Bronchodilator Effect of Tiotropium via Respimat Administered with a Spacer in Patients with Chronic Obstructive Pulmonary Disease (COPD)

Similar documents
aclidinium 322 micrograms inhalation powder (Eklira Genuair ) SMC No. (810/12) Almirall S.A.

A multitude of devices

THE CHALLENGES OF COPD MANAGEMENT IN PRIMARY CARE An Expert Roundtable

What s new in COPD? Apichart Khanichap MD. Department of Medicine, Faculty of Medicine, Thammasat university

glycopyrronium 44 micrograms hard capsules of inhalation powder (Seebri Breezhaler ) SMC No. (829/12) Novartis Pharmaceuticals Ltd.

DATE: 09 December 2009 CONTEXT AND POLICY ISSUES:

This clinical study synopsis is provided in line with Boehringer Ingelheim s Policy on Transparency and Publication of Clinical Study Data.

umeclidinium, 55 micrograms, powder for inhalation (Incruse ) SMC No. (1004/14) GlaxoSmithKline

TORCH: Salmeterol and Fluticasone Propionate and Survival in COPD

Supplementary appendix

Chronic obstructive pulmonary disease

Supplementary materials

Treatment. Assessing the outcome of interventions Traditionally, the effects of interventions have been assessed by measuring changes in the FEV 1

Three s Company - The role of triple therapy in chronic obstructive pulmonary disease (COPD)

A COPD medication delivery device option: an overview of the NEOHALER

COPD Device Workshop. Summary. Role of inhaler device in COPD. Why use inhaler device in COPD?

Turning Science into Real Life Roflumilast in Clinical Practice. Roland Buhl Pulmonary Department Mainz University Hospital

Yuriy Feschenko, Liudmyla Iashyna, Ksenia Nazarenko and Svitlana Opimakh

ABSTRACT. . Sahori Kudo. Masatake Ishikawa

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives: Primary Outcome/Efficacy Variable:

Online supplementary material

Lead team presentation: Roflumilast for treating chronic obstructive pulmonary disease [ID984]

APSR RESPIRATORY UPDATES

Step-down approach in chronic stable asthma: A comparison of reducing dose Inhaled Formoterol/ Budesonide with maintaining Inhaled Budesonide.

Tiotropium: Do the findings of a CV safety signal in the meta-analyses have implications for all drugs to treat COPD?

Patient adherence to inhaled therapy A clinical perspective. Nicolas Roche Cochin, Site Val de Grâce University Paris Descartes, Paris, France

Medical Directive. Activation Date: April 24, 2013 Review due by: December 1, Medical Director: Date: December 1, 2017

This is a cross-sectional analysis of the National Health and Nutrition Examination

Changing Landscapes in COPD New Zealand Respiratory Conference

Summary of the risk management plan (RMP) for Duaklir Genuair (aclidinium / formoterol fumarate dihydrate)

«Impact of a pharmaceutical intervention to improve adherence of inhaled medication in asthma and COPD patients»

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives: Primary Outcome/Efficacy Variable:

Algorithm for the use of inhaled therapies in COPD Version 2 May 2017

This clinical study synopsis is provided in line with Boehringer Ingelheim s Policy on Transparency and Publication of Clinical Study Data.

The study listed may include approved and non-approved uses, formulations or treatment regimens. The results reported in any single study may not

Greater Manchester Asthma Management Plan 2018 Inhaler therapy options for adult patients (18 and over) with asthma

COPD: Current Medical Therapy

Prescribing guidelines: Management of COPD in Primary Care

THE COPD PRESCRIBING TOOL

Treatment Responses. Ronald Dahl, Aarhus University Hospital, Denmark

COPD. Breathing Made Easier

The Journal Club: COPD Exacerbations

Global Initiative for Asthma (GINA) What s new in GINA 2015?

The clinical effectiveness and costeffectiveness. treatment of chronic asthma in children under the age of 12 years

Optimum treatment for chronic obstructive pulmonary disease exacerbation prevention

roflumilast 500 microgram tablets (Daxas ) SMC No. (635/10) Nycomed Ltd

Pharmacodynamic steady state of tiotropium in patients with chronic obstructive pulmonary disease

Decramer 2014 a &b [21]

Surveillance report Published: 6 April 2016 nice.org.uk. NICE All rights reserved.

