RESEARCH ARTICLE. Effects of Tobacco Habits on the Polymorphism of NFKB1 and NFKB1A Gene of Head and Neck Squamous Cell Carcinoma in Indian Population

Similar documents
Original Article The association between NFKB1-94ins/del ATTG polymorphism and non-small cell lung cancer risk in a Chinese Han population

Lack of association between ERCC5 gene polymorphisms and gastric cancer risk in a Chinese population

Original Article The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population

Investigating the role of polymorphisms in mir-146a, -149, and -196a2 in the development of gastric cancer

IL10 rs polymorphism is associated with liver cirrhosis and chronic hepatitis B

Investigation on ERCC5 genetic polymorphisms and the development of gastric cancer in a Chinese population

Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma

Association between ERCC1 and ERCC2 gene polymorphisms and susceptibility to pancreatic cancer

Association between ERCC1 and ERCC2 polymorphisms and breast cancer risk in a Chinese population

Association between ERCC1 and XPF polymorphisms and risk of colorectal cancer

Role of TGFB1 polymorphism in the development of metastatic brain tumors in non-small cell lung cancer patients

Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage

Association between MTHFR 677C/T and 1298A/C gene polymorphisms and breast cancer risk

Polymorphism of the PAI-1gene (4G/5G) may be linked with Polycystic Ovary Syndrome and associated pregnancy disorders in South Indian Women

Association between rs G<C gene polymorphism and susceptibility to pancreatic cancer in a Chinese population

Association between the -77T>C polymorphism in the DNA repair gene XRCC1 and lung cancer risk

IL-17 rs genetic variation contributes to the development of gastric cancer in a Chinese population

Association between the pre-mir-196a2 rs polymorphism and gastric cancer susceptibility in a Chinese population

Association between IL-17A and IL-17F gene polymorphisms and risk of gastric cancer in a Chinese population

Investigation on the role of XPG gene polymorphisms in breast cancer risk in a Chinese population

Investigation of the role of XRCC1 genetic polymorphisms in the development of gliomas in a Chinese population

Research Article Genetic Variations in Inflammatory Response Genes and Their Association with the Risk of Prostate Cancer

Influence of interleukin-18 gene polymorphisms on acute pancreatitis susceptibility in a Chinese population

Influence of interleukin-17 gene polymorphisms on the development of pulmonary tuberculosis

European Journal of Medical Research. Open Access RESEARCH. Weiming Hao 1,2, Xia Xu 3, Haifeng Shi 1, Chiyu Zhang 2 and Xiaoxiang Chen 4*

H.F. Liu, J.S. Liu, J.H. Deng and R.R. Wu. Corresponding author: J.S. Liu

CYP19 gene polymorphisms and the susceptibility to breast cancer in Xinjiang Uigur women

Association between interleukin gene polymorphisms and risk of recurrent oral ulceration

Association between polymorphisms in the promoter region of pri-mir-34b/c and risk of hepatocellular carcinoma

Role of Paired Box9 (PAX9) (rs ) and Muscle Segment Homeobox1 (MSX1) (581C>T) Gene Polymorphisms in Tooth Agenesis

Roles of functional NFKB1 and β-trcp insertion/deletion polymorphisms in mrna expression and epithelial ovarian cancer susceptibility

Polymorphisms of DNA repair-related genes with susceptibility and prognosis of prostate cancer

Original Article MiR-146a genetic polymorphism contributes to the susceptibility to hepatocellular carcinoma in a Chinese population

Aberrant DNA methylation of MGMT and hmlh1 genes in prediction of gastric cancer

Polymorphisms of XPC Gene And Susceptibility of Esophageal Cancer

RESEARCH COMMUNICATION

Original Article Association between XRCC1 and ERCC2 gene. polymorphisms and development of osteosarcoma.

NFκB What is it and What s the deal with radicals?

