The Lipid-Lowering Efficacy of Switching Within Non-Nucleoside Reverse Transcriptase Inhibitors in HIV-Infected Patients

Similar documents
When to Rock the Boat Switching Antiretroviral Therapy for Metabolic Complications

TOXICITY, TOLERABILITY, AND ADHERENCE TO THERAPY

Investigating the effect of antiretroviral switch to tenofovir alafenamide on lipid profiles in people living with HIV within the UCD ID Cohort

Department of General Medicine, Juntendo University School of Medicine, Tokyo; and 2

Individual Study Table Referring to the Dossier SYNOPSIS. Final Clinical Study Report for Study AI424136

Higher Risk of Hyperglycemia in HIV-Infected Patients Treated with Didanosine Plus Tenofovir

Anumber of clinical trials have demonstrated

HIV Treatment Update. Awewura Kwara, MD, MPH&TM Associate Professor of Medicine and Infectious Diseases Brown University

Principles of Antiretroviral Therapy

Real Life Experience of Dolutegravir and Lamivudine Dual Therapy As a Switching Regimen in HIVTR Cohort

Clinical Management Guidelines 2012

Management of patients with antiretroviral treatment failure: guidelines comparison

Pitavastatin 4 mg vs. Pravastatin 40 mg in HIV Dyslipidemia: Post- Hoc Analysis of the INTREPID Trial Based on the Independent CHD Risk Factor for Age

Dyslipidemia and HIV NORTHWEST AIDS EDUCATION AND TRAINING CENTER

A Genetic Test to Screen for Abacavir Hypersensitivity Reactions

12th European AIDS Conference / EACS ARV Therapies and Therapeutic Strategies A CME Newsletter

Supplemental Digital Content 1. Combination antiretroviral therapy regimens utilized in each study

NOTICE TO PHYSICIANS. Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health

Continuing Education for Pharmacy Technicians

Frailty and age are independently associated with patterns of HIV antiretroviral use in a clinical setting. Giovanni Guaraldi

Cardiovascular Diseases in HIV and Aging. Aroonsiri Sangarlangkarn, MD, MPH, Jonathan S. Appelbaum, MD, FACP

HIV and HAART-Associated Dyslipidemia

Kimberly Adkison, 1 Lesley Kahl, 1 Elizabeth Blair, 1 Kostas Angelis, 2 Herta Crauwels, 3 Maria Nascimento, 1 Michael Aboud 1

Second-Line Therapy NORTHWEST AIDS EDUCATION AND TRAINING CENTER

This graph displays the natural history of the HIV disease. During acute infection there is high levels of HIV RNA in plasma, and CD4 s counts

Structured Treatment Interruption in HIV Positive Patients. Leah Jackson, BScPhm Pharmacy Resident HIV Rotation January 23, 2007

NIH Public Access Author Manuscript Endocrinol Metab Clin North Am. Author manuscript; available in PMC 2009 September 28.

Liver Toxicity in Epidemiological Cohorts

Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents

Long-Term Safety and Efficacy of Nevirapine-Based Approaches in HIV Type 1-Infected Patients ABSTRACT

To interrupt or not to interrupt Are we SMART enough?

Ischemic Cardiovascular Disease in Persons with Human Immunodeficiency Virus Infection

Title: Do non-nucleoside reverse transcriptase inhibitors contribute to lipodystrophy?

43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) A Cutrell, J Hernandez, M Edwards, J Fleming, W Powell, T Scott

Switching Effective Antiretroviral Therapy: A Review

What's new in the WHO ART guidelines How did markets react?

Simplifying HIV Treatment Now and in the Future

2 nd Line Treatment and Resistance. Dr Rohit Talwani & Dr Dave Riedel 12 th June 2012

Effect of Specific ART Drugs on Lipid Changes and the Need for Lipid Management in Children With HIV

PAEDIATRIC HIV INFECTION. Dr Ashendri Pillay Paediatric Infectious Diseases Specialist

Kirsten A. Walker. Submitted in partial fulfilment of the requirements for the degree of Master of Science

HIV/AIDS CID 2014:59 (1 August) 425

The impact of antiretroviral drugs on Cardiovascular Health

Treatment strategies for the developing world

THE SOUTH AFRICAN ANTIRETROVIRAL TREATMENT GUIDELINES 2010

HIV Infection as a Chronic Disease. Howard Libman, MD Beth Israel Deaconess Medical Center Harvard Medical School

Associate Professor, Department of General Medicine, Mysore Medical College and Research Institute, Mysuru, Karnataka, India, 2

WESTERN CAPE ART GUIDELINES PRESENTATION 2013

ANTIRETROVIRAL TOXICITY Strategies for prevention and treatment

2/10/2015. Switching from old regimens. HIV treatment revision: As simple as old versus new? What is an old regimen? What is an old regimen?