COPD: GOLD guidelines Ijlal Babar, MD Medical Director Pulmonary CCM, Pulmonary Hypertension Center SRHS

GINA. At-A-Glance Asthma Management Reference. for adults, adolescents and children 6 11 years. Updated 2017

Evidence Summary to support COPD formulary decision making and guideline development

Up in FLAMES: Stable Chronic Obstructive Pulmonary Disease (COPD) Management. Colleen Sakon, PharmD BCPS September 27, 2018

Effects of transdermal tulobuterol on dyspnea and respiratory function during exercise in patients with chronic obstructive pulmonary disease

Dr Stephen Child. General Physician Auckland. 14:20-14:40 Secondary Care Perspective

Algorithm for the use of inhaled therapies in COPD

11/27/18. Challenges in Pulmonary and Critical Care: COPD So Much is New! Faculty. Disclosures

Questionnaire Survey for Bronchial Asthma in Elderly Care Facilities

Advancing COPD treatment strategies with evidencebased. 17:15 19:15 Monday 11 September 2017 ERS 2017, Milan, Italy

Who can get most benefit

Asthma COPD Overlap (ACO)

Asthma Management Updates: A Focus on Long-acting Muscarinic Antagonists and Intermittent Inhaled Corticosteroid Dosing

What s New in Acute COPD? Dr Nick Scriven Consultant AIM President SAM

Guideline for the Diagnosis and Management of COPD

The problem with critical and non-critical inhaler errors

Differential diagnosis

D DAVID PUBLISHING. 1. Introduction

Wirral COPD Prescribing Guidelines

New Drug Evaluation: Olodaterol oral inhalation solution (Striverdi Respimat)

Test Your Inhaler Knowledge

This clinical study synopsis is provided in line with Boehringer Ingelheim s Policy on Transparency and Publication of Clinical Study Data.

Pharmacist Objectives. Pulmonary Update. Outline. Technician Objectives. GOLD Guidelines. COPD Diagnosis 9/22/2017

รศ. นพ. ว ชรา บ ญสว สด M.D., Ph.D. ภาคว ชาอาย รศาสตร คณะแพทยศาสตร มหาว ทยาล ยขอนแก น

Asthma in Day to Day Practice

A randomised, open-label study of umeclidinium versus glycopyrronium in patients with COPD

Position within the Organisation

AWMSG SECRETARIAT ASSESSMENT REPORT. Aclidinium bromide (Eklira Genuair ) 322 micrograms inhalation powder. Reference number: 938 FULL SUBMISSION

2/4/2019. GOLD Objectives. GOLD 2019 Report: Chapters

Design - Multicentre prospective cohort study. Setting UK Community Pharmacies within one CCG area within the UK

12/18/2017. Disclosures. Asthma Management Updates: A Focus on Long-acting Muscarinic Antagonists and Intermittent Inhaled Corticosteroid Dosing

Individual Study Table Referring to Part of the Dossier. Volume:

Medicines Management of Chronic Obstructive Pulmonary Disease (COPD)

Choosing an inhaler for COPD made simple. Dr Simon Hart Castle Hill Hospital

Guide to Inhaled Treatment Choices

Guide to Inhaled Treatment Choices

Chronic obstructive pulmonary disease (COPD) is characterized

Anoro Ellipta 55/22mcg (umeclidinium and vilanterol) for the Treatment of Chronic Obstructive Pulmonary Disease (COPD)

Bronchodilator responsiveness in patients with COPD

Journal of the COPD Foundation. Journal Club. Chronic Obstructive Pulmonary Diseases:

Kohhei Maeda 1, Masao Yamaguchi 2, Hiroyuki Nagase 2, Nobuhiro Yasuno 1, Fumio Itagaki 1,3 and Machiko Watanabe 1,3*

Pocket Guide to Inhaler Technique A Step-By-Step Guide for Healthcare Professionals

Ivax Pharmaceuticals UK Sponsor Submission to the National Institute for Health and Clinical Excellence

SABA: VENTOLIN EVOHALER (SALBUTAMOL) SAMA: ATROVENT IPRATROPIUM. Offer LAMA (discontinue SAMA) OR LABA

Clinical and radiographic predictors of GOLD-Unclassified smokers in COPDGene

IPAC-RS/UF Orlando Inhalation Conference March 20, S.T. Horhota 1, C.B. Verkleij 2, P.J.G. Cornelissen 2, L. Bour 3, A. Sharma 3, M.

