Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles

Similar documents
Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics

Some physical properties of ZnO thin films prepared by thermal oxidation of metallic Zn

Influence of Growth Time on Zinc Oxide Nano Rods Prepared By Dip Coating Method

de la Technologie Houari Boumediène, USTHB B.P. 32 El Alia, Alger, Algérie 2 Laboratoire des Cellules Photovoltaïques,

Keywords: Thin films, Zinc Oxide, Sol-gel, XRD, Optical properties

Influence of Lead Substitution in Zinc Oxide Thin Films

Hydrogen-Sensing Characteristics of Palladium-Doped Zinc-Oxide Nanostructures

Characterization of Zinc Oxide Nanolaminate Films. B. J. Oleson, L. M. Bilke, J. S. Krueger, S. T. King

Structural, Optical & Surface Morphology of Zinc Oxide (ZnO) Nanorods in Molten Solution

Supporting Information

Supporting Information

Influence of Annealing Temperature on the Properties of ZnO Thin Films Grown by Sputtering

Annealing Influence on the Optical Properties of Nano ZnO

ULTRA THIN INDIUM TIN OXIDE FILMS ON VARIOUS SUBSTRATES BY PULSED LASER DEPOSITION

RF Power Dependence of ZnO Thin Film Deposited by RF Powered Magnetron Sputtering System

The structural and optical properties of ZnO thin films prepared at different RF sputtering power

Dye Sensitized Solar Cells (DSSC) Performance Reviewed from the Composition of Titanium Dioxide (TiO2)/Zinc Oxide (ZnO)

Dependence of the Optical Anisotropy of ZnO Thin Films on the Structural Properties

Simulation study of optical transmission properties of ZnO thin film deposited on different substrates

Supplementary Fig. 1 Atomic force microscopy topography images Two-dimensional atomic force microscopy images (with an area of 1 m 1 m) of Cu and

The electrical properties of ZnO MSM Photodetector with Pt Contact Electrodes on PPC Plastic

Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting

INFLUENCE OF ph ON THE STRUCTURAL, OPTICAL AND SOLID STATE PROPERTIES OF CHEMICAL BATH DEPOSITED ZnO THIN FILMS

Synthesis and Characterization of Mn 2+ Doped Zn 2. Phosphor Films by Combustion CVD Method

Structural and optical properties of electrochemically deposited ZnO films in electrolyte containing Al 2 (SO 4 ) 3, K. Lovchinov, M. Ganchev, A.

ZnO Thin Films Generated by Ex-Situ Thermal Oxidation of Metallic Zn for Photovoltaic Applications

Journal of Crystal Growth

Integrated Sci-Tech : The Interdisciplinary Research Approach

Growth and Characterizations of Electrochemically Deposited ZnO Thin Films

Influence of Indium doping on Zinc oxide thin film prepared by. Sol-gel Dip coating technique.

Room Temperature-processed Inverted Organic Solar Cells using High Working-Pressure-Sputtered ZnO films

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors

NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR

Fabrication of ZnO nanotubes using AAO template and sol-gel method

Solution-processed ZnO films as an alternative to sputtered buffer layers for inorganic photovoltaics

Zoltán Szabó. Synthesis and characterisation of zinc-oxide thin films and nanostructures for optoelectronical purposes

Investigation of Optical Properties of Zinc-Oxide Thin Films Deposited on Various Substrates: A Simulation Study

Tungston Doped ZnO Thin film Prepared by Spray Pyrolysis for enhanced Hydrogen Sensing

Abstract. Keywords: Zinc Oxide, Eu doped ZnO, Dy doped ZnO, Thin film INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING SCIENCE ISSN NO:

Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering

Gallium Doped ZnO for Thin Film Solar Cells

A Solution Processed ZnO Thin Film

Analysis of Li-related defects in ZnO thin films influenced by annealing ambient

Epitaxial Growth of ZnO Nanowires on Graphene-Au

Investigation of Structure, Morphology, Optical And Luminescent Properties of Hydrothermally Grown Zno Nanorods for Photocatalytic Applications