First line ART Rilpirivine A New NNRTI. Chris Jack Physician, Durdoc Centre ethekwini

Role of Efavirenz in HIV-infected Patients with Preceding Nevirapine-related Skin Rash

Introduction to HIV Drug Resistance. Kevin L. Ard, MD, MPH Massachusetts General Hospital Harvard Medical School

The advent of protease inhibitors (PIs) as PROCEEDINGS CLINICAL EXPECTATIONS OF EFFICACY: PROTEASE INHIBITOR POTENCY * Benjamin Young, MD, PhD

CHAPTER IV RESEARCH METHOD. This study belongs to the field of Internal Medicine, specifically the field

Heart Online First, published on March 29, 2005 as /hrt SCIENTIFIC LETTER

Fat redistribution on ARVs: dogma versus data

NURSING CARE. HIV-Infected INMATE. of the. METABOLIC COMPLICATIONS of HIV. Albany Medical Center. Module 9 S U M M E R / F A L L

Dyslipidemia in HIV-infected individuals

Individual Study Table Referring to the Dossier SYNOPSIS. Final Clinical Study Report for Study AI424138

Dolutegravir-Rilpivirine (Juluca)

Antiretroviral Treatment (ART) of Adult HIV Infection*

METHODS. Keywords. antiretroviral therapy; fat; HIV; raltegravir; visceral; women.

ΛΟΙΜΩΞΗ HIV. Ιγνάτιος Οικονομίδης,MD,FESC Β Πανεπιστημιακή Καρδιολογική

IMPROVEMENT in LIPOATROPHY ASSOCIATED with HIGHLY ACTIVE ANTIRETROVIRAL THERAPY in HIV-INFECTED CHILDREN SWITCHED from STAVUDINE to TENOFOVIR

DNA Genotyping in HIV Infection

3TC (lamivudine, Epivir)

IDSA GUIDELINES EXECUTIVE SUMMARY

Management of NRTI Resistance

Evaluation of HIV Protease Inhibitor Use and the Risk of Sudden Death or Nonhemorrhagic Stroke

Disclosure Information

TB/HIV Co-Infection. Tuberculosis and HIV

NIH Public Access Author Manuscript Rev Cardiovasc Med. Author manuscript; available in PMC 2014 August 04.

Pediatric Antiretroviral Resistance Challenges

National review of first treatment change after starting highly active antiretroviral therapy in antiretroviral-naïve patients

Antiretroviral treatment outcomes after the introduction of tenofovir in the public-sector in South Africa

Metabolic Effects Associated to the Highly Active Antiretroviral Therapy (HAART) in AIDS Patients

The role of efavirenz compared with protease inhibitors in the body fat changes associated with highly active antiretroviral therapy

GSK Medicine: Study Number: Title: Rationale: Phase: Study Period: Study Design: Centers: Indication: Treatment: Objective:

The next generation of ART regimens

Changes in Lipid Profiles and Other Biochemical Parameters in HIV-1 Infected Patients Newly Commenced on HAART Regimen

Purpose Methods Demographics of patients in the study Outcome. Efficacy Adverse Event. Limitation

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives: Primary Outcome/Efficacy Variable:

Switching ARV Regimens: Managing Toxicity and Improving Tolerability; Switches & Class-Sparing Approaches

MDR HIV and Total Therapeutic Failure. Douglas G. Fish, MD Albany Medical College Albany, New York Cali, Colombia March 30, 2007

SINGLE. Efficacy and safety of dolutegravir (DTG) in treatment-naïve subjects

TB Intensive Tyler, Texas December 2-4, Tuberculosis and HIV Co-Infection. Lisa Y. Armitige, MD, PhD. December 4, 2008.