Detection of Cytochrome P450 Polymorphisms in Breast Cancer Patients May Impact on Tamoxifen Therapy

Associations between matrix metalloproteinase gene polymorphisms and the development of cerebral infarction

mir-146a and mir-196a2 polymorphisms in ovarian cancer risk

Influence of the c.1517g>c genetic variant in the XRCC1 gene on pancreatic cancer susceptibility in a Chinese population

Lack of association between an insertion/ deletion polymorphism in IL1A and risk of colorectal cancer

Association between matrix metalloproteinase-9 rs polymorphism and development of coronary artery disease in a Chinese population

Department of Respiratory Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China

A common genetic variant of 5p15.33 is associated with risk for prostate cancer in the Chinese population

Matrix metalloproteinase variants associated with risk and clinical outcome of esophageal cancer

Investigation of Programmed Cell Death-1 (PD-1) Gene Variations at Positions PD1.3 and PD1.5 in Iranian Patients with Non-small Cell Lung Cancer

Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma

Cytochrome P450 2E1 RsaI/PstI and DraI Polymorphisms Are Risk Factors for Lung Cancer in Mongolian and Han Population in Inner Mongolia

Genetic Variation in MicroRNAs and Risk of Oral Squamous Cell Carcinoma in South Indian Population

Role of proteinase-activated receptor-1 gene polymorphisms in susceptibility to chronic obstructive pulmonary disease

Association of DNA Double strand Break Gene XRCC6 Genotypes and Lung Cancer in Taiwan

Lack of association between IL-6-174G>C polymorphism and lung cancer: a metaanalysis

Smoking, human papillomavirus infection, and p53 mutation as risk factors in oropharyngeal cancer: a case-control study

Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population

Clinical Importance of MTHFR Gene Polymorphism in Coronary Artery Disease: A Study from India

Role of inflammatory parameters in the susceptibility of cerebral thrombosis

THE ROLE OF microrna POLYMORPHISMS IN GASTRIC CANCER PATHOGENESIS

Association of polymorphisms of the xeroderma pigmentosum complementation group F gene with increased glioma risk

EFFECTS OF E-CADHERIN (CDH1) GENE PROMOTER POLYMORPHISMS ON THE RISK AND CLINICOPATHOLOGIC DEVELOPMENT OF ORAL CANCER

Role of CASP-10 gene polymorphisms in cancer susceptibility: a HuGE review and meta-analysis

Genetic variability of DNA repair mechanisms in chemotherapy treatment outcome of gastric cancer patients

Award Number: W81XWH TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

The association between methylenetetrahydrofolate reductase gene C677T polymorphisms and breast cancer risk in Chinese population

Supplementary Figure 1. Principal components analysis of European ancestry in the African American, Native Hawaiian and Latino populations.

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

Conditions. Name : dummy Age/sex : xx Y /x. Lab No : xxxxxxxxx. Rep Centre : xxxxxxxxxxx Ref by : Dr. xxxxxxxxxx

ORIGINAL ARTICLE. DNA Repair Gene ERCC1 and ERCC2/XPD Polymorphisms and Risk of Squamous Cell Carcinoma of the Head and Neck

Interaction between CYP 2C19*3 polymorphism and smoking in relation to laryngeal carcinoma in the Chinese Han population

CYP1A2-163C/A (rs762551) polymorphism and bladder cancer risk: a case-control study

Prospective study of MTHFR genetic polymorphisms as a possible etiology of male infertility

Association between Toll-like receptor 9 gene polymorphisms and risk of bacterial meningitis in a Chinese population

Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006

1. Basic principles 2. 6 hallmark features 3. Abnormal cell proliferation: mechanisms 4. Carcinogens: examples. Major Principles:

A single nucleotide polymorphism in the promoter region of let-7 family is associated with lung cancer risk in Chinese

Role of IL-8 rs4073 and rs polymorphisms in the development of primary gouty arthritis in a Chinese population

Significant Association of Ku80 Single Nucleotide Polymorphisms with Bladder Cancer Susceptibility in Taiwan

Association between interleukin-17a polymorphism and coronary artery disease susceptibility in the Chinese Han population

Detection and significance of PD-1.3 SNP (rs ) and IL28B SNP (rs ) in patients with current or past hepatitis B virus (HBV) infection

Multistep nature of cancer development. Cancer genes

Head and Neck Cancer in FA: Risks, Prevention, Screening, & Treatment Options David I. Kutler, M.D., F.A.C.S.

Head and Neck Squamous Subtypes

New evidence of TERT rs polymorphism and cancer risk: an updated meta-analysis

Supplementary Table 1. The distribution of IFNL rs and rs and Hardy-Weinberg equilibrium Genotype Observed Expected X 2 P-value* CHC

Mei-Sheng Xiao, Deng-Feng Zhang, Yun Zeng, Yun-Feng Cheng & Yong-Gang Yao

Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value

Association of XRCC1 gene polymorphisms and pancreatic cancer risk in a Chinese population

RESEARCH ARTICLE. Association of Poly (ADP-Ribose) Polymerase 1 Variants with Oral Squamous Cell Carcinoma Susceptibility in a South Indian Population

of TERT, MLL4, CCNE1, SENP5, and ROCK1 on tumor development were discussed.

