MONOMAGNESIUM PHOSPHATE TRISODIUM DIPHOSPHATE

Similar documents
COMMISSION REGULATION (EU)

Official Journal of the European Communities. (Acts whose publication is obligatory) COMMISSION DIRECTIVE 2002/82/EC. of 15 October 2002

Paper No.: 07 Paper Title: TECHNOLOGY OF MILK AND MILK PRODUCTS Module 32: Technology of dairy byproducts-1: Caseinates

Purity Tests for Modified Starches

Lecture 26. Other Phosphate Fertilizers Part 2

Change to read: BRIEFING

Corn Starch Analysis B-47-1 PHOSPHORUS

Fertilizers. Chapter INTRODUCTION

The Amendment of Standards for Specification, Scope, Application and Limitation of Food Additives

PHOSPHATE TECHNOLOGY REGULATORY COMPLIANCE AWWARF RESEARCH AWWARF RESEARCH INFRASTRUCTURE OPTIMIZED CORROSION CONTROL EPA LEAD & COPPER RULE

15. Mixed fertilizers sources preparations- their compatibility advantages

TNPSC Chemistry Study Material Fertilizers

The Draft Amendment of Standards for Specification, Scope, Application and Limitation of Food Additives

WET PROCESS PHOSPHORIC ACID

6.02 Uniformity of Dosage Units

Pectins. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016

Manufacturer of High Purity Chemicals PRODUCT LIST

גדות תעשיות ביוכימיה בע"מ Gadot Biochemical Industries Ltd.

FACTORS AFFECTING WATER QUALITY

Essential Elements. Original research don by Julius von Sachs 1860 using hydroponics

WHAT ARE FERTILIZERS

CODEX STANDARD FOR EDIBLE CASEIN PRODUCTS

Corn/Maize Starch. Speci cations

STANDARD FOR EDIBLE CASEIN PRODUCTS CODEX STAN

גדות תעשיות ביוכימיה בע"מ Gadot Biochemical Industries Ltd.

77th JECFA - Chemical and Technical Assessment (CTA), 2013 POTASSIUM ALUMINIUM SILICATE-BASED PEARLESCENT PIGMENTS, TYPES I, II AND III

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB1886.

CODEX STANDARD FOR EDIBLE CASEIN PRODUCTS

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

STANDARD FOR A BLEND OF SKIMMED MILK AND VEGETABLE FAT IN POWDERED FORM CODEX STAN Adopted in Amendment: 2010, 2013, 2014, 2016.

Paper No. 13 FOOD ADDITIVES. Module No. 12. Emulsifying salts for the dairy and food industry

Agenda Item 4(c) CX/MMP 08/8/6 October 2007

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

MONOGRAPHS (USP) Saccharin Sodium

People who have a zinc deficiency can take hydrated zinc sulfate (ZnSO 4.xH 2O) as a dietary supplement.

Paper No.: 13 Paper Title: Food Additives Module 2. Functional Classification of Food Additives

Chapter. The Micronutrients: Vitamins and Minerals. Images shutterstock.com

Understanding ph management and plant nutrition Part 3: Fertilizers

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

Understanding a Soil Report

THERMALLY OXIDIZED SOYA BEAN OIL

Analysis. Methods of. of Soils, Plants, Waters, Fertilisers & Organic Manures. Edited by HLS Tandon

1. NOMENCLATURE : 2,4-Hexadienoic Acid. : Hexadienoic acid. : 1,3- Pentadiene 1- Carboxylic Acid.

1 out of 8. Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 86th Meeting 2018 ERYTHROSINE

ASHXX ASH (Residue on Ignition)

of Life Chemical Aspects OBJ ECTIVESshould be able to: ENCOUNTERS WITH LIFE H" ~ ~O N-C-C H R OH After completing this exercise, the student

Plant Nutrients in Mineral Soils

REP18/CF-Appendix VI 1

in a uniquely natural way.

E55A GELATIN, GELLING GRADE Gelatina

Hydroponics TEST KIT MODEL AM-41 CODE 5406

BOTANY AND PLANT GROWTH Lesson 9: PLANT NUTRITION. MACRONUTRIENTS Found in air and water carbon C oxygen hydrogen

Lutein Esters from Tagetes Erecta

Antacid therapy: Antacids side effects:

CODEX STANDARD FOR MILK POWDERS AND CREAM POWDER 1 CODEX STAN

Soil Composition. Air

4. Contaminants. 4.1 Aluminium (from all sources, including food additives)

LYCOPENE FROM BLAKESLEA TRISPORA CHEMICAL AND TECHNICAL ASSESSMENT (CTA)

Lesson 3 Understanding Nutrients and Their Importance

CODEX STANDARD FOR CREAM AND PREPARED CREAMS

Ch 2 Molecules of life

Nutrition of Horticultural Crops. Monica Ozores-Hampton University of Florida/IFAS/SWFREC Spring 2013

The source of protein structures is the Protein Data Bank. The unit of classification of structure in SCOP is the protein domain.

