BCH 4054 Spring 2001 Chapter 24 Lecture Notes

Similar documents
23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

Fatty acid oxidation. doc. Ing. Zenóbia Chavková, CSc.

Lipid metabolism. Degradation and biosynthesis of fatty acids Ketone bodies

Lehninger 5 th ed. Chapter 17

Biochemistry: A Short Course

6. How Are Fatty Acids Produced? 7. How Are Acylglycerols and Compound Lipids Produced? 8. How Is Cholesterol Produced?

Oxidation of Long Chain Fatty Acids

Points 1. Following is the overall reaction catalyzed by the Calvin-Benson cycle:

Roles of Lipids. principal form of stored energy major constituents of cell membranes vitamins messengers intra and extracellular

Chapter 22, Fatty Acid Metabolism CH 3 (CH 2 ) 14 CO 2 R C C O2 CH 2 OH O R. Lipase + 3 H 2 O

Fatty acid breakdown

number Done by Corrected by Doctor Faisal Al-Khatib

Part III => METABOLISM and ENERGY. 3.4 Lipid Catabolism 3.4a Fatty Acid Degradation 3.4b Ketone Bodies

OVERVIEW M ET AB OL IS M OF FR EE FA TT Y AC ID S

Fatty Acid Degradation. Catabolism Overview. TAG and FA 11/11/2015. Chapter 27, Stryer Short Course. Lipids as a fuel source diet Beta oxidation

Lipid Metabolism. Catabolism Overview

Summary of fatty acid synthesis

Lecture: 26 OXIDATION OF FATTY ACIDS

LIPID METABOLISM. Sri Widia A Jusman Department of Biochemistry & Molecular Biology FMUI

2-more complex molecules (fatty acyl esters) as triacylglycerols.

Lipid Metabolism * OpenStax

Fatty Acid and Triacylglycerol Metabolism 1

Biochemistry - I SPRING Mondays and Wednesdays 9:30-10:45 AM (MR-1307) Lectures Based on Profs. Kevin Gardner & Reza Khayat

BIOL2171 ANU TCA CYCLE

Lipid Metabolism. Remember fats?? Triacylglycerols - major form of energy storage in animals

GENERAL FEATURES OF FATTY ACIDS BIOSYNTHESIS

Lecture 36. Key Concepts. Overview of lipid metabolism. Reactions of fatty acid oxidation. Energy yield from fatty acid oxidation

Metabolism (degradation) of triacylglycerols and fatty acids

LIPID METABOLISM

Voet Biochemistry 3e John Wiley & Sons, Inc.

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Synthesis and degradation of fatty acids Martina Srbová

Biological oxidation II. The Cytric acid cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Biochemistry. 5.3) Fat Metabolism

Biochemistry: A Short Course

Ahmad Ulnar. Faisal Nimri ... Dr.Faisal

TCA CYCLE (Citric Acid Cycle)

MBG304 Biochemistry Lecture 8- Metabolism: Lipid metabolism. Hikmet Geçkil, Professor Department of Molecular Biology and Genetics Inonu University

Metabolism Lecture 10 AMINO ACID DEGRADATION Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY

Objectives By the end of lecture the student should:

Biosynthesis of Triacylglycerides (TG) in liver. Mobilization of stored fat and oxidation of fatty acids

Tala Saleh. Razi Kittaneh ... Nayef Karadsheh

the fates of acetyl coa which produced by B oixidation :

CHY2026: General Biochemistry. Lipid Metabolism

FAD FADH2. glycerol-3- phosphate. dehydrogenase. This DHAP is metabolically no different from that produced in glycolysis.

Energy and life. Generation of Biochemical Energy Chapter 21. Energy. Energy and biochemical reactions: 4/5/09

Chapter 24 Lecture Outline

Fatty Acid and Triacylglycerol Metabolism 1

Fatty acids synthesis

Integrative Metabolism: Significance

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS

number Done by Corrected by Doctor F. Al-Khateeb

Dietary Lipid Metabolism

Module No. # 01 Lecture No. # 19 TCA Cycle

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM. Triacylglycerol and Fatty Acid Metabolism

#16 made by Nour omar corrected by laith sorour date 17/11

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS

Biology 638 Biochemistry II Exam-3. (Note that you are not allowed to use any calculator)

Biochemistry Sheet 27 Fatty Acid Synthesis Dr. Faisal Khatib

Integration Of Metabolism

Lipid and Amino Acid Metabolism

Chem 109 C. Fall Armen Zakarian Office: Chemistry Bldn 2217

Biol 219 Lec 7 Fall 2016

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

e-learning Fatty Acid Oxidation Defects Camilla Reed and Dr Simon Olpin Sheffield Children s Hospital

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

BCM 221 LECTURES OJEMEKELE O.

