As it currently stands, the mortality rate of

Similar documents
Jean M Panneton, MD Professor of Surgery Program Director Vascular Surgery Chief EVMS. Arch Pathology: The Endovascular Era is here

Challenges. 1. Sizing. 2. Proximal landing zone 3. Distal landing zone 4. Access vessels 5. Spinal cord ischemia 6. Endoleak

Thoracoabdominal Aorta: Advances and Novel Therapies

Abdominal and thoracic aneurysm repair

WHAT IS THE BEST OPTION FOR ARCH ANEURYSMS?

Treatment of Thoracoabdominal Aneurysms Is there a need for custom-made devices?

Technique and Outcome of Laser Fenestration For Arch Vessels

Volume 3 (2017) Issue 1 ISSN Abstract. Keywords fenestrated after open repair; Pararenal abdominal aortic aneurysm.

Combined Endovascular and Surgical Repair of Thoracoabdominal Aortic Pathology: Hybrid TEVAR

The Ventana Off-the-Shelf Graft for Pararenal AAA. Andrew Holden Associate Professor of Radiology Auckland Hospital

Percutaneous Approaches to Aortic Disease in 2018

Endovascular Treatment of the Aorta with Fenestrated and Branched Grafts

Toward Total Endovascular Therapy of the Aorta. Adam W. Beck, MD. Associate Professor of Surgery Division of Vascular Surgery and Endovascular Therapy

CUSTOM-MADE SCALLOPED THORACIC ENDOGRAFTS IN DIFFERENT HOSTILE AORTIC ANATOMIES

Endovascular Repair o Abdominal. Aortic Aneurysms. Cesar E. Mendoza, M.D. Jackson Memorial Hospital Miami, Florida

FEVAR FIFTEEN YEARS OF EFFICIENCY E.DUCASSE MD PHD FEBVS CHU DE BORDEAUX

Robert F. Cuff, MD FACS SHMG Vascular Surgery

DIFFICULT ACCESS REMAINS A CONTRAINDICATION FOR EVAR APOSTOLOS K. TASSIOPOULOS, MD, FACS PROFESSOR AND CHIEF DIVISION OF VASCULAR SURGERY

Off-the-Shelf Devices. Mark A Farber, MD FACS Director, Aortic Center Professor of Radiology and Surgery University of North Carolina

An endoleak is radiographic or ultrasonic evidence

Experience of endovascular procedures on abdominal and thoracic aorta in CA region

EVAR replaced standard repair in most cases. Why?

Arch Repair with the Bolton Medical RelayBranch Thoracic Stent-graft system: Multicenter experience

How to achieve a successful proximal sealing in TEVAR? Pr L Canaud

THORACOABDOMINAL AORTIC ANEURYSMS HYBRID REPAIR

Development of a Branched LSA Endograft & Ascending Aorta Endograft

Residual Dissection and False Lumen Aneurysm After TEVAR

Intravascular Ultrasound in the Treatment of Complex Aortic Pathologies. Naixin Kang, M.D. Vascular Surgery Fellow April 26 th, 2018

Conflicts of Interest. When and Why Complex EVAR in Tx of juxta/suprarenal AAA? Summary. Infrarenal EVAR for short necks 2y postop

My personal experience with INCRAFT in standard and challenging cases

History of the Powerlink System Design and Clinical Results. Edward B. Diethrich Arizona Heart Hospital Phoenix, AZ

Increased Flexibility of AneuRx Stent-Graft Reduces Need for Secondary Intervention Following Endovascular Aneurysm Repair

Accessi Iliaci Ostili

Mid-term results of endovascular aneurysm repair with branched and fenestrated endografts.

Endovascular therapy for Ischemic versus Nonischemic complicated acute type B aortic dissection (catbad).