Report of the in-session Working Group on Food Additives (original language only)

SWEETINDIA Following Synthetic Sweeteners available on regular basis. Acesulfame Potassium Aspartame Sucralose Sodium Cyclamate Sodium Saccharin

Wastewater Treatment: Reducing Salts Generated During Treatment to Promote Water Re-Use. By: David Calnan Cherokee Chemical Inc, (CCI)

Understanding your results Acidity... 3 Aluminium... 3 Base saturation... 3 Boron... 4 Bulk density... 4 Calcium... 4 Cations...

Rebaudioside a From Multiple Gene Donors Expressed in Yarrowia Lipolytica

چهارمین کنگره مهندسی نفت ایران. Lab Investigation of Inorganic Scale Removal Using Chelating Agents and Hydrochloric Acid Solutions.

Animal, Plant & Soil Science. D3-7 Characteristics and Sources of Secondary Nutrients and Micronutrients

PURE BRAZIL BRAND PRODUCTS

0620 CHEMISTRY. 0620/23 Paper 2 (Core Theory), maximum raw mark 80

Nutrition in Container Crops. Dr. James Altland

1101 S Winchester Blvd., Ste. G 173 San Jose, CA (408) (408) fax Page 1 of 2

THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS

Reading and Analyzing your Fertilizer Bag. Dr. Cari Peters Vice President

Hydroxypropyl Starch (Tentative)

Advanced ph management

STANDARD FOR CREAM AND PREPARED CREAMS

Feedstuffs Analysis G-22-1 PROTEIN

COMPOST ANALYSIS REPORT

COMPOST ANALYSIS REPORT

Amendment of Standards for Specification, Scope, Application and Limitation of Food Additives

ENVE 424 Anaerobic Treatment

Basics of Alkali Refining & Water Washing of Vegetable Oils. Andrew Logan Alfa Laval Copenhagen A/S

FOOD. Why do we need food? What's in our food? There are 3 trace elements, Iron (Fe), Copper (Cu) and Zinc (Zn).

Understanding Your Soil Report. Michael Cook 2018

Introduction to sodium technology Neutronic characteristics of sodium and complexities

Fertilization Programming

3016 Oxidation of ricinoleic acid (from castor oil) with KMnO 4 to azelaic acid

Edible casein products Specification

Table Chemical & functional roles of minerals and mineral salts/complexes in foods Mineral Food sources Function

Food First. Food First. Build-Up Nutrition Soups Build-Up Nutrition Shakes Build-Up Original

COMPOST ANALYSIS REPORT

ANIMAL OILS AND FATS CHAPTER 6 CAN SAPONIFICATION BE ACHIEVED WITH POTASSIUM BICARBONATE AND AMMONIUM CARBONATE 1?

ARTESUNATE TABLETS: Final text for revision of The International Pharmacopoeia (December 2009) ARTESUNATI COMPRESSI ARTESUNATE TABLETS

גדות תעשיות ביוכימיה בע"מ Gadot Biochemical Industries Ltd.

UNDERSTANDING YOUR WATER PROFILE PRESENTED BY POULTRY PARTNERS AND AHPD

There are two groups of minerals: Major salt components: K, Na, Ca, Mg, Cl -, sulfate, phosphate, and HCO

Yeast Extracts containing Mannoproteins (Tentative)

Transcription:

Chemical and Technical Assessment 61st JECFA MONOMAGNESIUM PHOSPHATE TRISODIUM DIPHOSPHATE Chemical and Technical Assessment (CTA) First draft prepared by M. Rao FAO 2004 1 Summary Phosphates are used as stabilizers, leavening agents, emulsifiers and nutrient in several processed foods. Phosphates, s and polyphosphates are evaluated by JECFA at its sixth, seventh, eighth, ninth, thirteenth, fourteenth, seventeenth, twenty sixth and fifty seventh meetings. At the 57th meeting of JECFA, the phosphates listed in Table-1 were evaluated, specifications were prepared and published in FNP 52 Add 9 (2001). Monomagnesium phosphate and Trisodium s exist in anhydrous form as well as hydrates. Information on the loss on drying, loss on ignition, test method for loss on ignition and assay method for the hydrates forms of the two phosphates was not available and they were placed in the agenda for the 61st JECFA for the revision of specifications. Information on loss ignition for trisodium (anhydrous and monohydrate) and loss on drying on anhydrous material were received and specifications were revised for this compound. The tentative status of the specifications was maintained pending the data on loss on drying for monohydrate. No information was received on monomagnesium phosphate and the tentative specifications prepared at the 57th JECFA were maintained for this compound. 2 Description The description of the phosphates is given in Table-1. Table-1: Description of phosphates INS Name C.A.S. Chemical formula Formula wt. 343(i) 452(vi) 450(iv) Monomagnesium phosphate Dimagnesium Dipotassium 13092-66-5 Mg(H 2 PO 4 ) 2.xH 2 O (x = 0 to 4) - Mg 2 P 2 O 7 222.57 14691-84-0 K 2 H 2 P 2 O 7. xh 2 0 (x = 0 or 1) 218.3 (anhydrous) (dihydrate) 254.16 (anhydrous) 450(ii) Trisodium 14691-80-6 Na 3 HP 2 O 7. xh 2 0 (x = 0 or 1) 243.93 (anhydrous) (monohydrate) 450(vii) Calcium dihydrogen 14866-19-4 CaH 2 P 2 O 7 215.97 452(iii) Sodium calcium polyphophate - (NaPO 3 )n.cao (typically n = 5) - 1 (5)

3 Manufacturing 3.1 Raw materials Phosphoric acid is the principle raw material used in the manufacture of various phophates. Bases such as sodium carbonate, sodium hydroxide, calcium oxide, calcium hydroxide, calcium carbonate, potassium hydroxide, aluminium hydroxide and ammonia are used to get phosphate of interest. The general procedure for the manufacture of phosphoric acid and phosphates are given below: 3.2 Method of manufacture Phosphoric acid is produced commercially by two methods:: (a) Electro thermal Process. (b) Wet process Electro Thermal process In electro thermal process phosphoric acid is manufactured from elemental 'P' (obtained from ores). A carbon source such as coke, is added to the ore (eg. Flourapatile) at temperatures above 1100oC (ideal 1400-1600 C) to get 'P' from the ore. The 'P' thus obtained is burned in excess of air and the resulting phosphorus pentoxide is hydrated, heats of combustion and hydration are removed and the phosphoric acid mist is collected. Within the limits, the concentration of product acid is controlled by the quantity of water added and the cooling capabilities. The main impurity is about 20-100 ppm of Arsenic, present in the phosphorus acid. The phosphoric acid, destined for food, pharmaceutical and some industrial grade applications, is treated with excess H2S, filtered and blown with air to strip off excess H 2 S. This treatment generally reduces the 'As' content of 'PA' to less than 0.5 ppm. The phosphoric acid obtained by this process is considerably to be higher purity than than the one from the wet process. Wet process In this process the PA is produced in two steps. Step1: The phosphate rock is digested with sulfuric acid (rarely - HCl also may be used) Step2: 'PA' generated is separated from resultant CaSO 4 slurry by filtration. To generate filterable slurry and to enhance the P 2 O 5 content, much of the acid filtrate is recycled to the reactor. The two filtration processes are as follows: 1. Operation at 70-80 o C and about 30% P 2 O 5 in the liquid phase resulting in precipitation of filterable CaSO 4 2 H 2 O 2. Operation at 80-90 o C and about 40% P 2 O 5 providing a filterable CaSO 4 0.5 H 2 O Operations beyond these conditions generally result in poor filtration rates. 'PA' produced by wet-process is being used primarily in the production of fertilizers and animal feed supplements. However, for the manufacture of technical grade and food grade applications, it is purified by following either - the (a). double neutralization process or (b) the solvent extraction purification process, where by the impurities such as Fe, Al, Ca, Mg, sulfate, fluoride etc., The solvent extraction purification process is being carried out using C 4 - C 8 alcohols, ethers, ketenes. 2 (5)

3.3 General procedure for the manufacture of phosphates (from phosphoric acid) RAW MATERIAL OPERATION PRODUCT/ INTERMEDIATES Acid: Neutralization Orthophosphate Phosphoric acid solutions and slurries Crystallization Bases: Sodium carbonate Dewatering Sodium hydroxide Ca O, Calcium hydroxide Drying Orthophosphate Calcium carbonate Potassium hydroxide Sizing Aluminum hydroxide NH 3 Calcining Cooling Polyphosphate Sizing salts Blending Phosphoric acid (PA) is neutralized to form a solution or slurry with a carefully adjusted acid/base ratio according to the desired orthophosphate product. The orthophosphate can be recovered from the solution, or the entire solution/slurry is evaporated to dryness. The dewatering method is determined by the solubility properties of the product and its desired physical properties such as crystal size/shape, bulk density and surface area. Acid orthophosphate salts may be converted to condensed phosphates by thermal dehydration (calcination) Preparation of alkali metal phosphates These compounds generally exhibit congruent solubilities and are therefore usually manufactured by crystallization from solution or by drying of the entire mass. NaH 2 PO 4 Crystallization / evaporation on steam heated drum-dryers NaH 2 PO 4 Crystallization at 40-95 o C, centrifugation and drying. Potassium phosphates are analogues to the sodium salts and share many of the functional properties. The higher cost of KOH has restricted those salts to applications where high solubilities or nutrient value is important. Many of the phosphates are more deliquescent than their sodium analogues and may require special storage and moisture proof conditions/ containers. Preparation of alkaline - earth and other phosphate salts of polyvalent cations These phosphates typically exhibit incongruent solubility and are prepared either by precipitation from solutions having metal oxide / P 2 O 5 ratio considerably lower than that of the products, or by drying a solution or slurry with proper metal oxide / P 2 O 5 ratio. 3 (5)

