Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography

Similar documents
Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

Pelagia Research Library

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

J Pharm Sci Bioscientific Res (4): ISSN NO

Journal of Chemical and Pharmaceutical Research, 2013, 5(1): Research Article

ISSN (Print)

Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

Research Article Simultaneous Estimation of DL-Methionine and Pyridoxine Hydrochloride in Tablet Dosage Form by RP-HPLC

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

Scholars Research Library. Der Pharmacia Lettre, 2016, 8 (6): (

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

Method Development and Validation for the Estimation of Saroglitazar in Bulk and Pharmaceutical Dosage Form by RP-HPLC

Pelagia Research Library

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

Development of a Validated RP-HPLC Method for the Analysis of Citicoline Sodium in Pharmaceutical Dosage Form using Internal Standard Method

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

World Journal of Pharmaceutical Research

International Journal of Pharma and Bio Sciences

Journal of Chemical and Pharmaceutical Research

CHAPTER 2 SIMULTANEOUS DETRMINATION OF ANASTROZOLE AND TEMOZOLOMIDE TEMOZOLOMIDE CAPSULES 20 MG AND ANASTROZOLE TABLETS 1 MG

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR CILOSTAZOL IN TABLET DOSAGE FORM

Corresponding Author:

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:


ANALYTICAL TECHNIQUES FOR THE QUALITY OF ANTI- AIDS DRUGS

Hyderabad, India. Department of Pharmaceutical Chemistry, Glocal University, Saharanpur, India.

Rao and Gowrisankar: Stability-indicating RP-HPLC Method for Pseudoephedrine, Ambroxol and Desloratadine

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

VALIDATED RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF DEXAMETHASONE AND GRANISETRON IN COMBINED DOSAGE FORMS

Research and Reviews: Journal of Pharmaceutical Analysis

Development and validation of related substances method for Varenicline and its impurities

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

IJRPC 2011, 1(4) Rohan et al. ISSN: INTERNATIONAL JOURNAL OF RESEARCH IN PHARMACY AND CHEMISTRY

Analytical method validation for tablet of phenoxymethyl penicillin potassium by RP-HPLC method

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

Pankti M. Shah et al, Asian Journal of Pharmaceutical Technology & Innovation, 04 (17); 2016; 07-16

36 J App Pharm Vol. 6; Issue 1: 36-42; January, 2014 Rao et al., 2014

Journal of Chemical and Pharmaceutical Research

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Method Validation for Simultaneous Estimation of Prednisolone and Abiraterone Acetate by RP-HPLC

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

Stress Degradation Studies And Validation Method For Quantification Of Aprepitent In Formulations By Using RP-HPLC

Validation of UV Spectrophotometric and HPLC Methods for Quantitative determination of Iloperidone in Pharmaceutical Dosage Form

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

DEVELOPMENT OF RP-HPLC METHOD FOR ESTIMATION OF DROTAVERINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS

Journal of Chemical and Pharmaceutical Research, 2018, 10(3): Research Article

Estimation of Emtricitabine in Tablet Dosage Form by RP-HPLC

Available online at Scholars Research Library

International Journal of Drug Research and Technology

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF BACLOFEN IN BULK AND PHARMACEUTICAL DOSAGE FORMS

Isocratic Reversed Phase Liquid Chromatographic Method Validation for the Determination of Cilostazol in Pure and Formulations

A Reverse Phase HPLC Method Development and Validation for the Determination of Paliperidone in Pure and Dosage Forms

Development and validation of RP-HPLC method for simultaneous estimation of gliclazide and metformin in pure and tablet dosage form

New RP-HPLC Method for the Determination of Fludarabine in Pharmaceutical Dosage Forms

NOVEL RP-HPLC METHOD. B.Lakshmi et a. concentration range KEY INTRODUCTION. Diltiazem is used to. . It works by of contractionn of the. (dilate).

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS OF TRAMADOL IN PURE AND PHARMACEUTICAL FORMULATIONS

Development and validation of UV and RP-HPLC method for estimation of Nepafenac in bulk drug and opthalmic formulation

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ASSAY AND DISSOLUTION OF METOPROLOL SUCCINATE EXTENDED RELEASE TABLETS

Method Development And Validation Of Losartan Potassium And Hydrochlorothiazide In Comined Dosage Form By RP-HPLC

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

A simple validated RP-HPLC method for quantification of sumatriptan succinate in bulk and pharmaceutical dosage form

Available online Research Article

Sanjog Ramdharane 1, Dr. Vinay Gaitonde 2

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

A stability indicating RP-HPLC method for simultaneous estimation of darunavir and cobicistat in bulk and tablet dosage form

Estimation of zolmitriptan by a new RP-HPLC method

Scholars Research Library

F. Al-Rimawi* Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, East Jerusalem. Abstract

Stability indicating RP-HPLC method development and validation of Etizolam and Propranolol hydrochloride in pharmaceutical dosage form

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

Estimation of Etoricoxib in Tablet Dosage form by RP- HPLC using Internal Standard with Emphasize on Specificity Parameter Method