Three year experience with multilayer stent in the treatment of thoracoabdominal aneurysms no evidence for aneurysm stabilization

Free Esophageal Perforation Following Hybrid Visceral Debranching and Distal Endograft Extension to Repair a Ruptured Thoracoabdominal Aortic

Considerations for a Durable Repair

Left subclavian artery (LSA) coverage during

Nellix Endovascular System: Clinical Outcomes and Device Overview

The SPIDER-Graft for Thoracoabdominal Aortic Repair a feasability study in pigs

Neurological Complications of TEVAR. Frank J Criado, MD. Union Memorial-MedStar Health Baltimore, MD USA

Bifurcated system Proximal suprarenal stent Modular (aortic main body and two iliac legs) Full thickness woven polyester graft material Fully

Aortic Neck Issues Associated Clinical Sequelae/Implications for Graft Choice

Redo treatment and open conversion after TEVAR

Stent graft modification with mini-cuff reinforced fenestrations for urgent repair of thoracoabdominal aortic aneurysms

Taming The Aorta. David Minion, MD Program Director, Vascular Surgery University of Kentucky Medical Center Lexington, Kentucky, USA

Home-made Fenestrations for Various Pathologies of Abdominal Aorta

Acute dissections of the descending thoracic aorta (Debakey

Anatomical challenges in EVAR

Ascending Aorta: Is The Endovascular Approach Realistic?

Lessons learned from Ch-EVAR for the treatment of. Miltos Matsagkas MD, PhD, FEBVS Professor of Vascular Surgery University of Thessaly

Percutaneous Axillary Artery Access For Branch Grafting for complex TAAAs and pararenal AAAs: How to do it safely

Distal Arch and Descending Aorta: What Is the Optimal Therapy in 2017?

Anatomical applicability of current off-the-shelf branched endografts in thoracoabdominal aortic aneurysms managed by open surgery.

Durability of The Endurant Stent-Graft through 5 Years

Development of Stent Graft. Kato et al. Development of an expandable intra-aortic prothesis for experimental aortic dissection.

DISCLOSURES ISOLATED DTA LESION? TYPE B DISSECTIONS TREATMENT OPTIONS

An Overview of Post-EVAR Endoleaks: Imaging Findings and Management. Ravi Shergill BSc Sean A. Kennedy MD Mark O. Baerlocher MD FRCPC

How to select FEVAR versus EVAR + endoanchors in short-necked AAAs

Technique and Tips for Complicated AAA Cases with Stent Graft

Talent Abdominal Stent Graft

Endoleaks after F-BEVAR How to Assess & Treat? Gustavo S. Oderich, MD Mayo Clinic Rochester, MN

Paraplegia prevention branches: A new adjunct for preventing or treating spinal cord injury after endovascular repair of thoracoabdominal aneurysms

Endoanchor-assisted TEVAR

What is the best treatment for False Lumen growth after type B Dissection

Disclosures. EVAR follow-up: actual recommendation. EVAR follow-up: critical issues

Case Report A Case of Successful Coil Embolization for a Late-Onset Type Ia Endoleak after Endovascular Aneurysm Repair with the Chimney Technique

Aortic stents, types, selection, tricks in deployment.

Current Status of EVAR for Infrarenal AAA. 31 st Annual Florida Vascular Society. PENN Surgery

Aortic Center of Excellence at Sentara

Clinical trial and real-world outcomes of an endovascular iliac aneurysm repair with the GORE Iliac Branch Endoprosthesis (IBE)

Treatment options for endoleaks: stents, embolizations and conversions

ENCORE, a Study to Investigate the Durability of Polymer EVAR with Ovation A Contemporary Review of 1296 Patients

MODERN METHODS FOR TREATING ABDOMINAL ANEURYSMS AND THORACIC AORTIC DISEASE

THE ENDURANT STENT GRAFT IN HOSTILE ANEURYSM NECK ANATOMY

Antegrade Thoracic Stent Grafting during Repair of Acute Debakey I Dissection: Promotes Distal Aortic Remodeling and Reduces Late Open Re-operation

How to Determine Tolerance for Branch Vessel Coverage

Title. Different arch branched devices are available, is morphology the. main criteria of choice? Ciro Ferrer, MD