Association of C-Reactive Protein and HIV Infection With Acute Myocardial Infarction

Clinical skills building - HIV drug resistance

ID Week 2016: HIV Update

D:A:D Study Teaching Material

Dyslipidemia in an HIV-Positive Antiretroviral Treatment-Naive Population in Dar es Salaam, Tanzania

PART VI: SUMMARY OF THE RISK MANAGEMENT PLAN

Transient viral load increases in HIV-infected children in the UK and Ireland: what do they mean?

CROI 2017 Review: Novel ART Strategies

Research Article Metabolic Disorders in HIV-Infected Adolescents Receiving Protease Inhibitors

Updates to the HHS Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV Updated October 17, 2017

Somnuek Sungkanuparph, M.D.

Optimizing 2 nd and 3 rd Line Antiretroviral Therapy in Children and Adolescents

VIKING STUDIES Efficacy and safety of dolutegravir in treatment-experienced subjects

Transcription:

American Journal of Infectious Diseases 4 (2): 147-151, 2008 ISSN 1553-6203 2008 Science Publications The Lipid-Lowering Efficacy of Switching Within Non-Nucleoside Reverse Transcriptase Inhibitors in HIV-Infected Patients 1,2 A.M. Bain, 1,2 K.D. Payne, 1,2 A.P. Rahman, 2,3 R. Bedimo, 4,5 D.O. Maclayton, 5,6 M. Rodriguez-Barradas and 1,2 A.J. Busti 1 School of Pharmacy Dallas/Forth Worth Regional Campus, Texas Tech University Health Sciences Center, Dallas, Texas, USA 2 North Texas Veterans Affairs Healthcare System, Dallas, Texas, USA 3 The University of Texas Southwestern Medical Center, Dallas, Texas, USA 4 College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA 5 Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, USA 6 Baylor College of Medicine, Houston, Texas, USA Abstract: The objective of present research is to evaluate the lipid lowering efficacy and safety of switching within non-nucleoside reverse transcriptase inhibitors (NNRTI) in HIV-infected patients. This is a multicenter, retrospective study utilizing a comprehensive electronic patient registry to identify all adult HIV-infected patients seen from October 1, 1998 through October 1, 2006, who substituted efavirenz for nevirapine (EFV NVP) or vice-versa (NVP EFV), without change in other antiretrovirals. Lipid profiles before and after the switch were analyzed. A total of 124 patients were identified with 14 male (EFV NVP, n = 9; NVP EFV, n = 5) patients meeting the strict criteria for inclusion. An EFV NVP switch resulted in significant reductions in TC -16% and non-hdl -25% (p 0.02) and a trend towards a reduction in LDL-C -12%, TG -27%, TC/HDL -23%, TG/HDL -48% and an increase in HDL-C +15% without any changes to BMI, viral or immunological control. However, a NVP EFV switch appeared to result in a non-significant worsening of LDL-C +29%, HDL-C -8%, TG +36%, non-hdl +28%, TC/HDL +57% and TG/HDL +46%. Lastly, more patients achieved their lipid goals when switched from EFV to NVP. These data suggest that switching from EFV to NVP-based HAART is associated with lipid improvement, however, switching from NVP to EFV-based HAART is associated with worsening of serum lipids. Key words: Reverse transcriptase inhibitors, efavirenz, nevirapine, dyslipidemia, human immunodeficiency virus infection INTRODUCTION The widespread use of combination antiretroviral therapy (ART) has drastically improved the prognosis of patients with Human Immunodeficiency Virus (HIV). This improved prognosis has led to long-term use of antiretroviral agents, which have been associated with significant metabolic complications including dyslipidemia. Protease inhibitors (PI) have historically been considered the major cause of highly active antiretroviral therapy (HAART)-associated dyslipidemia [1]. However, there is growing body of evidence associating clinically significant hyperlipidemia with non-nucleoside reverse transcriptase inhibitor (NNRTI)-based therapy, particularly with efavirenz (EFV)-based regimens [2-5]. Prospective comparisons of nevirapine (NVP) and EFV have demonstrated that EFV-based HAART is associated with greater elevation in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and non-hdl cholesterol (non- HDL-C) as well as l increase in high-density lipoprotein (HDL-C) of lesser magnitude when compared to NVPbased HAART [4-6]. Antiretroviral switch strategies, in addition to traditional lipid-lowering treatment approaches, have proven to be useful in select patients with PI and thymidine analogue-associated dyslipidemia [1,7-11]. Two studies have shown improvements in lipids when switching EFV to Corresponding Author: Anthony J. Busti, Diplomate, Accreditation Council for Clinical Lipidology, Texas Tech University Health Sciences Center School of Pharmacy Dallas Fort Worth Regional Campus, 4500 S. Lancaster Rd, Bldg #7, Dallas, Texas 75216, USA Tel: 214-372-5300/240 Fax: 214-372-5020 147