Changing the thickness of two layers: i ZnO nanorods, p Cu 2 O and its influence on the carriers transport mechanism of the p Cu 2 O/

Self-Powered Biosensors Using Various Light. Sources in Daily Life Environments: Integration of. p-n Heterojunction Photodetectors and Colorimetric

Optical Properties of Aligned Zinc Oxide Nanorods

Photoelectrochemical Water Splitting

Influence of Texture Depth and Layer Thickness of Crater-like Textured ZnO on the Efficiency of Thin Film Solar Cell

SYNTHESIS AND CHARACTERIZATION OF Al DOPED ZnO NANOPARTICLES

Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers

Effects of As Doping on Properties of ZnO Films

Nanostructured ZnO as a solution-processable transparent electrode material for low-cost photovoltaics

Structural and Optical Properties of ZnO Nanostructured Layers Deposited by Electrochemical Method on Conductive Multi-Crystalline Si Substrates

The Effect of Stabiliser s Molarity to the Growth of ZnO Nanorods

Large Work Function Modulation of Monolayer MoS 2. by Ambient Gases

Fe-doped ZnO synthesized by parallel flow precipitation process for improving photocatalytic activity

Ceramic Processing Research

Synthesis of ZnO Nanostructures Using Domestic Microwave Oven Based Remote Plasma Deposition System

St udy of struct ure and optical properties of Cu2doped ZnO nanofilms prepared by RF magnetron sputtering

Mechanochemical Doping of a Non-Metal Element into Zinc Oxide

Effect of Potential on Structural, Morphological and Optical Properties of ZnO Thin Films Obtained by Electrodeposition

LIQUID JUNCTION PHOTOCELLS SYNTHESIZED WITH DYE COATED ZINC OXIDE FILMS. Department of Physics, University of Peradeniya, Peradeniya, Sri Lanka

Morphological and optical investigation of Sol-Gel ZnO films

Study of ZnO:Zn Phosphors Prepared by Sol-gel and Ionimplantation

Preparation of ZnO Nanowire Arrays Growth on Sol-Gel ZnO-Seed-Coated Substrates and Studying Its Structure and Optical Properties

Characterization of ZnO/TiO 2 Nanocomposites Prepared via the Sol-Gel Method

ZnO nanostructures epitaxially grown on ZnO seeded Si (100) substrates by chemical vapor deposition

Outline of the talk. FIB fabrication of ZnO nanodevices. Properties of ZnO 4/19/2011. Crystal structure of ZnO. Collaborators. Wurtzite structure

A low magnification SEM image of the fabricated 2 2 ZnO based triode array is

Structural and Optical Properties of Single- and Few-Layer Magnetic

Studies on Zinc Oxide Nanorods Grown by Electron Beam Evaporation Technique

Supplementary Information

CHAPTER 8 SUMMARY AND FUTURE SCOPE

Structural Properties of ZnO Nanowires Grown by Chemical Vapor Deposition on GaN/sapphire (0001)

Research Article Stoichiometry Control of ZnO Thin Film by Adjusting Working Gas Ratio during Radio Frequency Magnetron Sputtering

Mechanochemical Dry Conversion of Zinc Oxide to Zeolitic Imidazolate Framework

XPS Depth Profile Analysis of Zn 3 N 2 Thin Films Grown at Different N 2 /Ar Gas Flow Rates by RF Magnetron Sputtering

Characterization of p-cu 2 O/n-ZnO Heterojunction Solar Cells

Ceramic Processing Research

Supporting Information

Texture ZnO Thin-Films and their Application as Front Electrode in Solar Cells

EFFECT OF SOLVENTS ON PARTICLE STRUCTURE, MORPHOLOGY AND OPTICAL PROPERTIES OF ZINC OXIDE NANOPARTICLES

GaN Growth on Si Using ZnO Buffer Layer. layer thickness on GaN quality was found to be important.