COMBINED TECHNIQUE CHIMNEY + FENESTRATED ENDOGRAFT FOR COMPLEX ANEURYSMS ERIC DUCASSE - MD PHD FEVBS CHU BORDEAUX

Chimney endovascular aneurysm sealing (ch-evas) for ruptured abdominal aortic aneurysms (AAA) due to type Ia endoleak following failed EVAS

Conflicts of Interest. Endovascular Repair of Thoracoabdominal Aneurysm. Overview PLANNING ANATOMIC CONSIDERATIONS FOR COMPLEX AORTIC REPAIR

Abdominal Aortic Aneurysms. A Surgeons Perspective Dr. Derek D. Muehrcke

Role of Gender in TEVAR and EVAR results from the GREAT registry

Treatment options of late failures of EVAS. Michel Reijnen Rijnstate Arnhem The Netherlands

EVAR and TEVAR: Extending Their Use for Rupture and Traumatic Injury. Conflict of Interest. Hypotensive shock 5/5/2014. none

Malperfusion Syndromes Type B Aortic Dissection with Malperfusion

Open fenestration for complicated acute aortic B dissection

The Management and Treatment of Ruptured Abdominal Aortic Aneurysm (RAAA)

LOWERING THE PROFILE RAISING THE BAR

Endovascular Management of Thoracic Aortic Pathology Stéphan Haulon, J Sobocinski, B Maurel, T Martin-Gonzalez, R Spear, A Hertault, R Azzaoui

Endologix PowerWeb System EPW?

Optimal repair of acute aortic dissection

Early Clinical Results with the Valiant Mona LSA Branch Stent-Graft

Retrograde Embolization of a Symptomatic Hypogastric Artery Aneurysm

Case Report Early and Late Endograft Limb Proximal Migration with Resulting Type 1b Endoleak following an EVAR for Ruptured AAA

Endovascular aortic stent grafts have forever

No Disclosure. Aortic Dissection in Japan. This. The Challenge of Acute and Chronic Type B Aortic Dissections with Endovascular Aortic Repair

Zenith Renu AAA Converter Graft. Device Description Planning and Sizing Deployment Sequence Patient Follow-Up

Preliminary Data from the Gore EXCLUDER Thoracoabdominal Branch Endoprosthesis Early Feasibility Study

Transcription:

Fenestrated Endografting for the Treatment of Descending Thoracic Aneurysms A series of custom fenestrations including an in-situ fenestration of the celiac and superior mesenteric arteries to improve distal fixation during thoracic endovascular aneurysm repair. BY ERIN H. MURPHY, MD; J. MICHAEL DIMAIO, MD; H. MICHAEL LEWIS, MD; TAYLOR SMITH, MD; AND FRANK R. ARKO, MD As it currently stands, the mortality rate of untreated thoracic aortic aneurysms (TAAs) exceeds 80% at 5 years. 1,2 Operative repair greatly alters the natural history of the disease, and these aneurysms traditionally require open surgical repair with large thoracoabdominal incisions, aortic cross-clamping, and left heart bypass. Open surgery is therefore associated with significant morbidity (65% to 80%) and mortality (10% to 20%). 3-6 Thoracic stent grafting, as first described by Dake et al in 1994, has been associated with less blood loss, lower morbidity rates, and shorter ICU and hospital stays. Furthermore, mortality rates after thoracic endovascular aortic aneurysm repair (TEVAR) are at least comparable to those after open surgery, despite the higher prevalence of high-risk patients in the endovascular subset. 7,8 However, this technology has been limited from widespread application by the anatomical constraints of aortic branching that can eliminate adequate proximal and distal landing zones required for graft seal and fixation. The most complex aortic anatomy and disease are usually seen in older patients with advanced comorbidities. In an attempt to curtail the morbidity and mortality of repair in this subset of patients, hybrid thoracic aortic repair, which combines TEVAR with aortic debranching, has been promoted for high-risk patients with aneurysmal involvement of the branched aorta. However, reported results of this technique are varied, as this procedure is far from minimally invasive and requires celiotomy and long operative times. 9-11 The advent of fenestrated and branched endografts has now shifted the focus of complex thoracoabdominal repair back toward the extension of endovascular technology in order to address these complex patients. Although the reported use of fenestrated endografts in the thoracic aorta are less extensive, 12-14 they have been applied more frequently to pararenal and juxtarenal aneurysms with good early- and midterm success. 15-24 With additional experience and expansion of this technol- Figure 1. CT angiogram demonstrating the 62-mm descending thoracic aneurysm in the first patient treated. 26 I ENDOVASCULAR TODAY I JANUARY 2009