Original Article Correlation between 1082G/A gene polymorphism of interleukin 10 promoter and cervical carcinoma

TITLE: CYP1B1 Polymorphism as a Risk Factor for Race-Related Prostate Cancer

Chapter 4 INSIG2 Polymorphism and BMI in Indian Population

Lack of Association between Endoplasmic Reticulum Stress Response Genes and Suicidal Victims

Supplementary Figure 1 Forest plots of genetic variants in GDM with all included studies. (A) IGF2BP2

Effects of three common polymorphisms in micrornas on lung cancer risk: a meta-analysis

RESEARCH COMMUNICATION

Association between the CYP11B2 gene 344T>C polymorphism and coronary artery disease: a meta-analysis

Vascular Endothelial Growth Factor Expression in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma

Table S1. Primers and PCR protocols for mutation screening of MN1, NF2, KREMEN1 and ZNRF3.

Transcription:

DOI:10.22034/APJCP.2017.18.7.1855 RESEARCH ARTICLE Effects of Tobacco Habits on the Polymorphism of NFKB1 and NFKB1A Gene of Head and Neck Squamous Cell Carcinoma in Indian Population Abhishek Gupta 1, Vertica Agnihotri 1, Rahul Kumar 1, Ashish Datt Upadhyay 2, Suman Bhaskar 3, Sadanand Dwivedi 2, Sharmistha Dey 1 * Abstract Background: Polymorphism of NFKB1 and NFKB1A are highly associated with cancer. We have assessed polymorphism in the promoter region of NFKB1-94 del/ins ATTG (rs28362491) and NFKB1A -826 C/T (rs2233406) with the risk of HNSCC in Indian population. Methods: Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used for the genotyping NFKB1-94 del/ins ATTG and NFKB1A -826 C/T. Sequencing was done to validate the results of PCR-RFLP. Statistical analysis of data was done by Stata/SE-14.0 software. Results: ins/ins genotype was observed to be a risk factor of HNSCC as compared del/del genotype of NFKB1-94 ATTG. Interactive effects of smoking and chewing on ins/ins genotype showed 13.96 and 10.92 fold increased risk of HNSCC. NFKB1A -826 C/T polymorphism, TT genotype showed no association with the risk of HNSCC as compared to wild type CC genotype. Conclusion: Our results showed NFKB1-94 del/ins ATTG with smoking and tobacco chewing may increase the risk of HNSCC while NFKB1A -826 C/T plays a protective role in Indian population. Keywords: HNSCC- NFKB1- NFKB1A-PCR-RFLP- polymorphism Asian Pac J Cancer Prev, 18 (7), 1855-1859 Introduction Head and Neck Squamous Cell Carcinoma (HNSCC) is the most prominent cancer in developing countries (Joshi et al., 2014). Over 200,000 cases of HNSCC occur each year in India and 30,000 in the United States (Guru K et al., 2012). HNSCC is a complex process in which multiple genes of the cells are altered and influenced by genetic and environmental factors. Alteration of genes occurred by a single-nucleotide polymorphism (SNP) located within the promoter or other regulatory regions of the gene are found to be associated with the development of various cancers (Shastry, 2002). Cigarette smoking and tobacco chewing are the leading causes of death from HNSCC, and at least 40% of all cancers are estimated to be attributable to tobacco habit in India (Prasad R, 2016). Prolonged environmental exposure like tobacco, alcohol habit and genetic alterations have important relationship with cancer incidence. Nuclear factor of κb (NF-κB) is a small menagerie of closely related proteins (p50, p52, Rel-A, Rel-B, and c-rel) that form a different types of heterodimers and bind to common motif sequences known as κb site. Several genes that mediate tumorigenesis and metastasis are regulated by nuclear transcription factor NF-κB complex. In normal cells, NF-κB complex exists is in an inactivated state by IκB, while in a cancer cell, this NF-κB complex is activated by various signals which degrade IκBα inhibitory protein through a cascade of reactions. After activation, NF-κB complex is translocated to the nucleus, binds the κb element (at the promoter region), and activates gene that is responsible for the development of cancer (Karin et al., 2002). Based on other prior research, it is revealed that NF-κB complex is activated by carcinogens, tumor promoters which alter the genetic information and inflammatory cytokines. The activation of NF-κB complex can promotes chemoresistance and tumorigenesis by suppressing apoptosis. It has been reported that the promoter region of the NFKB1 (which encoded protein NF-κB p50) and NFKB1A (which encodes protein IκB) genes are associated with a risk for Hodgkin s lymphoma (Chang et al., 2009), multiple myeloma (Spink et al., 2007), breast cancer (Curran et al.,2002), prostate cancer (Zhang et al., 2009), gastric cancer (Lo et al., 2009), colorectal cancer (Gao et al., 2007), melanoma (Bu et al., 2007), and oral cancer (Lin et al., 2012). It has been reported that combined effect of NFKB1-94 del/ins ATTG and NFKB1A -826 C/Tpolymorphism with betel nut and smoking habit associated with increased risk of oral cancer in Taiwanese population (Lin et al., 1 Department of Biophysics, 2 Department of Biostatistics, 3 Department of Radiation Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India. *For Correspondence: sharmistha_d@hotmail.com Asian Pacific Journal of Cancer Prevention, Vol 18 1855

