum, skeleton, and spleen. Requests for reprints: Robert M. Hoffman, AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA 92111. Phone: 858-654-2555; Fax: 858-268-4175; E-mail: all@ anticancer.com. I2006 American Association for Cancer Research. doi:10.1158/0008-5472.can-06-2662 Using the ubiquitously expressing GFP transgenic nude mouse, we have developed a simple yet powerful technique to visualize tumor-induced angiogenesis and other tumor-host interactions with dual-color fluorescence by transplanting red fluorescent protein (RFP) expressing tumors in the model. This model clearly images interactions of the cancer cells and adjacent stroma, distinguishing unambiguously the host- and tumor-specific components of the malignancy (3). Using the above in vivo dual-color fluorescent protein imaging technology, which was pioneered by our laboratory (2 5), Kaplan et al. (6) observed that GFP bone marrow derived cells (BMDC), injected into mice prior to injection of cancer cells expressing RFP, resulted in the RFP-tagged tumor cells associating with the GFP- BMDC. The GFP-BMDC clustered at distant sites before the arrival of the metastatic cancer cells. The cancer cells then proceeded to form metastases at these sites. Kaplan et al. (6) showed that it was necessary for the BMDCs to express vascular endothelial growth factor receptor 1 in order for them to form cellular clusters that attracted the metastatic tumor cells. We recently observed extensive clasmocytosis (destruction of the cytoplasm) and cell death of HCT-116-GFP-RFP human colon cancer cells within 6 hours after injection of the tumor cells in the portal vein (PV). However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells survived and formed colonies in the liver after PV injection. These results suggested that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells in the PV area (7). Splenic injection has long been used as a successful route to obtain liver metastasis of colon cancer (8). The results in this report show that splenocytes remain associated with HCT-116-GFP-RFP, injected in the spleen during liver metastasis formation. Our hypothesis is that the splenocytes facilitate liver metastasis formation in an analogous manner as the bone marrow cells did in the experiments by Kaplan et al. (6) described above. Materials and Methods Cell culture. HCT-116 human colon cancer cell lines were obtained from the American Type Culture Collection (Manassas, VA). The cells were maintained in RPMI 1640supplemented with 10% FCS, 2 mmol/l glutamine (Life Technologies, Inc., Grand Island, NY). The cell line was cultured at 37jC in a 5% incubator. RFP vector production. The RFP (DsRed-2) gene (Clontech Laboratories, Mountain View, CA) was inserted in the retroviral-based mammalian expression vector plncx (Clontech) to form the plncx DsRed-2 vector (9). Production of retrovirus resulted from transfection of plncx DsRed-2 in PT67 packaging cells, which produced retroviral supernatants containing the DSRed-2 gene. Briefly, PT67 cells were grown as monolayers in DMEM supplemented with 10% FCS (Gemini Biological Products, Calabasas, CA). Exponentially growing cells (in 10-cm dishes) were transfected with 10 Ag expression vector using a LipofectAMINE Plus www.aacrjournals.org 11293 Cancer Res 2006; 66: (23). December 1, 2006

Cancer Research (Life Technologies) protocol. Transfected cells were replated 48 hours after transfection and 100 Ag/mL G418 were added 7 hours after transfection. Two days later, the amount of G418 was increased to 200 Ag/mL G418. During the drug selection period, surviving colonies were visualized under fluorescence microscopy and RFP-positive colonies were isolated. Several clones were selected and expanded into cell lines after virus titering on the 3T3 cell line. RFP gene transduction of cancer cells. For RFP gene transduction, 20% confluent HCT-116 human colon cancer cells were incubated with a 1:1 precipitated mixture of retroviral-containing supernatants of PT67 cells and RPMI 1640or other culture medium (Life Technologies) containing 10% fetal bovine serum (Gemini Biological Products) for 72 hours (9). Fresh medium was replenished at this time. Cancer cells were harvested with trypsin/edta and subcultured at a ratio of 1:15 into selective medium, which contained 50 Ag/mL G418. To select brightly fluorescent cells, the level of G418 was increased to 800 Ag/mL in a stepwise manner. Clones of cancer cells expressing RFP were isolated with cloning cylinders (Bel-Art Products) by trypsin/edta and amplified and transferred by conventional culture methods in the absence of selective agent. Production of histone H2B-GFP vector. The histone H2B gene has no stop codon (7, 10), thereby enabling