ogy, it is likely that fenestrated and branched endografts will find a place in the treatment of thoracic disease. In the following case studies, we describe three patients who were treated with custom fenestrated endografts for descending TAA. CASE 1 The first patient was an 82-year-old female with a medical history of chronic obstructive pulmonary disease (COPD), coronary artery disease (CAD), hypertension, and morbid obesity. She was referred for treatment of a 6-cm descending TAA (Figure 1). CT angiography confirmed a long proximal neck distal to the left subclavian artery that measured 24 mm in diameter. Distally, the neck length was 10 mm above the celiac artery. Rather than covering the celiac artery with the stent graft or performing an aortoceliac bypass to preserve flow, we elected to implant a custom fenestrated endograft. A thoracic aortogram was performed and confirmed the CTA findings (Figure 2). A single 36-mm Talent thoracic stent graft (Medtronic, Minneapolis, MN) was fully deployed outside of the body, and using the measurements of the angiogram and CTA, a 7-mm fenestration was created using an eye cautery, and the stent graft was reloaded into the sheath (Figure 3). Using eight markers on the stent graft to align the fenestration with the celiac artery on a lateral arteriogram, the stent graft was deployed distally to the superior mesenteric artery. A reversed curved catheter was then used to cannulate the fenestration and the celiac artery. A 7-F Pinnacle sheath (Terumo Interventional Systems, Somerset, NJ) was then Figure 2. Aortogram in lateral projection demonstrating only a 10-mm distal fixation zone for thoracic endografting to the level of the celiac artery. However, there is 20 mm to the takeoff of the superior mesenteric artery. passed into the celiac artery, and a 7- X 22-mm icast covered stent (Atrium Medical Corporation, Hudson, NH) was passed into the fenestration and deployed (Figure 4). The completion angiogram demonstrated no evidence of an endoleak and showed good filling of the celiac and superior mesenteric arteries (Figure 5). The patient recovered well and was discharged from the hospital on the third postoperative day. The CT angiogram at 6 weeks confirmed patency of the fenestration and exclusion of the aneurysm (Figure 6). CASE 2 The second patient presented emergently with back pain a 7-cm descending TAA, again having no distal neck. Furthermore, she had a 4.5- cm infrarenal abdominal aortic aneurysm. She was a 79-year-old female with COPD, CAD, and severe spinal stenosis. Proximally, she had an adequate neck with an inadequate distal neck to repair the TAA. Therefore, using the techniques as described above, a 36-mm Talent thoracic stent graft was fully deployed, and a 7-mm fenestration was created in the distal end of the stent graft. A platinum-tipped.014-inch wire was sewn around the fenestration for visualization in this case (Figure 7). The thoracic components were deployed, and A B A B Figure 3. The Talent thoracic stent graft is fully deployed outside of its sheath. Using the 3D measurements and the thoracic aortogram, a fenestration is created using eye cautery to prevent fraying of the edges (A and B). Following this, the stent graft is reloaded into its delivery sheath. Figure 4. The stent graft is deployed, and using a reversed curved catheter, the fenestration and the celiac artery are cannulated (A); a 7-F Pinnacle sheath is used to cannulate the celiac artery, and a 7- X 22-mm icast covered stent is placed into the celiac artery (B). JANUARY 2009 I ENDOVASCULAR TODAY I 27