NVP [12,13]. However, it is not known whether switching from NVP to EFV may worsen lipids. It is also unknown if intra-nnrti switching translates into an increased number of patients achieving their patient specific lipid goals per the National Cholesterol Education Program (NCEP)/Adult Treatment Panel III (ATP III) guidelines in a real-world clinical practice setting [13]. The present study was conducted to determine the effect of intra-nnrti class switching on serum lipid and virologic parameters in HIV-infected patients on stable NNRTI-based HAART and to determine if this intervention translates into improvements in achievement of lipid goals. MATERIALS AND METHODS Study design, objectives and participants: This multicenter retrospective study evaluated serum lipid parameters in HIV-infected patients following a switch from one NNRTI-based regimen (either EFV or NVP) to another NNRTI-based therapy. The study was approved by all the Institutional Review Boards of the participating institutions. Two electronic patient registries that contained comprehensive medical records were used to identify all HIV-infected patients seen at the Dallas and Houston Veterans Affairs Medical Centers during an eight-year period (October 1998 through October 2006). Patients were included if they were 18 years of age, on a stable NNRTI-based HAART regimen for 4 weeks prior to an isolated switch from EFV to NVP or from NVP to EFV and subsequently maintained on the second NNRTI-based regimen for 4 weeks. They also had to have an on -treatment documented lipid profile obtained within a 6 month period prior to the switch and a follow-up lipid profile obtained within a 6 month period after switching to the new NNRTI based HAART. In an attempt to control for confounders strict exclusion criteria were used during screening. Patients were excluded if they had any concomitant changes in the nucleoside reverse transcriptase inhibitor (NRTI) backbone agents, any dosage change, additions or deletions of lipid-lowering medications or other medications known to alter serum lipid parameters, any documented evidence of significant changes in diet, alcohol-consuming behavior, exercise patterns or significant changes in diabetes control (defined as a change in HbA1c >1%). Patients with new-onset or uncontrolled thyroid disease or nephrotic syndrome were also excluded. All patients were risk stratified per NCEP/ATP III guidelines to determine whether or not patients achieved lipids goals pre and post switch. Study endpoints: Changes in serum lipid profiles before and after the intra-nnrti class switch were investigated as the primary efficacy measure while CD4 cell counts, HIV viral load and liver enzymes [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)] data were collected at baseline and following the switch to evaluate the safety of the switch]. Secondary endpoints included investigation of changes in the total cholesterol to high-density lipoprotein ratio (TC/HDL) and the triglyceride to high-density lipoprotein ratio (TG/HDL) from baseline. We also assessed the frequency of NCEP/ATP III lipid goal attainment, both pre and post NNRTI switch. Data analysis: At the time of protocol development, no data existed on the effects of any within NNRTI switch on the lipid profile and achievement of patient specific goals. Due to the limited nature of this intervention in this special population and available number of subjects, all patients in both HIV registries who meet the strict criteria for inclusion were included in this analysis. Median changes in serum lipids and CD4 counts from baseline were computed using the Wilcoxon Signed ranks test for paired continuous nonnormally distributed data. Frequency of NCEP/ATP III goal attainment and frequency of undetectable viremia were analyzed using McNemar's test. A two-sided alpha of 0.05 was used to determine statistical significance. All statistical analysis were performed using SPSS for Windows version 15.0 (SPSS Inc., Chicago, IL). RESULTS AND DISCUSSION A total of 124 patients were identified that had taken both NVP and EFV during an eight-year period with a total of 14 patients meeting the strict criteria for inclusion. Reasons for exclusion were based on a priori criteria and included incomplete lipid data, change of an NRTI backbone agent, change in lipid lowering medication and addition of a medication known to alter lipid parameters. The majority of patients had undetectable HIV viral loads (defined as <50 copies ml 1 ) at baseline (n =12/14) and only 1/14 patients had a CD4 count <200 copies ml 1. Reasons patients were switched from EFV to NVP included adverse CNS side effects (n = 4), dyslipidemia (n = 2), positive tetrahydrocannabinol (THC) screen (n = 1) and reason unknown (n = 2). Patients were switched from NVP to EFV for pill burden reduction (n = 2) or for other unknown reasons (n = 3). Baseline lipid data and other baseline characteristics are shown in Table 1. 148