Abhishek Gupta et al 2012). NFKB1-94 del/ins ATTG and NFKB1A -826 C/T may play an important role in the expression of NF-κB p50 and IκB proteins, respectively. Over expression of NF-κB p50 protein found in non-small cell lung carcinomas (Mukhopadhyay et al., 1995), human breast carcinomas, colon, lung, breast tumor cell lines (Dejardin et al., 1995) and in mouse skin carcinogenesis (Budunova et al., 1999). The present study aims to explore the association of NFKB1-94 del/ins ATTG (rs28362491) and NFKB1A -826 C/T (rs2233406) polymorphism with the risk of HNSCC and correlate the polymorphism with environmental risk factors in Indian population. Materials and Methods Study group selection The participants of this study included 312 HNSCC patients recruited at the time of diagnosis from the Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi and 312 healthy controls resided in the same geographic area. The study was approved by the Institution Ethics Subcommittee of All India Institute of Medical Sciences, New Delhi (Ref. No. IESC/T-60/01.02.2013). Written informed consent was obtained from all participants involved in this study. The demographic data and clinical characteristics of the study group were collected. Controls with any disease or medical history of disease were excluded. Patients with any other chronic diseases and previously exposed to radiotherapy, chemotherapy and surgery were excluded from the study group. Patients were clinically staged at the time of diagnosis, according to the TNM staging system of the American Joint Committee on Cancer (AJCC) Staging Manual. Genomic DNA extraction Genomic DNA was extracted from 200 µl EDTA-anticoagulated peripheral blood using mdi Medi G Blood Genomic DNA (gdna) Miniprep Kit and dissolved in a TE buffer (10 mm Tris, 1 mm EDTA; ph 7.8), which was subsequently quantified by measuring the OD at 260 nm and used for the Polymerase Chain Reaction- Restriction Length Fragment Polymorphism (PCR-RFLP). Genotyping Polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used for genotyping of NFKB1-94 del/ins ATTG (rs28362491) and NFKB1A -826 C/T (rs2233406). A forward primer, TGGGCACAAGTCGTTTATGA, and a reverse primer, CTGGAGCCGGTAGGGAAG, for NFKB1-94 del/ins ATTG and a forward primer, GGTCCTTAAGGTCCAATCG and a reverse primer, GTT GTGGATACCTTGCACTA, for NFKB1A -826 C/T were used for the experiment (He et al., 2009). PCR program was applied as follows: 95 C for 3 min initial denaturation, followed by 34 cycles of 95 C for 30 sec denaturation, annealing at 56.2 C (NFKB1-94 del/ins ATTG) and 60.5 C (NFKB1A -826 CT) for 30 sec, 72 C for 1 min extension and a final extension at 72 C for 1856 Asian Pacific Journal of Cancer Prevention, Vol 18 10 min. The PCR product of NFKB1-94 del/ins ATTG was digested with 1 unit of restriction enzyme PfIMI (10 U/μl, Fermentas) and incubated at 37 C for 20 min and subsequently run on 2.5% agarose gel, whereas, the PCR product of NFKB1A -826 C/T was digested with restriction enzyme BfaI (10 U/μl, NEB) at 37 C for 1 h, analysed by 10% polyacrylamide DNA gel. Statistical evaluation Statistical analysis of the data was done by using Stata/SE-14.0 software. Chi square test was used to compare the differences in demographic characteristic distributions between the control group and HNSCC patients. Hardy-Weinberg equilibrium (HWE) was tested using a goodness-of-fit χ2 test. The adjusted odds ratios (AORs) and 95% confidence intervals (CIs) of the association of genotype frequencies with risk and clinicopathological characteristics were estimated using multiple logistic regression models after adjusting with covariates (age,sex, smoking, chewing and drinking). A two-sided p-value of less than 0.05 was considered for statistical significance. Results Demographic characteristics of the study population The frequency distribution of demographic and clinical characteristics of the 312 HNSCC patients and 312 controls showed in Table 1. The power calculation analysis showed that the case control pair of 312 samples was sufficient to achieve a 80% power for effective sample size. The majority of the participants were male in both groups, patients (82.69%) and controls (79.17%). Most of the patients in the study cohort were with tobacco habit (73.08%) as compared to control group (29.49%). The sites affected in majority of the patients were oral cavity and oropharynx. The patients with advanced stage (III +IV) were presented in maximum number (84.94%). PCR-RFLP of NFKB1 and NFKB1A gene Analysis of the NFKB1 and NFKB1A were performed by the PCR-RFLP method. Genotype of the NFKB1-94 del/ins ATTG was determined as del/del genotype without PflMI restriction site, the PCR product of 281 bp remained undigested. On the other hand, the insertion variants were cleaved by PflMI (Van91I) restriction enzyme into two fragments of 240bp and 45 bp. Heterozygotes showed all three bands (Figure.1 a). The genotypes of NFKB1A -826 C/T polymorphisms were determined as CC (200 bp), TT (180 and 20 bp,) and heterozygote C/T(200 bp, 180 bp and 20 bp) (Figure. 1 b). The presence or absence of a polymorphism was monitored by UV transilluminator (Bio-Rad Gel Doc XR+) system. The genotype results were confirmed via direct DNA sequencing of the amplified fragments. Ten percent of the total samples were used for sequencing. Association of NFKB1 and NFKB1A polymorphisms with HNSCC Genotype distribution of promoter polymorphisms