the celiac artery was cannulated through the fenestration, then a 7- X 22-mm icast covered stent was placed. Because the patient presented with back pain, the infrarenal aneurysm was repaired with an AneuRx stent graft (Medtronic). With both the thoracic and the infrarenal aneurysms repaired, the patient required a spinal drain for right leg weakness postoperatively. She regained full strength in her leg and was discharged from the hospital on the seventh postoperative day. The CT angiogram at 4 weeks demonstrated good filling of the celiac artery with exclusion of the thoracic and infrarenal aneurysms (Figure 8). CASE 3 The third patient was an 80-year-old female with a contained descending TAA. On CT angiogram, the celiac artery was occluded, and the aneurysm extended to just above the superior mesenteric artery (SMA). Proximally, the aorta measured 32 mm; therefore, a 36-mm Talent thoracic stent graft was chosen. Due to external iliac arteries that measured 5 to 6 mm in diameter, we decided to use an iliac conduit. The Talent stent graft was deployed to the level of the renal arteries to exclude the aneurysm. Then, the stent graft delivery system was removed, and an 18-F sheath was placed into the conduit for hemostasis. Next, a small midline incision was made, and the SMA was dissected and encircled with vessel loops (Figure 9). A micropuncture set was used to cannulate the artery, and a 45-cm Pinnacle sheath was placed into the SMA. The 18-F sheath in the iliac conduit was then connected to the 7-F sheath in the SMA to allow flow to the SMA. Then, a transseptal needle (St. Jude Medical, Inc., St. Paul, MN) was passed over a.018-inch wire to the level of the stent graft and Figure 5. The stent graft covers the celiac artery and ends just above the SMA. There is complete exclusion of the aneurysm with excellent filling of the celiac artery. A Figure 6. Follow-up CTA with 3D reconstructions at 6 weeks shows the stent graft to be excluded with filling of the celiac artery through the icast stent without evidence of an endoleak. was used to create an in situ fenestration. An 8- X 40- mm icast stent was placed through the fenestration and dilated. The completion angiogram showed excellent flow through the SMA, as well as exclusion of the aneurysm (Figure 10). On postoperative day 10, the patient developed ischemic colitis of the sigmoid colon, necessitating B Figure 7. CT demonstrates a short distal neck just above the celiac artery (A). Again, the Talent thoracic stent graft is deployed on the back table. A 7-mm fenestration is created, and a.014-inch platinum tip wire is sewn around the fenestration to make visualization easier (B). 28 I ENDOVASCULAR TODAY I JANUARY 2009

A B C Figure 8. The icast stent is seen within the celiac artery with mild kinking of the stent, which is not flow-limiting on duplex US (A). The aneurysm is completely excluded on axial images (B). A 3D reconstruction shows the thoracic aorta and the infrarenal aorta repaired with a Talent and an AneuRx stent graft (C). resection. The patient went into oliguric renal failure. The family requested withdrawal of support, and the patient died on postoperative day 12. DISCUSSION Fenestrated endografts allow for the preservation of aortic branch vessels by incorporating them in the endovascular repair. This is accomplished by stenting open the aortic branches through adjacent fenestrations in the endograft. Fenestrations may be created by the surgeon at the time of operation, as was done in all of the patients mentioned in the preceding case studies, or the fenestrations may be premade by graft manufacturers. However, premade fenestrations are still not FDA approved in the US, and it is unknown when they will be commercially available. Either way, the side holes in the graft are created by measurements obtained from 3D CT data using orthonormal views of the aorta to determine the relationship of the side branches to each other and the new endograft. Fenestrated endografts were first intended for use in pararenal aortic aneurysms, in which a short infrarenal neck (<15 mm) would otherwise preclude EVAR. Because an inadequate infrarenal neck is the most common contraindication for EVAR, 25 the benefit of a durable fenestrated or branched endograft has been estimated to benefit up to 20% of patients with abdominal aortic aneurysms by preventing the need for open surgical repair. 26-28 Park et al was the first to report success with this technique in 1996, when it was used to repair infrarenal aneurysms requiring preservation of the inferior mesenteric artery in the first patient, and a low renal artery in the second patient. 15 Since then, experience in the abdominal aorta has increased dramatically, demonstrating promising early 15-24 and midterm results. 17-23 Specifically, available reports show a procedural success rate of 82% to 100% and a A B C D Figure 9. Aortogram (A) demonstrates the aneurysm with involvement of the celiac artery, which is occluded and ending just at the level of the SMA, as seen on the 3D reconstruction (B). A conduit was used, as the external iliac arteries were 5 to 6 mm bilaterally (C). Following deployment, a small celiotomy was made, and a 7-F Pinnacle sheath was placed into the SMA (D). 30 I ENDOVASCULAR TODAY I JANUARY 2009