CHAPTER 4. CHARACTERIZATION OF ZINC DOPED TIN OXIDE (Zn:SnO 2 ) THIN FILMS

ZnO:Sn Thin Films Gas Sensor For Detection of Ethanol

Antibacterial Activity of ZnO Nanoparticles Coated on Ceramic Tiles Prepared by Sol-Gel Method

Supplementary Information

Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts

Morphology of the Si/ZnO Interface

Engineering of efficiency limiting free carriers and interfacial energy. barrier for an enhancing piezoelectric generation

Supplementary information (ESI)

ABHINAV NATIONAL MONTHLY REFEREED JOURNAL OF RESEARCH IN SCIENCE & TECHNOLOGY

EFFECT OF TARGET TO SUBSTRATE DISTANCE ON THE PROPERTIES OF RF MAGNETRON SPUTTERED ZnO THIN FILMS

Structural, morphological and luminescence properties of hexagonal ZnO particles synthesized using wet chemical process

Study of Structural and Optical Properties of ZnO Thin Films Produced by Sol Gel Methods

A Correlation between Optical and Structural Property of. ZnO Nanocrystalline Films

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

Effect of Annealing on Optical Properties of Zinc Oxide Thin Films Prepared by Homemade Spin Coater

Transcription:

NANO EXPRESS Open Access Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles Ki-Han Ko 1, Yeun-Ho Joung 1, Won Seok Choi 1*, Mungi Park 2, Jaehyung Lee 3 and Hyun-Suk Hwang 4 Abstract This study introduces optical properties of a columnar structured zinc oxide [ZnO] antireflection coating for solar cells. We obtained ZnO films of columnar structure on glass substrates using a specially designed radio frequency magnetron sputtering system with different growth angles. Field-emission scanning electron microscopy was utilized to check the growth angles of the ZnO films which were controlled at, 15, and. The film thickness was fixed at nm to get a constant experiment condition. Grain sizes of the ZnO films were measured by X-ray diffraction. A UV-visible spectrometer was used to measure the transmittance and reflectance of the ZnO film columnar structures as a function of the growth angles. Keywords: ZnO film, growth angle, antireflection coating, RF magnetron sputtering, solar cell Introduction To achieve a high efficient solar cell, one of the most important processes is antireflection coating [ARC] which also has a function of passivation [1]. ARCs generally reduce the reflection of sunlight and increase the intensity of radiation on the inside of solar cells. With the antireflection layer, Choi et al. [2] demonstrated that solar cell efficiency can be increased by around %. In general, the refractive index of a thin film is variable according to the kind of material and thickness of the films. It is addressed that a medium refractive index material between air (n = 1) and Si (n 3.4) is optimal for the ARC [1]. However, with glass-based solar cells, such as dye-sensitized and thin film solar cells, it is hard to get a good antireflection effect due to a low refractive index of the glass substrate (n 1.7). Therefore, with the glass base, a structural modification of the ARC is a better approach than the refraction effect scheme. ZnO thin films are used in various applications due to their high optical transmittance in the visible light region [3]. ZnO, one of the most important binary II-VI semiconductor compounds, has a hexagonal structure and a * Correspondence: wschoi@hanbat.ac.kr 1 School of Electrical, Electronics and Control Engineering, Hanbat National University, Daejeon, 5-719, Republic of Korea Full list of author information is available at the end of the article natural n-type electrical conductivity [4]. Moreover, ZnO thin films doped with Al, Ga, or In have low electrical resistivity and high optical transmittance due to their high carrier concentrations above cm -3 and wide optical bandgap energy above 3.3 ev. Also, it has merits on having a low material cost, on being nontoxic, and on having a better stability under hydrogen plasma compared with ITO [5]. In this paper, we introduce the optical properties of columnar structured ZnO films formed with several different growth angles. The films were deposited with radio frequency [RF] magnetron sputtering. During the sputtering, the angle between the sample and the target (ZnO) is changed to get several different growth angles. Field-emission scanning electron microscopy [FE-SEM] was applied to check the growth angles of ZnO films, controlled at, 15, and, and to measure the thickness of the film. The film thickness was fixed at nm to get the same mechanical condition of the columnar structured thin films. The grain sizes of the ZnO films were obtained by X-ray diffraction [XRD]. A UV-visible [UV-vis] spectrometer was used to measure the transmittance and reflectance of the columnar structured ZnO films, as a function of the growth angles. 12 Ko et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Page 2 of 5 Experiments Figure 1 shows a schematic of the film deposition apparatus to achieve different growth angles of the ZnO films. A 99.99% ZnO target was fixed, and a sample holder was mechanically tilted to get several different angles against the target. With many experiments and SEM measurements, we could get several different growth-angled ZnO films. The ZnO thin films were deposited on a glass (OA- G, Nippon Electronic Glass Co., Ltd., Otsu, Shiga, Japan) substrate using the described RF magnetron sputtering system. To get good quality samples, the glass substrates were cleaned in trichloroethylene, acetone, methanol, and distilled water for min, respectively. The sputtering chamber was vacuumed to a base pressure of 1-5 Torr. A pre-sputtering treatment was performed to clean the target surface for min using argon plasma. A distance between the target center and the sample substrate was kept at 9.5 cm, and we manually tilted the sample substrate with angle measurement. The thickness and cross-sectional images of the films were measured by FE- SEM (Hitachi, S-48, Hitachi High-Tech, Minato-ku, Japan); the grain sizes of the films were measured using XRD (Max 25H, Rigaku Corporation, Tokyo, Japan), and the optical properties were observed in a UV-vis spectrometer (S-, Scinco, Gangnam-gu, Seoul, South Korea). Results and discussion Figure 2 shows cross-sectional FE-SEM images of the ZnO films with three growth angles. Film thickness is of the same value ( nm). Figure 2a-1 shows the crosssection view of the growth-angled columnar ZnO film. Columnar ZnO films with angles of 15 and are shown in Figure 2b-1, c-1. To get a magnified view of the cross-section of the films, we enlarged the boxed section of the films, as shown in Figure 2a-2,b-2,c-2. The FE- SEM images confirm that the columnar ZnO films were successfully formed on glass substrates with different growth angles. Figure 1 A schematic of the RF magnetron sputtering system.