3.4 Method of manufacture Monomagnesium phosphate Manufactured by partial neutralization of phosphoric acid with magnesium oxide and drying the resultant product. Trisodium Manufactured by calcining sodium orthophosphate of appropriate Na 2 O : P 2 O 5 ratio. 4 Chemical characterization 4.1 Composition The composition of phosphates is described in the Table-1. Monomagnesium phosphate and Trisodium s exist in anhydrous form as well as hydrates. Information on loss ignition for trisodium (anhydrous and monohydrate) and loss on drying on anhydrous material were received and specifications were revised for this compound. The tentative status of the specifications was maintained pending the data on loss on drying for monohydrate. No information was received on monomagnesium phosphate and the tentative specifications prepared at the 57th JECFA were maintained for this compound. 4.2 Possible impurities The possible impurities in phosphates arise from the impurities in the phosphorous. The phosphorous produced from ores by thermal process may contain up to 30-250 ppm of arsenic and other trace metal and these are kept at levels appropriate to the needs of customers by further purification processes. Levels of impurities such as sulfate, fluoride, arsenic etc., are kept at very low levels (eg., fluoride at less than or equal to 10 ppm, As around 0.5 ppm, in the chemicals of 'PA' or phosphates meant for food / pharmacy applications. 4.3 Analytical methods Analytical method for the phosphates are documented in the Guide to Specifications, Food and Nutrition Paper 5 (FNP 5) and Compendium of Food Additives Specifications, Food and Nutrition Paper 52 (FNP 52), Addendum 9 and 11. 5 Functional uses 5.1 Technological function Magnesium phosphates are used as acidulants in raising agents in dough. The magnesium phosphates react slowly and are used to stabilize doughs that will be held for some time before baking Diphosphates are used as leavening agents in baking industry. The s function as stabilizers in meat products where they work synergistically with salt, interacting with the meat fibers and causing the fibers to expand and retain water within them. They also work with salt to extract meat proteins, allowing the formation of a meat protein exudates, which will bind meat pieces together in a comminuted or reformed product. In processed cheese, cheese preparations and cheese-based sauces, the phosphates act as emulsifying salts. In this application, they break the calcium bridges between the cheese protein molecules by means of the ion exchange, converting the insoluble cheese protein complexes into individual soluble protein molecules. The protein molecules are then able to emulsify the fat associated with the cheese, in a manner similar to that of sodium caseinate. As this interaction relies on the exchange of sodium or potassium for 4 (5)

the calcium associated with the cheese proteins, the calcium phosphates cannot function in this way. The s can aid gel formation in products such as instant whips. The polyphosphates function as stabilizers in foods like s. In fish and seafood processing, the polyphosphates substantially reduce the drip loss on storage, maintaining the succulence of the products and avoiding the dry and fibrous texture otherwise encountered. In contrast to their functionality in meat products, in this application, the phosphates work both with and without salt. In cheeses, polyphosphates work as emulsifying agents like the s. The calcium polyphosphate can be used for calcium fortification but their poorer solubility may restrict this function in many food types. 5.2 Food categories and use levels Monomagnesium phosphate and calcium dihydrogen is used in fine bakery wares at levels of 20g/Kg expressed as P 2 O 5. Trisodium is used in meat products at level of 5g/Kg expressed as P 2 O 5. Sodium calcium polyphosphate is used in processed cheese and processed cheese analogues at level of 5g/Kg expressed as P 2 O 5. 6 Reactions and Fate in Food Data not available. 7 References Essential guide to food additives, Mike Saltmarsh (ed.), Leatherhead Publishing, 2000. Encyclopedia of Food and Colour additives, George A. Burdock, Vol. II, CRC Press. EC Directives 98/72/EC, 96/85/EC and 2000/63/EC. Food Chemicals Codex, IIIrd Edn., 1981, National Academy Press, Washington DC 5 (5)