DOI:10.22034/APJCP.2017.18.7.1855 Table 1. Frequency Distribution of Selected Variables of the Controls and HNSCC Patients Variable Age (y) Controls Patients 20-40 114 (36.54%) 82 (26.28%) 41-60 115 (36.86%) 158 (50.64%) p value >60 83 (26.60%) 72 (23.08%) p=0.002 Mean age (year±sd) Sex 45.00±15.94 49.39±11.90 Male 247 (79.17%) 258 (82.69%) Female 65 (20.83%) 54 (17.31%) p=0.262 Smoking Status Yes 92 (29.49%) 228 (73.08%) No 220 (70.51%) 84 (26.92%) p=0.0001 Chewing Status Yes 86(27.56%) 143 (45.83%) No 226 (72.44%) 169 (54.17%) p=0.0001 Alcoholic Status Yes 110 (35.26%) 83(26.60%) No 202 (64.74%) 229 (73.40%) p=0.019 Histopathology Stage SCC - 66 (21.15%) WDSCC - 55 (17.63%) MDSCC - 178 (57.05%) PDSCC - 13 (4.17%) I+II - 47 (15.06%) III+IV - 265 (84.94%) Tumor Size Node Site T1+T2-70 (22.44%) T3+T4-242 (77.56%) N0-127 (40.71%) N+ - 185 (59.29%) Nasopharynx - 11 (3.53%) Larynx - 45 (14.42%) Oropharynx - 107 (34.29%) Oral Cavity - 149 (47.76%) MDSCC, Moderately Differentiated Squamous Cell Carcinoma; WDSCC, Well Differentiated Squamous Cell Carcinoma; PDSCC, Poorly Differentiated Squamous Cell Carcinoma; SCC, Squamous Cell Carcinoma; Chi square test was performed to analyze differences between controls and patients. in NFKB1-94 del/ins ATTG and NFKB1A -826 C/T between patients and controls, as well as their associations with HNSCC risk were presented in Table 2. Chi square test showed genotype frequencies of NFKB1-94 del/ins ATTG in controls were (p=0.0641) in accordance to Hardy Weinberg Equilibrium (HWE). The frequencies of the del/del, del/ins, and ins/ins genotypes were 5.77%, 51.92% and 42.31% among the cases, Figure 1. a) The Pattern of PfIMI Enzyme Digestion. Lanes 2, 5, 8, 10 and 12 are heterozygous del/insl ATTG; lanes 1, 4, 6, 7, 11 and 13 are homozygous ins/ins ATTG; and Lane 3 and 9 is homozygous del/del ATTG genotype. b) The BfaI Digestion Profile. Lanes 4, 7, 8 and 10 are heterozygous CT; lanes 1, 3, 5, 6 and 9 are homozygous GG; and Lane 2 is homozygous CC genotype. respectively, and 7.05%, 46.79%, and 46.15% among the controls, respectively. Using the del/del genotypes of NFKB1-94 as reference, 1.12 fold increased risk of HNSCC was observed with ins/ins genotype (OR=1.12, 95% CI =0.57-2.18). We also found that the del/ins OR, Odd Ratios; AOR, Adjusted Odd Ratios; ORs with 95% CIs were estimated by logistic regression models; AORs with 95% CIs were estimated by multiple logistic regression models after controlling for sex, age, tobacco chewing, alcohol consumption, and smoking status. CT+TT 296 (94.87%) 280 (89.94%) 0.47 (0.25-0.88) 0.018 0.46 (0.22-0.94) 0.034 TT 88 (28.21%) 81 (25.96%) 0.46 (0.23-0.90) 0.024 0.42 (0.19-0.92) 0.031 CT 208 (66.67%) 199 (63.78%) 0.47 (0.25-0.89) 0.022 0.47 (0.22-0.98) 0.046 CC 16 (5.13%) 32 (10.26%) 1 (ref) 1 (ref) NFKB1A Genotype del/ins+ins/ins 290 (92.95%) 294 (94.23%) 1.23 (0.65-2.35) 0.514 2.04 (0.94-4.41) 0.068 ins/ins 144 (46.15%) 132 (42.31%) 1.12 (0.57-2.18) 0.738 1.75 (0.79-3.89) 0.164 del/ins 146 (46.79%) 162 (51.92%) 1.35 (0.69-2.62) 0.367 2.36 (1.06-5.23) 0.034 del/del 22 (7.05%) 18 (5.77%) 1 (ref) 1 (ref) NFKB1 Genotype Variable Controls Patients OR (95% CI) p value AOR (95% CI) p value Table 2. Distribution Frequencies for NFKB1 Promoter 94 del/ins ATTG and NFKB1A -826 C/T Genotypes in Controls and Patients. Asian Pacific Journal of Cancer Prevention, Vol 18 1857