Page 3 of 5 (a-1) (a-2) (b-1) (b-2) (c-1) Figure 2 FE-SEM images of ZnO films with various growth angles. ZnO films at (a-1),(b-1) 15, and (c-1) growth angles and their enlarged images (a-2, b-2, and c-2). (c-2) Figure 3 shows the XRD patterns and grain sizes of the ZnO films according to growth angles. Figure 3a shows that all ZnO films had orientation peaks. The intensities of the main peaks are different according to growth angles. The highest peak is observed at the angled columnar ZnO film. Figure 3b shows the grain sizes of the ZnO films according to growth angles. The biggest grain size is obtained at the 15 angled columnar

Page 4 of 5 o 1 Intensity (A.U.) o Transmittance (%) 8 6 4 o o 25 35 4 45 2 4 6 8 Wavelength (nm) 7 Grain size (nm) 6 5 4 6 5 4 o o 15 Figure 3 XRD patterns of ZnO films vs. growth angles. X-ray spectra and grain sizes. 4 6 8 Wavelength (nm) Figure 4 Optical properties of ZnO films based on growth angles. Transmittance spectra and reflectance spectra. ZnO film at 59.1 nm. The growth-angled film has the smallest grain size at 25.95 nm. The grain size was calculated by getting the full width at half maximum value, according to Scherrer s equation [6]. Figure 4a shows the transmittance patterns of ZnO films with different growth angles. All ZnO films show high transmittance above 9%. The The angled columnar film has the highest transmittance, and the value is approximately 99% at 45 to approximately 5 nm. Figure 4b shows the reflectance patterns of the ZnO films. All ZnO films showed different patterns according to the wavelength of incidence rays. The ZnO film with a growth angle has the lowest reflectance of.81% at 418 nm. The 15 angled film has the best condition on average and low values. The transmittance and reflectance are slightly changed by the growth angle of ZnO films. Figure 5 shows the reflectance patterns of the ZnO films with different growth angles. Figure 5a shows the average reflectance in the wavelength range of 4 to 8 nm, and Figure 5b shows the reflectance at 55 nm wavelength. The 15 angled columnar ZnO film has the lowest average reflectance of 11%. Also, the reflectance at 55 nm wavelength is the lowest value at 8.67%. In addition, the lowest reflectance occurred when the reflected rays on the ZnO film got to a 15 angle. However, the and angle reflectances tended to increase compared with that of the 15 angle reflectance. Conclusions We investigated the optical properties of antireflection coating on columnar structured ZnO films. The ZnO films were deposited on glass substrates inside a specially designed RF magnetron sputtering system. We studied the growth angle effect of the films for optical properties. The thickness of the ZnO thin films was checked by FE-SEM and was fixed at nm. Three growth angles (, 15, and ) of the columnar ZnO films were carefully selected. The intensities of the main peaks were different according to the growth angles. The highest intensity was obtained at the angled columnar structured ZnO film. The 15