A B C D Figure 10. The 18-F sheath in the iliac conduit is connected to the 7-F sheath in the SMA to provide flow to the occluded SMA (A). Next, the transseptal needle is advanced into the 7-F sheath and used to create an in situ fenestration (B).Then, an 8- X 40-mm icast stent is placed into the fenestration.the completion angiogram demonstrates excellent flow through the icast stent (D). periprocedural mortality rate of 0.8% to 4%. 15-24 With variable midterm follow-up of 2 to 7 years, the largest reports demonstrate low aneurysm-related death at 0% to 4.8%, low conversion rates of 0% to 1.6%, and a low incidence of endograft-related endoleak (type I or III) ranging from 0% to 9.2%. Stent occlusion rates, when reported, are also low (<5%). 18-24 Fenestrated and branched endografting in the thoracic aorta may be used to distally extend the landing zone for patients with thoracic aneurysms or distal type I endoleaks. It may also be used to allow total endovascular treatment of thoracoabdominal aneurysms. However, extension of this technology to the thoracic aorta has been slower, as it is limited by more challenging anatomy and technical considerations and concern over durability and the ramifications of stent occlusion in these patients. Despite valid concerns, it should be noted that patients with thoracic aortic disease stand to gain the most benefit from this technique. The greater risks of conservative management for thoracic aneurysmal disease, as well as the risk of open TAA repair (as compared to patients with AAA), result in a greater potential for patients to benefit from this technology. In fact, by eliminating the need for aortic cross-clamping, left heart bypass, and thoracotomy/celiotomy, fenestrated endografting theoretically eliminates much of the operative risk associated with repair of TAAA. In the case reports previously mentioned, we describe the treatment of a series of three patients, two of which were emergent procedures in patients with thoracic aneurysms and were at high risk using either open or hybrid repair. Two of the three underwent uncomplicated TEVAR procedures with distal extension of the endograft to include the celiac artery. These two patients experienced excellent short-term results that could not likely have been duplicated with other available surgical techniques. They were discharged from the hospital within 7 days, despite multiple medical comorbidities and advanced age. Unfortunately, the third patient developed ischemic colitis, and following resection, experienced acute renal failure. Upon exploration and resection of the left colon, the small bowel was well perfused with an excellent pulse in the SMA. The exact cause of the ischemic colitis is unknown, but certainly a ruptured descending TAA has a high likelihood of mortality. When the patient developed acute renal failure, withdrawal of support by the family was due to the patient s advanced age. Likewise, several investigators have now described using fenestrated and branched grafts exclusively in the thoracic aorta and have found this to be both safe and feasible. 12-14 Anderson et al first reported on four patients with TAAAs who were treated with custom-designed fenestrated and branched endografts. Although they experienced one periprocedural death, the remaining three patients were all discharged from the hospital in less than 1 week, despite significant medical comorbidities in all of the patients and ages >75 in two of the three patients. Furthermore, the 1-year follow-up showed that all of 10 treated vessels remained patent. 13 Chuter et al have recently reported 22 TAAA patients who were treated with fenestrated or branched endografts and demonstrated a periprocedural mortality rate of 9.1%, a reintervention rate of 9.1%, and a branch vessel patency rate of 98.85% at 1 month. Although they did report a high perioperative morbidity rate of 41%, this is at least equivalent to those obtained with open repair, and there were also no reports of renal failure, stroke, or myocardial infarction. 12 The largest series, reported by Roselli et al, involved 73 patients with thoracoabdominal aneurysms. They had technical success in 93% of patients, with no conversions or ruptures, a 30-day mortality rate of 5.5%, and a major morbidity rate of 14%. However, long-term follow-up is lacking. 14 32 I ENDOVASCULAR TODAY I JANUARY 2009