Abhishek Gupta et al Table 3. Interactive Effect of Smoking, Chewing and Alcohol Consumption on NFKB1 94 del/ins ATTG Polymorphism Variable Controls Patients OR (95% C.I.) p value AOR (95% C.I.) p value Smoking del/del without NS 11 (3.65%) 5 (1.67%) 1 (ref) 1 (ref) del/ins or ins/ins without S 209 (69.44%) 79 (26.42%) 0.83 (0.28-2.46) 0.74 1.03 (0.32-3.29) 0.06 del/ins or ins/ins with S 81 (26.91%) 215 (71.91%) 5.83 (1.96-17.32) 0.001 13.96 (4.22-46.11) 0.0001 Chewing del/del without NC 14 (66.67%) 7 (2.33%) 1(ref) 1(ref) del/ins or ins/ins without C 212 (69.74%) 162 (53.82%) 1.52 (0.60-3.87) 0.371 2.15 (0.77-6.03) 0.143 del/ins or ins/ins with C 78 (25.66%) 132 (43.85%) 3.38 (1.30-8.74) 0.012 10.92 (3.68-32.40) 0.0001 Alcoholic del/del without NA 14 (4.61%) 14 (4.55%) 1 (ref) 1 (ref) del/ins or ins/ins without A 188 (61.84%) 215 (69.81%) 1.14 (0.53-2.46) 0.731 2.06 (0.81-5.26) 0.129 del/ins or ins/ins with A 102 (33.55%) 79 (25.65%) 0.77 (0.34-1.71) 0.53 0.81 (0.31-2.13) 0.679 OR, Odd Ratios; AOR, Adjusted Odd Ratios; NS, Non smoking; S, Smoking; NC, Non Chewing; NA, Non alcoholic; A, alcoholic; ORs with 95% CIs were estimated by logistic regression models; AORs with 95% CIs were estimated by multiple logistic regression models after controlling for sex, age, smoketobacco chewing and alcohol consumption status. genotype was significantly (p=0.034) associated with a increased risk of HNSCC (AOR=2.36, 95% CI=1.06-5.23) after adjusting co-variates sex, age, smoking, chewing and alcoholic status. While no significant association of NFKB1A -826 C/T polymorphism was detected (OR=0.46, 95% CI= 0.23-0.90) with TT genotype as compared to wild type CC genotype. Interactive effects of environmental risk factors on genetic polymorphism Interactive effects were also analysed between environmental risk factors (smoking, chewing and alcohol status) and polymorphism of NFKB1 94 del/ins ATTG. The ins/ins genotypes was found to be 13.96 fold increased risk of HNSCC (p=0.0001) with smoking habit (OR= 13.96, 95% CI 4.22-46.11) as compared to del/del genotype with non smoking (NS) after adjusting sex, age, chewing and alcohol consumption. Similarly, after adjusting variables, ins/ins genotype showed 10.92 fold higher risk of HNSCC (OR=10.92, 95% CI=3.68-32.40, p=0.0001) with chewing (C) as compared to del/del with non chewing. No significant association of HNSCC risk was observed with alcohol consumption (Table 3). Association of NFKB1 94 del/ins ATTG and NFKB1A -826 C/T with clinicopathologic variables No significant association was observed between NFKB1 promoter 94 del/ins ATTG and NFKB1A -826 C/T genotypes and the clinopathological variables such as stage, tumor size and lymph node metastasis of to the overall risk of HNSCC (Supplementary Table 1). Discussion The primary risk factors for the HNSCC are tobacco chewing, cigarette smoking, alcohol consumption and HPV infection (Vigneswaran and Williams, 2014). Among all, smoking and chewing are the most common etiologic factors in Indian subcontinent. We have observed a higher 1858 Asian Pacific Journal of Cancer Prevention, Vol 18 number of patients affected at oral cavity and oropharynx sites in the study group due to high prevalence of tobacco chewing and smoking habits. Middle age group (40-60 years) is the most susceptible to the disease, because of the accumulation of toxic compounds into the cells due to long term tobacco consumption. The NF-κB signaling pathway plays an important role in cell regulation, expression of genes, influencing a broad range of biological processes which include apoptosis, inflammation, stress responses, infection, etc. and dysregulation of this pathway leads to develop tumor and cause cancer (Karin et al., 2002). Various polymorphic sites of NFKB1 and NFKB1A have been reported in various journals, among them NFKB1-94 del/ins ATTG and NFKB1A -826 C/T are the most significant and have biologic importance, too. To our knowledge this study is the first to identify the association between NFKB1-94 del/ins ATTG and NFKB1A -826 C/T polymorphism in the promoter region with HNSCC risk in an Indian population. We have observed different frequency of NFKB1-94 del/del genotype in our population as compared to the Taiwanese population due to the ethinicity differences. The risk of HNSCC was analysed higher in NFKB1-94 ins/ins as compared to del/ del genotype. There is an evidence that the NFKB1-94 polymorphism containing ins/ins genotype has the higher binding ability to the promotor than del/del genotype (Karban et al., 2004) and consequently enhanced the expression of NF-κB. The frequencies of the smoking and tobacco chewing were observed higher in patients as compared to controls. Carcinogenic compounds of tobacco are accumulated in cells over time and may interfere with DNA replication and damage the DNA of the cell, leads to development of tumor (Hoeijmakers, 2009). Present study analysed the interactive effect of smoking, tobacco chewing and alcohol consumption with NFKB1-94 ins/ins as higher risk factor of HNSCC. Over time predisposition of toxic compounds into the cell make the individual susceptible for the disease. Hence, ins/ins genotype is known risk factor of HNSCC due to