ABSTRACT. . Sahori Kudo. Mitsue Ariga

INHALATION DRUG DELIVERY DEVICES: BRONCHODILATORS NATTAWAT NATPHOBSUK, MD

Breaking Down Barriers to Pulmonary Therapies: Patient Education, Teach Back, and More

Summary of the risk management plan (RMP) for Laventair (umeclidinium bromide and vilanterol)

Transcription:

doi: 10.2169/internalmedicine.8255-16 Intern Med 56: 2401-2406, 2017 http://internmed.jp ORIGINAL ARTICLE Bronchodilator Effect of via Respimat Administered with a Spacer in Patients with Chronic Obstructive Pulmonary Disease (COPD) Takashi Ogasawara 1, Jun Sakata 2, Yoichiro Aoshima 1, Kazuki Tanaka 1, Toshiaki Yano 1 and Norio Kasamatsu 1 Abstract: Objective Among elderly patients with chronic obstructive pulmonary disease (COPD), there are some patients who cannot inhale tiotropium via Respimat due to poor hand-lung coordination. This study aimed to examine whether or not tiotropium inhalation therapy using Respimat with a increased the forced expiratory volume in 1 s (FEV1) in patients with COPD. Methods A randomized, crossover, single-center study was conducted in 18 patients with stable COPD. (5 μg) via Respimat with or without a (AeroChamber ) was administered for 2 weeks. Following a 2-week washout using a transdermal tulobuterol (2 mg per day), participants were then crossed over to the other inhalation therapy with respect to use. The trough FEV1 was measured at every visit using a spirometer. A questionnaire regarding inhalation therapy was administered to patients at the final visit. Results The administration of tiotropium via Respimat both with and without a significantly increased the trough FEV1 from baseline during each treatment, with mean differences of 115.0±169.6 ml and 92.8±128.1 ml, respectively. There was no significant difference in the change in the trough FEV1 between the 2 procedures (p=0.66). A total of 86% of patients reported that inhalation using a was not difficult, and more than half also rated both the usage and maintenance of the AeroChamber as easy. Conclusion inhalation therapy administered via Respimat using a exerted a bronchodilatory effect similar to that observed with tiotropium Respimat alone. Key words: chronic obstructive pulmonary disease, tiotropium, Respimat, (Intern Med 56: 2401-2406, 2017) () Introduction Increases in the worldwide prevalence of chronic obstructive pulmonary disease (COPD) are expected, and there are estimated to be 5.3 million patients with the disease in Japan (1). The majority of patients with COPD are elderly and may have an impaired cognitive function and manual dexterity. Inhaled bronchodilators, such as long-acting β2-agonists (LABAs) and long-acting muscarinic antagonists (LAMAs), are the mainstay of management for patients with stable COPD, according to both strategy documents for the diagnosis, management, and prevention of COPD published by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2) and the COPD guideline of the Japanese Respiratory Society (3). Many inhaler devices have been developed by various pharmaceutical companies, and COPD patients may need to learn adequate inhalation techniques for each device. Patients with severe COPD or asthma-copd overlap syndrome (ACOS), requiring triple inhalation therapy [LAMA plus LABA plus inhaled corticosteroid (ICS)], must learn to operate two or more devices. If patients cannot generate a sufficient inspiratory flow rate for a dry powder inhaler Department of Respiratory Medicine, Hamamatsu Medical Center, Japan and Pharmaceutical Department, Hamamatsu Medical Center, Japan Received: September 11, 2016; Accepted: February 14, 2017; Advance Publication by J-STAGE: August 21, 2017 Correspondence to Dr. Takashi Ogasawara, shikatarawasagao@gmail.com 2401