Table 1: Baseline characteristics Characteristic EFV to NVP (n = 9) NVP to EFV (n = 5) Age (years) 52 (41-56) 49 (45-58) Males [n (%)] 9 (100) 5 (100) HIV RNA Viral Load < 50 copies ml 1 [n (%)] 8 (89) 4 (80) Median CD4+ counts (cells mm 3 ) 506 (319-621) 517 (295-622) BMI 28 (25-29) 25 (24-26) Duration of HIV (years) 9 (3-14) 9 (6-12) Duration on baseline NNRTI prior to switch (months) 23 (5-42) 10 (8-13) Thymidine analogue use in NRTI backbone [n (%)] 5 (56) D4T (n = 1) AZT (n = 4) 3 (60) D4T (n = 1) AZT (n = 4) Time to follow-up lipid profile after NNRTI switch (weeks) 9 (4-16) 14 (11-20) Comorbidities: [n (%)] Diabetes 1 (11) 1 (11) Lipodystrophy 1 (11) 0 Hyperlipidemia 4 (44) 2 (40) Coronary artery disease 1 (11) 0 Hypothyroidism 1 (11) 0 Use of lipid-lowering medications 2 (22) 0 Lipid profile (mg dl 1 ) TC 193 (165-223) 158 (117-166) LDL-C 116 (96-124) 64 (50-78) HDL-C 40 (31-53) 38 (29-56) TG 113 (76-181) 146 (81-353) Non-HDL-C 156 (113-182) 102 (79-137) TG/HDL 4.4 (1.7-9.1) 3.8 (2.1-15.1) TC/HDL 4.9 (3.5-6.6) 3.0 (2.8-5.7) All data reported as median ±IQR unless otherwise stated. TC = Total Cholesterol, LDL = Low-density lipoprotein cholesterol, HDL = Highdensity lipoprotein cholesterol, non-hdl = Non-high-density lipoprotein cholesterol, TG = Triglycerides Patients on EFV-based ART at baseline that were subsequently switched to and maintained on NVPbased ART experienced overall improvements in serum lipids with statistically significant reductions in TC and non-hdl from baseline values (Fig. 1A). Conversely, patients on NVP-based therapy who were switched to and maintained on EFV-based treatment experienced an overall worsening of lipid profiles, although this difference was not statistically significant (Fig. 1B). In the EFV NVP group, the number of patients limit of normal (0%) following a switch from EFV to NVP or from NVP to EFV. To our knowledge, this is the first study to evaluate the alterations in lipid parameters following a switch from both EFV to NVP and from NVP to EFV. Present results suggest that overall improvements in lipids occur when switching from EFV to NVP, but not when switched from NVP to EFV. We found a statistically significant 16% reduction in TC and 25% reduction in non-hdl-c cholesterol and an overall improvement in TG, HDL-C, LDL-C and TC/HDL and TG/HDL, although the latter did not reach statistical significance. In either switch arm, there was no apparent compromise of virologic or immunologic control, at least in our population who had relatively good viral control at baseline. These findings are consistent with previous reports that EFV-based regimens may be associated with more adverse metabolic effects and hyperlipidemia than NVP-based regimens [4-6]. This observation is also consistent with PI to NNRTI switch studies which demonstrate that switching from PI-based regimens to NVP-based therapy may offer greater lipid improvements than switching the PI component to EFV [1,7,9,14-17]. Taken together, these data highlight the important differences in the magnitude of dyslipidemia associated with EFV and NVP and would also suggest that the potential for an intra-nnrti switch strategy for meeting the NCEP/ATP III goal increased from 4 (44%) to 6 (67%) for LDL-C and from 5 (55%) to 8 (89%) for HDL-C and non-hdl cholesterol. However, there was no change from baseline in the number of patients meeting NCEP/ATP III lipid goals in the NVP EFV group. Regarding the safety of such an intervention, there were no significant changes in immunologic control. When switching from EFV to NVP there was no significant change in median CD4 count from 506 cells mm 3 (IQR, 319-621) at baseline versus 489 cells mm 3 (IQR, 329-681) at follow-up, p = 0.93. This was also true for those switching from NVP to EFV; CD4 count changed from 517 cells mm 3 (IQR, 295-622) at baseline to 492 cells mm 3 (IQR, 220-731) at follow-up, p = 0.50. In addition, there were no changes in the percent of patients with undetectable HIV-RNA (87% at baseline vs. 93% at follow-up; p = 1.00) or hepatic transaminases >2.5 times the upper improvement of EFV-associated dyslipidemia may 149