Page 5 of 5 25 15 5 Average (4~8 nm) 44-746, Republic of Korea 4 Department of Electrical Engineering, Seoil University, Seoul, 131-72, Republic of Korea Authors contributions Y-HJ and WSC participated in the sequence alignment and drafted the manuscript. K-HK and MP carried out the sample preparation. JL and H-SH performed data acquisitions and analysis. All authors read and approved the final manuscript. Competing interests The authors declare that they have no competing interests. Received: 19 September 11 Accepted: 5 January 12 Published: 5 January 12 25 15 5 15 One-point (55 nm) 15 References 1. Bouhafs D, Moussi A, Chikouche A, Ruiz JM: Design and simulation of antireflection coating systems for optoelectronic devices: application to silicon solar cells. Sol Energ Mat Sol C 1998, 52:79-93. 2. Choi WS, Kim K, Yi J, Hong B: Diamond-like carbon protective antireflection coating for Si solar cell. Mater Lett 8, 62:577-58. 3. Ekem N, Korkmaz S, Pat S, Balbag MZ, Cetin EN, Ozmumcu M: Some physical properties of ZnO thin films prepared by RF sputtering technique. Int J Hydrogen Energ 9, 34:5218-5222. 4. Choi BG, Kim IH, Kim DH, Lee KS, Lee TS, Cheong B, Baik Y-J, Kim WM: Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by rf magnetron sputter. J Eur Ceram Soc 5, 25:2161-2165. 5. Wellings JS, Chaure NB, Heavens SN, Dharmadasa IM: Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films 8, 516:3893-3898. 6. Bragg WL, Bragg WH: The Crystalline State New York: McMillan; 1933. doi:.1186/1556-276x-7-55 Cite this article as: Ko et al.: Structural and optical properties of a radio frequency magnetron-sputtered ZnO thin film with different growth angles. Nanoscale Research Letters 12 7:55. Figure 5 Reflectance of ZnO films vs. growth angles. Average spectra and one-point spectra. angled columnar structured film had the largest grain size of 59.1 nm, and the angled columnar structured film had the lowest grain size of 25.95 nm. These results showed that intensity and grain sizes varied according to the growth angles. Transmittance of the ZnO thin films was changed according to the wavelength of incidence rays and the growth angle. The lowest average reflectance at 55 nm was measured with the 15 angled columnar thin film with a value of 8.67%. The best optical properties of the columnar structured ZnO films were obtained from the 15 angled growth columnar thin film. Acknowledgements This work was supported by the 11 Hanbat National University academic research funding. Author details 1 School of Electrical, Electronics and Control Engineering, Hanbat National University, Daejeon, 5-719, Republic of Korea 2 LG Display Co., Ltd., 7 Deogeun-Ri, Wollong-Myeon, Paju, 413-811, Republic of Korea 3 School of Information and Computer Engineering, Sungkyunkwan University, Suwon, Submit your manuscript to a journal and benefit from: 7 Convenient online submission 7 Rigorous peer review 7 Immediate publication on acceptance 7 Open access: articles freely available online 7 High visibility within the field 7 Retaining the copyright to your article Submit your next manuscript at 7 springeropen.com