CONCLUSION Overall, many patients with thoracoabdominal aneurysms who were once considered ineligible for endovascular repair due to complex aortic anatomy, disease, and advanced age, may in fact be candidates with the further development of fenestrated endografting. There are relative contraindications for this procedure however, as previously described by Chuter et al, including stenosis or severe angulation of branch vessels, preventing access, and severe tortuosity of the aorta or iliac arteries, preventing the free endograft movement needed to align fenestrations properly. 13 In all of the patients treated in this series, there was limited tortuosity, and the branch vessels came off relatively straight from the aorta. Currently, experiences stated in the literature are anecdotal, and without longer duration of follow-up and more substantial experiences reported, this is not the recommended operation for all patients with thoracic disease. Fenestrated or branched endografting is ideally suited for patients who desire repair, but whose comorbidities place them at significant operative risk for standard open or hybrid technique. Patients who can tolerate these other, more durable procedures should likely continue to undergo them. Until the fenestrated or branched endograft technique is more widely implemented, only experienced interventionists should perform it. Erin H. Murphy, MD, is from the Division of Vascular and Endovascular Surgery and The Department of Cardiovascular Surgery, University of Texas Southwestern Medical Center, in Dallas, Texas. Financial interest disclosure information was not available at the time of publication. J. Michael DiMaio, MD, is Associate Professor and Director, Cardiovascular and Thoracic Surgery Research Department of Cardiovascular Surgery, University of Texas Southwestern Medical Center, Dallas, Texas. Financial interest disclosure information was not available at the time of publication. H. Michael Lewis, MD, is from the Division of Vascular and Endovascular Surgery and The Department of Cardiovascular Surgery, University of Texas Southwestern Medical Center, in Dallas, Texas. Financial interest disclosure information was not available at the time of publication. Taylor Smith, MD, is from the Division of Vascular and Endovascular Surgery and The Department of Cardiovascular Surgery, University of Texas Southwestern Medical Center, in Dallas, Texas. Financial interest disclosure information was not available at the time of publication. Frank R. Arko, MD, is Associate Professor of Surgery and Chief, Endovascular Surgery, UT Southwestern Medical Center, in Dallas, Texas. He has disclosed that he receives research funding and speaking honoraria from Medtronic, and that he receives research funding from Terumo Medical, but received no funding for this manuscript. Dr. Arko may be reached at (214) 645-0533; frank.arko@utsouthwestern.edu. 1. Bickerstaff LK, Pairolero PC, Hollier LH, et al. Thoracic aortic aneurysms: a populationbased study. Surgery. 1982;92:1103-1108. 2. Cambria RA, Gloviczki P, Stanson AW, et al. Outcome and expansion rate of 57 thoracoabdominal aortic aneurysms managed nonoperatively. Am J Surg. 1995;170:213-217. 3. Derrow AE, Seeger JM, Dame DA, et al. The outcome in the Untied States after thoracoabdominal aortic aneurysm repair, renal artery bypass, and mesenteric revascularization. J Vasc Surg. 2001;34:54-61. 4. Cowan JA Jr, Dimick JB, Henke PK, et al. Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: hospital and surgeon volume-related outcomes. J Vasc Surg. 2003;37:1169-1174. 5. Svensson LG, Crawford ES, Hess KR, et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17:357-368. 6. Rectenwald JE, Huber TS, Martin TD, et al. Functional outcome after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2002;35:640-647. 