Median percentage change from baseline Median percentage change from baseline 20 10 0-10 -20-30 -40 40 30 20 10 0-10 -20 Lipid changes following EFV to NVP switch (n = 9) HDL p = 0.19 TC p = 0.017 LDL p = 0.11 (A) Am. J. Infectious Dis., 4 (2): 147-151, 2008 Non-HDL p = 0.02 Lipid changes following NVP to EFV switch (n = 5) TC LDL p = 0.65 HDL p = 1.00 (B) Non- HDL p = 1.00 TG p = 0.11 TG p = 0.223 Fig. 1A and B: Changes in lipid parameters from baseline values following an intra- NNRTI switch. TC = Total cholesterol, LDL = Low-density lipoprotein cholesterol, HDL = High-density lipoprotein cholesterol, non- HDL = Non-high-density lipoprotein cholesterol, TG = Triglycerides warrant further attention. Previous antiretroviral switch studies have also demonstrated maintenance of virologic and immunologic control if patients were well controlled on pre-switch antiretroviral regimens [6-11]. Our observations are consistent with one report that evaluated the lipid effects in patients who had experienced psychiatric side effects and were switched from EFV to NVP [12]. This retrospective study also found an overall improvement in TC, LDL-C, HDL-C and TG of -9, -5, +7 and -33% respectively [12]. The reduction of LDL-C noted in this study is also consistent with the report by Parienti et al. [13]. They observed a modest reduction in LDL-C in patients who were switched from EFV-based therapy to NVP, when compared to patients who continued an EFV-based regimen [13]. Unlike the aforementioned studies that only explored a switch from EFV to NVP, we also evaluated 150 the effect of switching from NVP to EFV. We observed a generalized worsening in lipid parameters and TC/HDL and TG/HDL in patients switched from NVP to EFV, which help to support that any changes in lipids following the switch from EFV to NVP (or vice versa) are likely due to the switch and not potential confounding variables. A further investigation of the effect of an intra-nnrti switch strategy on the attainment of NCEP goals was also conducted. While not statistically significant, a switch from EFV to NVP allowed an additional 2 patients (22%) to attain their LDL-C goal and an additional 3 patients (33%) to reach their HDL-C and non-hdl-c goals. Some limitations to our study include its retrospective study design, small sample size and absence of females in our study population and inability to validate whether lipid profiles were obtained in the fasting state. However, this study used a comprehensive real-time database which allowed for controlling for numerous confounders that might affect the primary lipid outcomes, evaluating the effects on lipid parameters in both intra-nnrti switches and the reporting the effect of such interventions on the attainment meaningful goals per current standards of care. In addition, it was based on real-world clinical practice from more than one health care center. Lastly, our study was conducted with a small sample size due to our strict criteria for inclusion and the limited number of patients who qualify for such a specific antiretroviral switch. However, this is also a limitation in much of the data in HIV-infected patients with dyslipidemia on HAART. CONCLUSIONS While targeting HAART-associated dyslipidemia has become increasingly important among HIVinfected patients as evidence accumulates demonstrating the high cardiovascular risk in this patient population, management of these lipid risk factors is often complicated and may require more than one intervention in order to attain lipid goals [1,2,18]. Consistent with other reports, these observations suggest that an intra-nnrti switch from EFV to NVP is associated with global improvement of lipids, beyond decreases in LDL, without any readily apparent compromise in virologic or immunologic control. The ability of such a switch to impact lipid goal attainment may warrant further attention in order to determine if these lipid changes might also impact cardiovascular risk to an extent that is clinically meaningful.