with inhalation assistance. This trial was approved by the ethics committee of our hospital (Approval No. 37, 2013) and registered in the university medical information network (Registration date: May 17, 2014; UMIN000013980). All patients provided their written informed consent. Study design Figure 1. Respimat attached to an AeroChamber. (DPI), they must be administered inhalation therapy via pressurized metered-dose inhaler (pmdi) devices. Inhalation using a pmdi is often difficult for elderly patients because of the requirement for adequate hand-lung coordination. The addition of a has been designed to aid in the delivery of drugs via pmdi, minimize coordination difficulties, reduce the oropharyngeal deposition, and increase the lung deposition. No form of drug delivery for LAMAs via pmdi exists in Japan; however, the Respimat SoftMist Inhaler for tiotropium has been developed. Respimat has lower aerosol velocity and longer aerosol cloud duration than pmdis, which should allow patients to coordinate handling and breathing more easily. Although this device is a valuable addition to inhalers currently available for inhalation therapy for patients with COPD, some elderly patients display incorrect hand-lung coordination in the use of Respimat. Inhalation via Respimat with a has not been recommended because data regarding its efficacy and safety are lacking. As such, instructions provided to patients with severe COPD or ACOS for inhalation therapy using pmdis with a for ICS/LABAs and Respimat without a may lack coherence. The aim of this randomized, open-label, crossover study was to investigate the efficacy of tiotropium inhalation therapy using Respimat with a through the measurement of the forced expiratory volume in 1 s (FEV1) in patients with COPD. Materials and Methods Between February 2014 and May 2016, 20 stable COPD patients (18 men and 2 women) were recruited for this study. COPD was defined according to the GOLD criteria. The inclusion criteria were stable mild-to-severe COPD (FEV1 >30% predicted), 20 years of age, continuing use of tiotropium Respimat or intention to receive tiotropium Respimat, and no use of inhaled LABAs or ICS/LABAs. Stable COPD was defined as the absence of exacerbation in the last two months. Patients were excluded if they had a history of drug hypersensitivity; they had either benign prostatic hypertrophy or glaucoma, which were contraindications to tiotropium; they could not purchase an AeroChamber ; or they could not use tiotropium Respimat This was a prospective, single-center, open-label, randomized, crossover study of tiotropium Respimat with a (Fig. 1) versus without a conducted at Hamamatsu Medical Center. Following a two-week observational washout, eligible patients were randomized equally to one of two groups (Fig. 2). Randomization was performed using a computer-generated randomization scheme with blocks of four. Participants received once-daily tiotropium 5 μg (2 puffs of 2.5 μg) via a Respimat SoftMist Inhaler (Boehringer Ingelheim, Ingelheim am Rhein, Germany) with or without a (AeroChamber ) in the evening for 2 weeks. Each treatment was separated by a washout of two weeks. During the washout, participants were treated with a transdermal tulobuterol (2 mg, once a day) to prevent worsening of symptoms due to bronchodilator withdrawal. After the washout, participants again received once-daily tiotropium 5 μg for 2 weeks, this time having crossed over to the other method with respect to presence. After a clinical examination by physicians at every visit, pharmacists educated all participants on the usage of the Respimat SoftMist Inhaler with or without the AeroChamber. Adverse effects were recorded at every visit. Trough FEV1 and forced vital capacity (FVC) were measured at visits two to five, using a spirometer (CHESTAC- 8800; Chest, Tokyo, Japan) in accordance with the method described by the American Thoracic Society and the European Respiratory Society task force (4). The primary endpoint was the mean difference in trough FEV1 during the treatment. The secondary endpoints were the mean differences in FVC, 50/ 25, and the COPD Assessment Test (CAT) score (5) during the treatment, adverse effects, and responses to a questionnaire regarding preferences in relation to the use of a. This questionnaire comprised five questions on the following topics: preference for inhaled drug versus transdermal drug, inhalation without, inhalation with, use, and ease of maintenance of the AeroChamber. Statistical analyses For the primary endpoint, enrollment of 20 patients provided 80% power to detect a difference in FEV1 of 100 ml, assuming a standard deviation of 140 ml, with a 2-sided test at a 0.05 significance level and an expected dropout rate of 10%. The data are expressed as either the number (proportion) or mean (standard deviation), as appropriate. We compared the differences in FEV1 during the treatment using a paired t-test. The differences in FEV1, FVC, 2402