the ligation of the H2B gene to the 5 - coding region of the GFP gene (Clontech Laboratories). The histone H2B- GFP fusion gene was then inserted at the HindIII/CalI site of the plhcx (Clontech Laboratories) that has the hygromycin resistance gene. To establish a packaging cell clone producing high amounts of histone H2B- GFP retroviral vector, the plhcx histone H2B-GFP plasmid was transfected in PT67 cells using the same methods described above for PT67-DsRed-2. The transfected cells were cultured in the presence of 200 to 400 Ag/mL hygromycin (Life Technologies), increased stepwise to establish stable PT67 H2B-GFP packaging cells. RFP and histone H2B-GFP gene transduction of cancer cells. For RFP and H2B-GFP gene transduction, 70% confluent human cancer cells were used (9). Clones expressing RFP in the cytoplasm were initially established as described above. For establishing dual-color cancer cells, the cells were then incubated with a 1:1 precipitated mixture of retroviral supernatants of PT67 H2B-GFP cells and culture medium. To select the double transformants, the RFP-expressing cancer cells were incubated with hygromycin 72 hours after transfection. The level of hygromycin was increased stepwise up to 400 Ag/mL and selected in an analogous manner as described above for the RFP cancer cells. Animals. Nude mice, either transgenic expressing GFP under control of the h-actin promoter (2) or nontransgenic between 5 and 6 weeks of age, were used in this study. The animals were bred and maintained in a HEPAfiltered environment at AntiCancer, Inc. (San Diego, CA) with cages, food, and bedding sterilized by autoclaving. The animal diets were obtained from Harlan Teklad (Madison, WI). Ampicillin (5.0%, w/v; Sigma, St. Louis, MO) was added to the autoclaved drinking water. All animal studies were conducted in accordance with the principles and procedures outlined in the NIH Guide for the Care and Use of Laboratory Animals under assurance number A3873-1. PV and spleen injection. Nude mice were anesthetized with a ketamine mixture (10 AL ketamine HCl, 7.6 AL xylazine, 2.4 AL acepromazine maleate, and 10 AL H 2 O) injected into the peritoneal cavity (7). Human HCT-116- RFP-GFP colon cancer cells (2.0 10 6 /50 AL Matrigel) were injected in the PV or spleen of nontransgenic nude mice during open laparotomy for experiments described in Figs. 1 and 2. Human HCT-116-RFP colon cancer cells (2.0 10 6 /50 AL Matrigel) were injected in the spleen of transgenic GFP nude mice during open laparotomy for experiments described in Fig. 3. Fluorescent optical imaging and processing. The Olympus OV100 Small Animal Imaging System (Olympus Corp., Tokyo, Japan), containing an MT-20light source (Olympus Biosystems, Planegg, Germany) and DP70 CCD camera (Olympus Corp.) was used for subcellular imaging in live mice (10). The optics of the OV100 fluorescence imaging system have been specially developed for macroimaging as well as microimaging with high light-gathering capacity and incorporate a unique combination of high numerical aperture and long working distance. Five individually optimized Figure 1. A, schematic representation of experimental protocol. Human HCT-116-RFP-GFP colon cancer cells (2.0 10 6 /50 AL Matrigel) were injected in the PV or spleen of nude mice during open laparotomy. B, in contrast to the PV where the cells rapidly died (7), when the same cells were injected into the spleen, multiple metastatic tumors were imaged in the liver in 8 of 15mice. Liver micrometastases were imaged by day 7. By day 30, large tumor colonies were imaged in the liver and spleen. C, by day 60, large tumors were imaged in the liver. objective lenses, parcentered and parfocal, provide a 10 5 -fold magnification range for seamless imaging of the entire body down to the subcellular level without disturbing the animal. The OV100 has the lenses mounted on an automated turret with a magnification range of 1.6 to 16 and a field of view ranging from 6.9 to 0.69 mm. The optics and antireflective coatings ensure optimal imaging of multiplexed fluorescent reporters in small animals. High-resolution images were captured directly on a PC (Fujitsu Siemens, Munich, Germany). Images were processed for contrast and brightness and analyzed with the use of Paint Shop Pro 8 and Cell R (Olympus Biosystems; ref. 10). Visualization of cancer cells in the liver or spleen of living mice. At laparotomy, a glass slide was put on the exteriorized liver of the mice to regulate motion (10). Cancer cells in the liver or spleen of the mice were observed with the Olympus OV100 Small Animal Imaging System. Immunohistochemical staining. Colocalization of GFP fluorescence and CD11c in the frozen tumor sections of liver metastases were detected Cancer Res 2006; 66: (23). December 1, 2006 11294 www.aacrjournals.org