REFERENCES 1. Dube, M.P., J.H. Stein and J.A. Aberg et al., 2005. Guidelines for the evaluation and management of dyslipidemia in Human Immunodeficiency Virus (HIV)-infected adults receiving antiretroviral therapy: Recommendations of the HIV medicine association of the infectious disease society of america and the adult aids clinical trials group. Clin. Infect. Dis., 37: 613-627. 2. Friis Moller, N., R. Weber and P. Reiss et al., 2003. Cardiovascular disease risk factors in HIV patients- association with antiretroviral therapy. Results from the DAD study. AIDS., 17: 1179-1193. 3. Bonnet, F., M. Bonarek, S. DeWitte, J. Beylot and P. Morlat, 2002. Efavirenz-associated severe hyperlipidemia. Clin. Infect. Dis., 35: 776-777. 4. Manfredi, R., L. Calza and F. Chiodo, 2005. An extremely different dysmetabolic profile between the two available nonnucleoside reverse transcriptase inhibitors: Efavirenz and nevirapine. J. Acquir. Immune Defic. Syndr., 38 :236-238. 5. Van Leth, F., P. Phanuphak and K. Ruxrungtham, 2004. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: A randomized, open-label trial, the 2NN study. Lancet., 363: 1253-1263. 6. Fontas, E., F. van Leth and C.A. Sabin et al., 2004. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: Are different drugs associated with different lipid profiles? J. Infect. Dis., 189: 1056-1074. 7. Fisac, C., E. Fumero and M. Crespo et al., 2005. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz, or nevirapine. AIDS., 19: 917-925. 8. Negredo, E., J. Ribalta and R. Paredes et al., 2002. Reversal of atherogenic lipoprotein profile in HIV- 1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine. AIDS., 16: 1383-1389. 9. Calza, L., R. Manfredi and V. Colangeli et al., 2005. Substitution of nevirapine or efavirenz for protease inhibitor versus lipid-lowering therapy for the management of dyslipidemia. AIDS., 19: 1051-1058. 10. Llibre, J.M., P. Domingo and R. Palacios et al., 2006. Sustained improvement of dyslipidemia in HAART-treated patients replacing stavudine with tenofovir. AIDS., 20: 1407-1414. 11. Gatell, J., D. Salmon-Ceron and A. Lazzarin et al., 2007. Efficacy and safety of atazanavir-based highly active antiretroviral therapy in patients with virologic suppression switched from a stable, boosted or unboosted protease inhibitor treatment regimen: The SWAN study (AI424-097) 48-week results. Clin. Infect. Dis., 44: 1484-1492. 12. Ward, D. and J.M. Curtin, 2006. Switch from efavirenz to nevirapine associated with resolution of efavirenz-related neuropsychiatric adverse effects and improvement in lipid profiles. AIDS Patient Care STDs., 20: 542-548. 13. Parienti, J., V. Massari, D. Rey, P. Poubeau and R. Verdon, 2007. Efavirenz to nevirapine switch in HIV-1-Infected patients with dyslipidemia: A randomized, controlled study. Clin. Infect. Dis., 45: 263-266. 14. Negredo, E., J. Ribalta and R. Ferre et al., 2004. Efavirenz induces a striking and generalized increase of HDL-cholesterol in HIV-infected patients. AIDS, 18: 819-821. 15. Negredo, E., J. Ribalta and R. Paredes et al., 2002. Reversal of atherogenic lipoprotein profile in HIV- 1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine. AIDS, 16: 1383-1389. 16. Martinez, E., I. Conget, L. Lozano, R. Casamitjana and J.M. Gatell, 1999. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS, 13: 805-810. 17. Ruiz, L., E. Negredo and P. Domingo et al., 2001. Antiretroviral treatment simplification with nevirapine in protease inhibitor experienced patients with HIV-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study. J. Acquir. Immune Defic. Syndr, 27: 229-236. 18. Triant, V.A., H. Lee, C. Hadigan and S.K. Grinspoon, 2007. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with HIV disease. J. Clin. Endocrinol. Metab., 92: 2506-2512. 151