Visits 1 2 3 4 5 A B Observational (washout) Figure 2. Study design. Treatment with without Washout Treatment without with 0 2 4 6 8 Weeks 25 Patients were assessed for eligibility 20 were eligible for assignment 4 Withdraw consent 1 Did not desire treatment 10 assigned to group A 10 assigned to group B 1 Withdraw consent at Visit 3 1 Did not meet COPD criteria (FEV1/FVC > 70%) 9 included in the analysis 9 included in the analysis Figure 3. Participant flow chart. and 50/ 25 between inhalation with and without a were analyzed using an unpaired t-test. Fisher s exact test was used to analyze the incidence of adverse effect and the responses to the questionnaire. All analyses were performed in accordance with the per-protocol principle. All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria, version 3.2.2) (6). More precisely, it is a modified version of R commander (version 2.2-3) designed to add statistical functions that are frequently used in biostatistics (7). Results Of the 25 patients screened, 20 were ultimately included in the study and underwent randomization (Fig. 3). Nineteen participants completed all study visits, with one participant withdrawing their consent at visit 3. One participant was excluded because their FEV1/FVC ratio increased more than 70% during the study, resulting in that patient no longer meeting the diagnostic criteria for COPD. Table 1 shows the demographic data and baseline clinical characteristics of the remaining 18 eligible participants. The mean age of all patients was 75.3 years, and the majority (89%) were men. Seven participants were current smokers at the time of study recruitment but quit before visit 1. All participants were inhalation therapy-naïve, and none had received treatment with tiotropium. The mean baseline FEV1 values were 1,465±485 ml. The mean changes in trough FEV1 (ΔFEV1) were 115.0 ml after 2 weeks of tiotropium treatment administered with a and 92.8 ml without a (Table 2). There was no significant difference in the ΔFEV1 between tiotropium therapy delivered with and without a [p=0.66, difference in the mean ΔFEV1 between the groups: 22.2 ml (95% confidence interval: -79.6 to 124 ml)]. There were also no significant differences between tiotropium therapy with and without a with respect to ΔFVC, Δ 50/ 25, and the CAT score at the 2-week time-point. Although the FEV1 and FVC were significantly increased after tiotropium treatment with or without a, the 50/ 25 and CAT did not show any significant changes. The overall incidence of adverse effects was 16.7% and 2403

Table 1. Baseline Patient Demographics and Characteristics. Characteristics n=18 Age, mean (SD), yr 75.3 (11.7) Male, no. (%) 16 (89) Body weight, mean (SD), kg 54.7 (14.1) Body mass index, mean (SD), kg/m 2 20.7 (4.6) Current smoker, no. (%) 7 (39) Pack-years, mean (SD) 43.5 (30.2) Baseline FEV 1, mean (SD), ml 1,465 (485) Severity of COPD, no. (%) Group A 5 (28) Group B 11 (61) Group C 0 (0) Group D 2 (11) Comorbidities, no (%) Hypertension 6 (33) Atrial fibrillation 2 (11) Myocardial infarction 2 (11) Heart failure 1 (6) Diabetes mellitus 1 (6) COPD: Chronic obstructive pulmonary disease, FEV 1: Forced expiratory volume in 1 s 11.1% with and without a, respectively (p=0.99). The only reported adverse effect was dry mouth, and all participants experiencing dry mouth were able to continue the study drug. There were no participants who experienced heart palpitation or arrhythmia. Of the 18 participants, 14 (78%) responded to the questionnaire regarding inhalation therapy. A total of 79% of the respondents preferred the inhaled drug, while 21% preferred the transdermal drug (Fig. 4). Inhalation with a was reported to be easier than that without a, but no to a significant degree (p=0.20). There was no relationship between age and preference. For example, a 90-year-old participant preferred the inhaled drug and felt that inhalation with a was easy, whereas a 93-year-old participant preferred the transdermal drug and felt that inhalation with a was slightly difficult. The respondents who answered that inhalation with a was very easy were all over 75 years of age. More than half of the respondents felt that both the usage and the maintenance of the AeroChamber were easy. Discussion The present study demonstrated that delivery of tiotropium with a is equally effective in terms of increased FEV1 values compared to delivery without a. Before examining the clinical benefit of tiotropium with a for elderly patients with poor inhalation skills, we first aimed to examine whether or not tiotropium with a had a bronchodilatory effect. If patients with COPD are unable to use Respimat adequately because of cognitive impairment or poor lung-hand coordination, or if they cannot push the button of this device because of rheumatism in their fingers, tiotropium administered via Respimat using a may be an alternative inhalation method and a more effective treatment option than transdermal LABA. Regarding the main outcome of this study, the FEV1 improved significantly after the administration of tiotropium with or without a, but none of the changes in the pulmonary function tests differed significantly between the two groups. An increase of 100 ml in the trough FEV1 was considered the minimal clinically important difference (MCID) (8), since tiotropium administered via Respimat with a met the minimal criteria for an MCID. However, the difference in the mean ΔFEV1 between the groups (lower limit of 95% confidence interval: -79.6 ml) was not <-100 ml. This result did not demonstrate the noninferiority of tiotropium with a, because the present study was not designed as a non-inferiority trial, and -100 ml might be inappropriate as the non-inferiority margin of FEV1. Although we feared that tiotropium might be absorbed by the inner surface of the AeroChamber, resulting in decreased deposition of tiotropium to small airways, the value of 50/ 25, which reflected the airflow obstruction of small airways, did not differ regardless of whether or not a was used. inhalation therapy via Respimat using the AeroChamber may therefore have a sufficient bronchodilatory effect. Adding a to a pmdi helps to minimize difficulties with hand-lung coordination as well as to reduce adverse effects and increase therapeutic efficacy. Among inhaler devices, pmdis are the most difficult for patients with COPD or asthma to use (9). It has been shown that more than 60% of patients were unable to use a pmdi correctly (10). Patients with asthma using s with pmdis for the delivery of ICS were found to have better control than those using pmdis alone (11). Incorrect inhaler use increases with age and with the severity of airflow obstruction (12). It is considered important for physicians or pharmacists to repeat the instructions for inhaler techniques to elderly patients with poor inhalation skills; however, elderly patients may have learning difficulties due to an impaired cognitive function as well as impaired vision and fine motor skills. Since elderly patients with severe COPD often have decreased inspiratory flow rates, a pmdi with a is the ideal and most strongly recommended treatment option for patients with these and other related problems (13). In the present study, we selected the AeroChamber as a, and the majority of participants found the use or maintenance of this device relatively easy. Although the Respimat device is easier to use and provides smoother inhalation than a pmdi, the AeroChamber with a Respimat device may be a treatment option for COPD patients who are unable to coordinate the press of a button with their breathing. Although there was no significant difference between the devices, many participants in the present study felt that inhalation with the AeroChamber was not difficult. Inhalation therapy with the AeroChamber may be useful for care assistants 2404