ANSC/NUTR 618 Lipids & Lipid Metabolism

CHM333 LECTURE 34: 11/30 12/2/09 FALL 2009 Professor Christine Hrycyna

Chemistry 1120 Exam 4 Study Guide

CHM333 LECTURE 34-36: 4/18 20/7/12 SPRING 2012 Professor Christine Hrycyna

MITOCW watch?v=qmqif0yj4lm

Integration Of Metabolism

Marah Bitar. Faisal Nimri ... Nafeth Abu Tarboosh

BIOSYNTHESIS OF FATTY ACIDS. doc. Ing. Zenóbia Chavková, CSc.

number Done by Corrected by Doctor Faisal Al-Khatibe

Citric acid cycle and respiratory chain. Pavla Balínová

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Dr MS Islam Sr. Lecturer of Biochemistry School of Life Sciences, Westville Campus

number Done by Corrected by Doctor Nayef Karadsheh

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

Catabolism of Carbon skeletons of Amino acids. Amino acid metabolism

Energy storage in cells

Chemistry B11 Chapter 17 Metabolic pathways & Energy production

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Carbohydrate Metabolism

Biosynthesis of Fatty Acids

Companion to Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism Lecture Notes

Vocabulary. Chapter 19: The Citric Acid Cycle

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Chemistry 3503 Final exam April 17, Student s name:

Biology 638 Biochemistry II Exam-2

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

Krebs cycle Energy Petr Tůma Eva Samcová

Transcription:

BCH 4054 Spring 2001 Chapter 24 Lecture Notes 1 Chapter 24 Fatty Acid Catabolism 2 Fatty Acids as Energy Source Triglycerides yield 37 kj/g dry weight Protein 17 kj/g Glycogen 16 kj/g (even less wet weight) Total stored energy in body (Table 24.1) Fat ~555,000 kj Protein ~ 102,000 kj Glycogen ~ 3,000 kj More reduced than carbohydrate 3 Fatty Acids as Energy Source, con t. Major Sources of Fatty Acids Stored Fat (Adipose Tissue) Dietary Fat Biosynthetic Fat (from glucose in liver) Low solubility of Triglyceride and Fatty Acids require special transport mechanisms involving lipoproteins Chapter 24, page 1

4 Adipose Tissue Triglycerides Triglycerides hydrolyzed by hormone sensitive lipase Hormonal (epinephrine, glucagon, ACTH) stimulation activates the cyclic AMP pathway Fatty acids and glycerol released to the blood Fatty acids bound to serum albumin for transport in blood See Fig 24.2 Binding to serum albumin helps to minimize the detergent properties of fatty acids, which otherwise might be strong enough to disrupt cellular membranes. 5 Dietary Triglycerides Mixed with bile salts to form micelles Hydrolyzed in the duodenum by pancreatic lipase to fatty acids plus monoglycerides Micelles adsorbed into epithelial cells where triglycerides are resynthesized and packaged into chylomicrons, which are released into the lymphatic system, then the blood Short chain fatty acids are transported directly to the portal vein. (See Fig 24.3 and 24.4) 6 Biosynthetic Triglycerides Made in the liver from carbohydrate Exported as part of a lipoprotein called very low density lipoprotein (VLDL) (VLDL is discussed in Section 25.5, page 840) Triglycerides from both VLDL and chylomicrons are hydrolyzed in the blood by lipoprotein lipase, releasing free fatty acids (FFA) to tissues Lipoprotein lipase is attached to the surface of blood vessels in tissues. The attachment can be released by administration of heparin. Chapter 24, page 2