Host Splenocytes Enhance Liver Metastasis with the anti-rat immunoglobulin horseradish peroxidase detection kit (BD PharMingen, Franklin Lakes, NJ) following the manufacturer s instructions. The primary antibodies used were purified hamster antimouse CD11c (integrin a x chain) monoclonal antibody (1:50; BD PharMingen). Substrate-chromogen 3,3 -diaminobenzidine staining was used for antigen staining. Results We used color-coded in vivo subcellular imaging (11) to visualize cancer cell trafficking and viability of cancer cells after their injection into the PV or spleen of nude mice (Fig. 1A). The cells were imaged intravitally in the liver or spleen at the single-cell level, using the Olympus OV100 Small Animal Imaging System. As shown previously, the HCT-116-GFP-RFP underwent rapid cell death after injection in the PV area (7). In contrast to the PV injection, when the same tumor cells were injected into the spleen of non-gfp nude mice, multiple metastatic tumors were imaged in the liver in 8 of 15 mice compared with 0of 15 after PV injection. Liver micrometastases were imaged by day 7 (Fig. 1B). By day 60, very large tumors were imaged in the liver (Fig. 1C). By day 40after splenic injection of the HCT-116-GFP-RFP cells, distant metastases were imaged in the lung and paraaortic lymph nodes (Fig. 2). The metastasis sites included liver, lung, lymph node, bone, adrenal gland, and brain. These distant metastases resulted at relatively late time points and frequently occurred. Apparently, the distant metastases were the result of remetastasis of the metastatic tumors growing in the liver, a process we and others have observed previously (12). When HCT-116-RFP cells were injected into the spleen of transgenic GFP nude mice, multiple metastatic tumors were imaged in the liver, which contained not only HCT-116-RFP cells but also GFP-host spleen cells. By day 50, whole-liver images revealed the RFP-expressing liver metastasis surrounded by host GFP-splenocytes (Fig. 3A). In frozen sections of the liver metastasis, the GFP splenocytes surrounding the HCT-116-RFP colon tumor cells were distinguished by brilliant two-color fluorescence. These GFP-host cells stained positive with monoclonal antibodies to CD11c confirming that these cells were mouse splenocytes (Fig. 3B). When the GFP-splenoctyes were cocultured with HCT-116-RFP cells and then injected in the PV, we observed liver metastases in 5 of 15 mice compared with 0of 15 mice injected in the PV with the cancer cells only and in 8 of 15 mice after the cancer cells were injected in the spleen (Table 1). These results suggest that splenocytes are not only associated with the HCT-116-RFP cells during the formation of metastasis but also play a positive role in the formation of the metastatic colonies. Discussion The presence of GFP spleen cells in the liver metastases that resulted from intrasplenic injection of the tumor cells suggests a novel tumor-host interaction that enables efficient formation of liver metastasis via intrasplenic injection. The results of the present report and that of Kaplan et al. (6) described above show that host cells can have a strong promoting effect on the formation of liver metastasis. Our previous report (7) showed a cyclophosphamidesensitive host system that resulted in the rapid cell death of HCT- 116-RFP-GFP cells injected into the PV area. The spleen cells seem to overcome this host-cell killing system when coinjected with the tumor cells. These results indicate that distant organ colonization, which we identified previously as the governing step of metastasis (13), involves interaction of tumor cells with multiple types of promoting and inhibiting host cells. Future experiments will take advantage of this color-coded tumor-host model to further characterize tumor-host cell interactions and the role of host cells in promoting or inhibiting liver metastases. The results of the present article differ from those of Kaplan et al. (6). In our report, we show that direct interaction between tumor cells and splenocytes results in the tumor cell survival in the Figure 2. By day 40, after splenic injection of HCT-116-RFP-GFP cells, distant metastases were imaged in the lung (A, fluorescent image; B, H&E stain) and paraaortic lymph nodes (C, bright field; D, fluorescent image; E and F, magnified views of paraaortic lymph nodes). SMA, supermesentaric artery. www.aacrjournals.org 11295 Cancer Res 2006; 66: (23). December 1, 2006