Table 2. Changes in the Lung Function Parameters and COPD Assessment Test Results. without with Before After p value Before After p value FEV 1 (ml) 1,524 (511) 1,617 (484) 0.007 1,492 (476) 1,607 (537) 0.01 ΔFEV 1 (ml) 92.8 (128.1) 115.0 (169.6) FVC (ml) 2,786 (720) 2,912 (646) 0.03 2,746 (630) 2,863 (706) 0.01 ΔFVC (ml) 126.1 (233.0) 117.8 (182.5) V 50/V 25 3.06 (1.16) 2.91 (1.03) 0.32 3.22 (1.09) 3.36 (1.58) 0.54 ΔV 50/V 25-0.146 (0.601) 0.132 (0.903) CAT 11.6 (9.1) 10.4 (8.9) 0.76 12.3 (6.6) 13.0 (7.6) 0.71 FEV 1: Forced expiratory volume in 1 s, FVC: Forced vital capacity, CAT: COPD assessment test Values are mean (SD). Q1. Which did you prefer inhaled drug or transdermal drug? Inhaled drug Transdermal drug Q2. What did you feel about the inhalation without AeroChamber? Q3. What did you feel about the inhalation with AeroChamber? Q4. What did you feel about the usage of AeroChamber? Q5. What did you feel about the maintenance of AeroChamber? 0 50 100 (%) Very easy Easy Fair Difficult Very difficult Figure 4. Results of a preference questionnaire regarding inhalation using the AeroChamber. providing inhaler assistance to elderly patients with COPD and dementia. Although there was concern that the delivery of tiotropium by Respimat might increase mortality due to cardiovascular disease, the Safety and Performance in Respimat (TIOSPIR) trial demonstrated that tiotropium Respimat had a favorable safety profile with respect to cardiovascular adverse effects (14). In the present trial, no participants reported heart palpitations during this short-term use. Dry mouth is the most commonly reported adverse effect of tiotropium (15). The results of our study are compatible with the pooled analysis by Kesten (16). No participants discontinued tiotropium because of symptoms of dry mouth during the treatment, and participants were able to continue tiotropium therapy following the study. Our data suggest that inhalation therapy via Respimat using the AeroChamber does not enhance or reduce the adverse effects of tiotropium. Several limitations associated with the present study warrant mention. First, patients were administered a transdermal tulobuterol to prevent worsening of symptoms during the washout s; therefore, ΔFEV1 did not simply represent the bronchodilatory effect of tiotropium delivered by Respimat. Second, the FEV1 after bronchodilation (e.g. inhalation of short-acting β2-agonists [SABAs]) was not measured in this trial. SABAs require different devices in combination with Respimat, and thus it is necessary for patients to learn how to manage another device. Therefore, changes in the FEV1 might be affected by the delivery of SABAs, so we measured only the trough FEV1 in this trial. Third, we were unable to completely assess the cardiovascular adverse effects, because neither electrocardiograms nor echocardiographic examinations were routinely performed at all visits. Questioning of the participants by pharmacists and auscultation by physicians provided the only data that guided decision-making with regard to cardiovascular adverse effects. Fourth, elderly patients with dementia or poor handling skills preferentially did not participate in this trial. It is 2405