up-regulation of NF-κB protein expression and tobacco smoking further increases the risk of HNSCC in presence of ins/ins genotype in Indian population. The functional activity of NF-κB complex is regulated by inhibiting through IκB in the cytoplasm and differential expression of IκB leads to dysregulation of NF-κB signaling pathways. Therefore, we also studied polymorphism of NFKB1A -826 C/T which may influence the expression of NF-κB. In this study, NFKB1A -826 C/T polymorphism showed the protective role in population and no association of NFKB1A -826 C/T with risk of HNSCC in Indian population while in other population (Lin et al., 2012), NFKB1A -826 C/T polymorphism was found to be associated with risk of cancer. Hence, from our research result, it can be summarized that in Indian population, NFKB1-94 ATTG ins/ins genotype along with smoking or chewing habit is more susceptible for developing HNSCC as compared to del/del genotype with non-smoking or non-chewing. NFKB1-94 ATTG ins/ins genotyping may help for prediction of HNSCC risk, while NFKB1A -826 C/T indicates TT genotype plays a protective role in the general population of India. Acknowledgements Author acknowledges the support from Indian Council of Medical Research, New Delhi, India for providing fellowship of Abhishek Gupta. References Bu H, Rosdahl I, Sun XF, Zhang H (2007). Importance of polymorphisms in NF-kappaB1 and NF-kappaBIalpha genes for melanoma risk, clinicopathological features and tumor progression in Swedish melanoma patients. J Cancer Res Clin Oncol, 133, 859 66. Budunova IV, Perez P, Vaden VR, et al (1999). Increased expression of p50-nf-kappab and constitutive activation of NF-kappaB transcription factors during mouse skin carcinogenesis. Oncogene, 18, 7423-431. Chang ET, Birmann BM, Kasperzyk JL, et al (2009). Polymorphic variation in NFKB1 and other aspirin-related genes and risk of Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev, 18, 976 86. Curran JE, Weinstein SR, Griffiths LR (2002). Polymorphic variants of NFKB1 and its inhibitory protein NFKBIA, and their involvement in sporadic breast cancer. Cancer Lett, 188, 103 7. Dejardin E, Bonizzi G, Bellahcène A, et al (1995). Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B-related proteins in the cytoplasm of human breast cancer cells. Oncogene, 11, 1835-41. Gao J, Pfeifer D, He LJ, et al (2007). Association of NFKBIA polymorphism with colorectal cancer risk and prognosis in Swedish and Chinese populations. Scand J Gastroenterol, 42, 345 50. Guru K, Manoor UK, Supe SS (2012). A comprehensive review of head and neck cancer rehabilitation: physical therapy perspectives. Indian J Palliat Care, 18, 87-97. He Y, Zhang H, Yin J, et al (2009). IkappaBalpha gene promoter polymorphisms are associated with hepatocarcinogenesis in patients infected with hepatitis B virus genotype C. Carcinogenesis, 30, 1916 22. DOI:10.22034/APJCP.2017.18.7.1855 Hoeijmakers HJ (2009). DNA Damage, aging, and cancer. N Engl J Med, 361, 1475-85. Joshi P, Dutta S, Chaturvedi P, Nair S (2014). Head and neck cancers in developing countries. Rambam Maimonides Med J, 5, e0009. Lin CW, Hsieh YS, Hsin CH, et al (2012). Effects of NFKB1 and NFKBIA gene polymorphisms on susceptibility to environmental factors and the clinicopathologic development of oral cancer. PLoS One, 7, e35078. Lo SS, Chen JH, Wu CW, Lui WY (2009). Functional polymorphism of NFKB1 promoter may correlate to the susceptibility of gastric cancer in aged patients. Surgery, 145, 280 5. Karban AS, Okazaki T, Panhuysen CI, et al (2004). Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet, 13, 35-45. Karin M, Cao Y, Greten FR, Li ZW (2002). NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer, 2, 301-10. Mukhopadhyay T, Roth JA, Maxwell SA (1995). Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene, 11, 999 1003. Prasad R (2016). Tobacco use accounts for 40 per cent of all cancers in India, says report. The Hindu 21st July, 2016. Shastry BS (2002). SNP alleles in human disease and evolution. J Hum Genet, 47, 561-66. Spink CF, Gray LC, Davies FE, Morgan GJ, Bidwell JL (2007). Haplotypic structure across the IkBα gene (NFKBIA) and association with multiple myeloma. Cancer Lett, 246, 92 9. Vigneswaran N, Williams MD (2014). Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac Surg Clin North Am, 26, 123-41. Zhang P, Wei Q, Li X, et al (2009). A functional insertion/deletion polymorphism in the promoter region of the NFKB1 gene increases susceptibility for prostate cancer. Cancer Genet Cytogenet, 191, 73 7. Asian Pacific Journal of Cancer Prevention, Vol 18 1859