7. Bavaria JE, Appoo JJ, Makaroun MS, et al. Endovascular stent grafting versus open surgical repair of descending thoracic aortic aneurysms in low-risk patients: a multicenter comparative trial. J Thorac Cardiovasc Surg. 2007;133:369-377. 8. Najibi S, Terramani TT, Weiss VJ, et al. Endoluminal versus open treatment of descending thoracic aortic aneurysms. J Vasc Surg. 2002; 36:732-737. 9. Saleh HM, Inglese L. Combined surgical and endovascular treatment of aortic arch aneurysms. J Vasc Surg. 2006;44:460-466. 10. Black SA, Wolfe JH, Clark M, et al. Complex thoracoabdominal aortic aneurysms: endovascular exclusion with visceral revascularization. J Vasc Surg. 2006;43:1081-1089. 11. Zhou W, Reardon M, Peden EK, et al. Hybrid approach to complex thoracic aortic aneurysms in high risk patients: surgical challenges and clinical outcomes. J Vasc Surg. 2006;44:688-693. 12. Chuter TA, Rapp JH, Hiramoto JS, et al. Endovascular treatment of thoracoabdominal aortic aneurysms. J Vasc Surg. 2008;47:6-16. 13. Anderson JL, Adam DJ, Berce M, et al. Repair of thoracoabdominal aortic aneurysms with fenestrated and branched endovascular stent grafts. J Vasc Surg. 2005;42:600-607. 14. Roselli EE, Greenberg RK, Pfaff K, et al. Endovascular treatment of thoracoabdominal aneurysms. J Thorac Cardiovasc Surg. 2007;133:1474-1482. 15. Park JH, Chung JW, Choo IW, et al. Fenestrated stent-grafts for preserving visceral arterial branches in the treatment of abdominal aortic aneurysm: preliminary experience. J Vasc Interv Radiol. 1996;7:819-823. 16. Faruqi RM, Chuter TA, Reilly LM, et al. Endovascular repair of abdominal aortic aneurysm using a pararenal fenestrated stent graft. J Endovasc Surg. 1999;6:354-358. 17. Anderson JL, Berce M, Hartley DE. Endoluminal aortic grafting with renal and superior mesenteric artery incorporation by graft fenestration. J Endovasc Ther. 2001;8:3-15. 18. Semmens JB, Lawrence-Brown MM, Hartley DE, et al. Outcomes of fenestrated endografts in the treatment of abdominal aortic aneurysm in Western Australia (1997-2004). J Endovasc Ther. 2006;13:320-329. 19. Greenberg RK, Haulon S, Lyden SP, et al. Endovascular management of juxtarenal aneurysms with fenestrated endovascular grafting. J Vasc Surg. 2004;39:279-287. 20. Greenberg RK, Haulon S, O Neill S, et al. Primary endovascular repair of juxtarenal aneurysms with fenestrated endovascular grafting. Eur J Vasc Endovasc Surg. 2004;27:484-491. 21. Ziegler P, Avgerinos ED, Umscheid T, et al. Fenestrated endografting for aortic aneurysm repair: a 7-year experience. J Endovasc Ther. 2007;14:609-618. 22. O Neill S, Greenberg RK, Haddad F, et al. A prospective analysis of fenestrated endovascular grafting: Intermediate-term outcomes. Eur J Vasc Endovasc Surg. 2006;32:115-123. 23. Scurr JR, Brennan JA, Gilling-Smith GL, et al. Fenestrated endovascular repair for juxtarenal aortic aneurysm. Br J Surg. 2008;95:326-332. 24. Muhs BE, Verhoeven EL, Zeebregts CJ, et al. Mid-term results of endovascular aneurysm repair with branched and fenestrated endografts. J Vasc Surg. 2006;44:9-15. 25. Sampaio SM, Panneton JM, Mozes GI, et al. Proximal type I endoleak after endovascular abdominal aortic aneurysm repair: predictive factors. Ann Vasc Surg. 2004;18:621-628. 26. Crawford ES, Beckett WC, Greer MS. Juxtarenal infrarenal abdominal aortic aneurysm. Special diagnostic and therapeutic considerations. Ann Surg. 1986;203:661-670. 27. Qvarfordt PG, Stoney RJ, Reilly LM, et al. Management of pararenal aneurysms of the abdominal aorta. J Vasc Surg. 1986;3:84-93. 28. Taylor SM, Mills JL, Fujitani RM. The juxtarenal abdominal aortic aneurysm. A more common problem than previously realized? Arch Surg. 1994;129:734-737. JANUARY 2009 I ENDOVASCULAR TODAY I 33