therefore unclear whether or not tiotropium with a has a clinically beneficial effect on elderly patients with these conditions, warranting further examination. In conclusion, as measured by the change in the FEV1, tiotropium inhalation therapy administered via Respimat using a had a comparable effect to that of tiotropium Respimat alone. with a may be an alternative treatment option for elderly patients with poor inhalation skills. The authors state that they have no Conflict of Interest (COI). References 1. Fukuchi Y, Nishimura M, Ichinose M, et al. COPD in Japan: the Nippon COPD Epidemiology study. Respirology 9: 458-465, 2004. 2. Vestbo J, Hurd SS, Agustí AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med 187: 347-365, 2013. 3. Guidelines for the diagnosis and treatment of COPD (Chronic Obstructive Pulmonary Disease). 4th ed. Committee for the fourth edition of the COPD guidelines of the Japanese Respiratory Society. Medical Review Co., Ltd., Tokyo, 2013. 4. Celli BR, MacNee W; ATS/ERS Task Force. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23: 932-946, 2004. 5. Tsuda T, Suematsu R, Kamohara K, et al. Development of the Japanese version of the COPD Assessment Test. Respir Investig 50: 34-39, 2012. 6. Kanda Y. Free statistical software: EZR (Easy R) on R commander. [cited 2016 Jun 13] Available from: http://www.jichi.ac.jp/ saitama-sct/saitamahp.files/statmeden.html 7. Kanda Y. Investigation of the freely-available easy-to-use software EZR (Easy R) for medical statistics. Bone Marrow Transpl 48: 452-458, 2013. 8. Donohue JF. Minimal clinically important differences in COPD lung function. COPD 2: 111-124, 2005. 9. Ganguly A, Das AK, Roy A, Adhikari A, Banerjee J, Sen S. Study of proper use of inhalational devices by bronchial asthma or COPD patients attending a tertiary care hospital. J Clin Diagn Res 8: HC04-HC07, 2014. 10. Aydemir Y. Assessment of the factors affecting the failure to use inhaler devices before and after training. Respir Med 109: 451-458, 2015. 11. Levy ML, Hardwell A, McKnight E, Holmes J. Asthma patients inability to use a pressurised metered-dose inhaler (pmdi) correctly correlates with poor asthma control as defined by the global initiative for asthma (GINA) strategy: a retrospective analysis. Prim Care Respir J 22: 406-411, 2013. 12. Wieshammer S, Dreyhaupt J. Dry powder inhalers: which factors determine the frequency of handling errors? Respiration 75: 18-25, 2008. 13. Gibson PG, McDonald VM, Marks GB. Asthma in older adults. Lancet 376: 803-813, 2010. 14. Wise RA, Anzueto A, Cotton D, et al. Respimat inhaler and the risk of death in COPD. N Engl J Med 369: 1491-1501, 2013. 15. Heredia JL. bromide: an update. Open Respir Med J 3: 43-52, 2009. 16. Kesten S, Celli B, Decramer M, Leimer I, Tashkin D. HandiHaler in the treatment of COPD: a safety review. Int J Chron Obstruct Pulmon Dis 4: 397-409, 2009. The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/ by-nc-nd/4.0/). 2017 The Japanese Society of Internal Medicine Intern Med 56: 2401-2406, 2017 2406