7 Fatty Acid Activation nce fatty acids get into the cell, they are immediately activated to thiol esters of coenzyme A. This costs the equivalent of 2 ATP (Fig 24.7) xidation occurs in the mitochondria, but CoASH esters cannot cross the mitochondrial membrane 8 Role of Carnitine in Fatty Acid xidation To cross the mitochondrial membrane, fatty acids are transesterified to form esters of the amino acid carnitine The enzyme is carnitine acyltransferase A carnitine/acylcarnitine antiport transport protein transports the acyl carnitine across the inner mitochondrial membrane Carnitine acyl transferase in the mitochondria reforms the fatty acyl-coa (See Fig 24.9) 9 Beta xidation Franz Knoop s early labeling experiments established that fatty acids are degraded two carbons at a time Cleavage occurs at the beta-carbon, hence the term beta oxidation A series of phenyl derivatives of fatty acids with different chain lengths produced either phenyl acetate or benzoate as excreted products. (See Fig 24.5) Chapter 24, page 3

10 Activation of Short Chain Fatty Acids Short chain acids can bypass the cytoplasmic activation and enter the mitochondria directly. They are activated by a transfer of CoASH from succinyl CoA R C H + H CCH 2CH 2C S CoA R C SCoA + H CCH 2CH 2C H 11 Beta xidation Spiral A series of four reactions that results in shortening the chain by two carbons First three reactions analogous to reactions of the TCA cycle: succinate f um arate m alate oxaloacet at e H H C C H H C C H H C C H H C C H H R C SCoA R C SCoA R C SCoA R C SCoA 12 Acyl-CoA Dehydrogenase A family of three soluble matrix enzymes All are flavoproteins with differing chain length specificity (long, medium, short) Electrons passed to an electron transfer flavoprotein (ETF), then via an Fe/S protein to Coenzyme Q See Fig 24.11 Enzyme inhibited by Hypoglycin from akee fruit. (Fig 24.14) Note this pair of electrons would yield 1.5 ATP s when reduced coenzyme Q is reoxidized by the electron transport chain. Chapter 24, page 4

13 Enoyl-CoA Hydratase Also called crotonase Converts trans enoyl CoA ester to the L- betahydroxy acyl-coa ester Enzymes with other specificity also found (See Fig 24.15) 14 Hydroxyacyl-CoA Dehydrogenase xidizes L-hydroxy to keto NAD is the electron acceptor Reoxidation of the NADH can produce 2.5 ATP See Fig 24.16 15 Thiolase (or beta-ketothiolase) Thiolytic cleavage of C-C bond Cysteine SH on enzyme first attacks the carbonyl, cleaving the alpha-beta bond Acyl group then transferred to CoASH See Fig 24.17 verall reaction is a reverse Claisen condensation Reaction is reversible Products are acetyl-coa and fatty acyl-coa two carbons shorter Chapter 24, page 5

16 Beta xidation Summary Each turn of the spiral produces an acetyl- CoA, CoQH 2, and NADH Palmitic Acid (C 16 ) 8 Acetyl-CoA, 7 CoQH 2, 7 NADH Stearic Acid (C 18 ) 9 Acetyl-CoA, 8 CoQH 2, 8 NADH Acetyl-CoA can be oxidized by TCA cycle 17 dd Chain Fatty Acids Last unit is propionyl CoA Three reactions convert propionyl-coa to succinyl-coa (Fig 24.19) Propionyl-CoA carboxylase A biotin enzyme Methylmalonyl-CoA epimerase Methylmalonyl-CoA mutase A B 12 enzyme (See Fig 24.21 and Page 793) Compare the biotin mechanism with pyruvate carboxylase (an anaplerotic reaction and a gluconeogenic enzyme) and acetyl- CoA carboxylase, which we will discuss in the next chapter. 18 Unsaturated Fatty Acids As chain is degraded, double bond ends up in wrong place and must be isomerized. Extra double bonds in polyunsaturated fatty acids also require special enzymes. See Fig 24.23 and 24.24 Don t worry about details Chapter 24, page 6