Cancer Research Figure 3. HCT-116-RFP cells were injected into the spleen of transgenic nude mice expressing GFP in all cells. Resulting liver metastases in the liver were found to be surrounded by bright green cells thought to be splenocytes. A, by day 50, the GFP cells were very prominently surrounding the tumor cells in the liver. Left, bright field image of whole liver; right, fluorescent image of same liver. B, sister slides analyzed by fluorescence and immunohistochemistry. Left, frozen section from a liver metastasis showing by fluorescence microscopy GFP splenocytes surrounding the HCT-116-RFP colon cancer cells; right, immunohistochemical analysis shows that the GFP-host cells stained positive (+) with monoclonal antibodies to CD11c confirming that these cells were mouse splenocytes. PV area and enables the cancer cells to form subsequent liver metastasis and, at later times, distant metastasis, such as in the lung. Kaplan et al. (6) hypothesized that tumor and normal cells interacted at a distance through possible soluble factors. The seed Table 1. Role of spleen cells in promoting liver metastasis PV injection PV injection Spleen injection Cells HCT-116 HCT-116 + HCT-116 splenocytes Frequency of liver metastasis 0/15 5/15 8/15 NOTE: When the GFP-splenoctyes were cocultured with HCT-116-RFP cells and then injected in the PV, we observed liver metastases in 5 of 15 mice compared with 0of 15 mice injected in the PV with the cancer cells only and in 8 of 15 mice after the cancer cells were injected in the spleen. These results suggest that splenocytes are not only associated with the HCT-116-RFP cells during the formation of metastasis but also play a positive role in the formation of the metastatic colonies. See Materials and Methods for experimental details. and soil hypothesis of Paget (1) assumes direct interaction of tumors and normal cells (i.e., the seeds growing in the soil ), the analogy of tumor cells growing in a distant organ. This hypothesis was confirmed by us in 1995 when we showed that colon tumors would metastasize to the liver only if the tumor tissue were able to grow when implanted directly on the liver (13). If colon tumor tissues were unable to grow when implanted directly on the liver, the tumors were also unable to metastasize. These results indicated that the governing step of metastasis is the ability of the tumor cells to grow in the distant organ. Our current results show that direct interaction between tumor and normal cells, such as the colon tumor cells and the splenocytes, facilitate the growth in distant organs. In summary, unlike Kaplan, our results indicate the importance of direct interaction of the tumor and normal cells in the process of formation of metastasis. These results suggest novel targets for antimetastatic drugs. Acknowledgments Received 7/18/2006; revised 8/31/2006; accepted 9/18/2006. Grant support: NIH grant R21 CA109949-01 and American Cancer Society grant RSG-05-037-01-CCE (M. Bouvet) and National Cancer Institute grants CA099258, CA103563, and CA101600 (AntiCancer, Inc.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Cancer Res 2006; 66: (23). December 1, 2006 11296 www.aacrjournals.org

Host Splenocytes Enhance Liver Metastasis References 1. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571 37. 2. Yang M, Reynoso J, Jiang P, Li L, Moossa AR, Hoffman RM. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors. Cancer Res 2004;64:8651 6. 3. Yang M, Li L, Jiang P, Moossa AR, Penman S, Hoffman RM. Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci U S A 2003;100:14259 62. 4. Chishima T, Miyagi Y, Wang X, et al. Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 1997;57: 2042 7. 5. Hoffman RM. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 2005;5:796 806. 6. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1- positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820 7. 7. Tsuji K, Yamauchi K, Yang M, et al. Dual-color imaging of nuclear-cytoplasmic dynamics, viability, and proliferation of cancer cells in the portal vein area. Cancer Res 2006;66:303 6. 8. Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 1990;50:6130 8. 9. Hoffman RM, Yang M. Subcellular imaging in the live mouse. Nature Protocols 2006;1:775 82. 10. Yamauchi K, Yang M, Jiang P, et al. Development of realtime subcellular dynamic multicolor imaging of cancer cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 2006;66:4208 14. 11. Hoffman RM, Yang M. Color-coded fluorescence imaging of tumor-host interaction. Nature Protocols 2006;1:928 35. 12. Rashidi B, Gamagami R, Sasson A, et al. An orthotopic mouse model of remetastasis of human colon cancer liver metastasis. Clin Cancer Res 2000;6:2556 61. 13. Kuo T-H, Kubota T, Watanabe M, et al. Liver colonization competence governs colon cancer metastasis. Proc Natl Acad Sci U S A 1995;92:12085 9. www.aacrjournals.org 11297 Cancer Res 2006; 66: (23). December 1, 2006