19 Peroxisomal xidation Takes place in peroxisomes Initial double bond formation is by an acyl- CoA oxidase containing FAD FADH2 of the oxidase is reoxidized by oxygen, producing hydrogen peroxide Fig 24.25 20 Branch Chain Fatty Acids Phytanic acid is produced from phytol in ruminant animals and thus appear in dairy products. Phytanic acid has CH 3 group on beta-carbon, so one could not produce a keto group there. xidation at the alpha carbon by a hydroxylase can cleave one carbon The process is called alpha oxidation Also occurs in brain fatty acids producing some alpha hydroxy and odd chain fatty acids. Defect in pathway found in Refsum s Disease in which phytanic acid accumulates. Fig 24.26 21 Synthesis of Acetoacetate Burning acetyl-coa requires oxaloacetate. (AA) When AA concentrations are low, acetyl- CoA can build up. Fatty acid oxidation would stop when all of the cell s CoASH is tied up as acetyl-coa. How can the cell release the CoA? Chapter 24, page 7

22 Synthesis of Acetoacetate, con t. Thiolase is reversible. As acetyl-coa builds up, so does acetoacetyl-coa. Cleavage of acetoacetyl-coa can liberate CoASH, producing acetoacetate. While simple hydrolysis would accomplish that, it doesn t work that way. 23 Synthesis of Acetoacetate, con t. Acetoacetyl-CoA condenses with acetyl- CoA in a reaction reaction similar to citrate synthase and malate synthase. Note the addition of the methyl group of acetyl-coa to a carbonyl carbon, coupled to the hydrolysis of the thiol ester bond. H 3C C SCoA H 3C C CH 2C SCoA HM G-CoA Sy nthase H2C C H H 3 C C H H2C C SCoA + CoASH H ydroxy methyl glutary l-c oa (HM G-C oa) 24 Synthesis of Acetoacetate, con t. After HMG-CoA synthase has formed a carbon-carbon bond, HMG-CoA lyase cleaves the other carbon-carbon bond. H 2 C C H H 3 C C H H 2 C C SCoA HMG-CoA Lyase H 3 C C CH 2 C H + H 3 C C SCoA Chapter 24, page 8

25 Synthesis of Acetoacetate, con t. The sum of these two reactions is the same as the hydrolysis of acetoacetyl-coa. acetoacetyl-coa + acetyl-coa HMG-CoA + CoASH HMG-CoA sum: acetoacetyl-coa acetoacetate + acetyl-coa acetoacetate + CoASH 26 Metabolism of Acetoacetate The liver excretes acetoacetate from fatty acid breakdown as a fuel for other tissues. Acetoacetate is taken up in other tissues, enters the mitochondria, and is activated by 3-ketoacyl-CoA transferase. H 3 C CCH 2 C H 3-Ketoacyl-CoA H 3 C CCH 2 C SCoA + + Transferase H CCH 2CH 2 C SCoA H CCH 2CH 2 C H Note this reaction bypasses the synthesis of a GTP in the mitochondria, so the cost of activation of the acetoacetate is equivalent to one GTP (or one ATP). 27 Metabolism of Acetoacetate, con t. Acetoacetyl-CoA is broken down by thiolase to acetyl-coa, and the acetyl-coa burned in the TCA cycle in peripheral tissues. Liver lacks the enzyme 3-ketoacyl-CoA transferase, so it cannot re-activate acetoacetate once it is formed. Chapter 24, page 9

28 Ketone Body Formation When oxaloacetate is low, the acetyl-coa cannot be metabolized, so acetoacetate builds up. Alternative reactions of acetoacetate include reduction and decarboxylation. NAD NADH H 3 C C CH 2 C H decarboxylation H reduction H 3 CCHCH 2 C H H 3 C C CH 3 β-hydroxybut yrate acetone + C 2 The three compounds acetoacetate, beta-hydroxybutyrate, and acetone constitute what are called ketone bodies. 29 Ketone Body Formation Accumulation occurs when fatty acids are broken down for energy in absence of sufficient carbohydrate to make AA. ccurs in starvation. ccurs in high fat diets (eating eskimo diet without adaptation to it). ccurs in diabetes, where cells are starved for glucose because of lack of insulin. Ketosis can lead to drop in blood ph. The state of ketosis can often be detected by the odor of acetone on the breath. The lowered ph can lead to acidosis, which can be a dangerous condition. Chapter 24, page 10