A Validated Chiral Liquid Chromatographic Method for The Enantiomeric Separation of Dapoxetine Hydrochloride

Available Online through Research Article

A New RP-HPLC Method for the Simultaneous Estimation of Naltrexone Hydrochloride and Bupropion in Its Pure and Pharmaceutical Dosage Form

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Volume 2 (6), 2014, Page CODEN (USA)-IJPRUR, e-issn: International Journal of Pharma Research and Health Sciences

Method Development and Validation for Simultaneous Estimation of Atorvastatin and Ezetimibe in Pharmaceutical Dosage Form by HPLC

Development and validation of UV spectrophotometric estimation of lisinopril dihydrate in bulk and tablet dosage form using area under curve method

Journal of Pharmacreations

Journal of Chemical and Pharmaceutical Research

Available online Research Article

Spectrophotometric Method for Estimation of Sitagliptin Phosphate in Bulk...

ANALYTICAL METHOD DEVELOPMENT AND VALIDATION OF SOLID DOSAGE FORM OF ANTINEOPLASTIC DRUG IMATINIB MESILATE BY RP HPLC.

SIMPLE AND VALIDATED RP-HPLC METHOD FOR THE ESTIMATION OF CARBOPLATIN IN BULK AND FORMULATION DOSAGE FORM. Subhashini.Edla* B.

Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form

SIMULTANEOUS DETERMINATION OF ATORVASTATIN AND EZETIMIBE BY RP-HPLC IN PURE AND PHARMACEUTICAL DOSAGE FORM

Development and Validation of Stability Indicating HPTLC Method for Estimation of Seratrodast

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

Transcription:

American Journal of Pharmacological Sciences, 2013, Vol. 1, No. 5, 90-95 Available online at http://pubs.sciepub.com/ajps/1/5/4 Science and Education Publishing DOI:10.12691/ajps-1-5-4 Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography Amit Kumar 1, Vijender Singh 2, Praveen Kumar 3,* 1 Department of Pharmaceutical analysis, NKBR College of Pharmacy & Research Centre, Meerut-245206, India 2 Department of Pharmaceutical analysis, BBS Institute of Pharmaceutical & Allied Sciences, Greater Noida-201306, India 3 Department of Pharmaceutical Chemistry, S. D. College of Pharmacy and Vocational Studies, Muzaffarnagar- 251001, India *Corresponding author: praveensha77@gmail.com Received May 05, 2013; Revised December 02, 2013; Accepted December 11, 2013 Abstract A simple highly sensitive, rapid, precise, accurate and specific RP-HPLC method was developed for quantification of eflornithine hydrochloride (2-difluoromethyl-DL-ornithine; DFMO) in its commercial formulation. In this RP-HPLC method, the separation was performed using BDS Hypersil 5µ C18 (150 X 4.6 mm) column at room temperature by using methanol: 2% of Glacial acetic acid in water (80:20 v/v) as mobile phase. The flow rate was 0.8 ml min -1 with UV detection at 290 nm. The retention time of DFMO was 4.3. Linearity was observed over concentration range of 50-100 µg ml -1 for DFMO. The LOD and LOQ were found to be 0.008438 µg ml -1 and 0.028126 µg ml -1 respectively. The accuracy of the proposed method was determined by recovery studies and found to be 100.5 % for DFMO. The proposed method was validated for ICH guidelines like linearity, limit of detection, accuracy, precision, ruggedness, robustness, and system suitability. Keywords: eflornithine hydrochloride (DFMO), Validation, ICH guidelines, HPLC Cite This Article: Amit Kumar, Vijender Singh, and Praveen Kumar, Determination and Validation of Eflornithine Hydrochloride by (Rp-Hplc) Reversed Phase High Performance Liquid Chromatography. American Journal of Pharmacological Sciences 1, no. 5 (2013): 90-95. doi: 10.12691/ajps-1-5-4. 1. Introduction Difluoromethylornithine (DFMO; eflornithine hydrochloride) is a suicide inhibitor of the polyamine biosynthesis enzyme ornithine decarboxylase (ODC), one of the key enzymes in the polyamine biosynthetic pathway [1,2]. The drug was originally developed for use in cancer and is in phase III clinical trials for its use in preventing recurrence of superficial bladder cancer. It has been used as antiprotozoal agent in the treatment of meningoencephalic stage of trypanosomiasis caused by Trypanosoma brucei gambienze (African trypanosomiasis) [3,4]. DFMO currently is in development and testing for its anti inflammatory activity. DFMO 13.9% cream is used to inhibit growth and reduce the amount of facial hair in women [5]. A number of analytical methods have been reported for measuring DFMO in biological fluids and tissue extracts. These methods involve HPLC techniques [6,7,8]. The HPLC techniques currently available for the quantification of DFMO in biological fluids involve either pre or post column derivatization with UV or fluorescence detection [9,10] and LC carried out by evaporative light scattering detection [11]. Few methods have been reported in the literature for the analysis of DFMO including spectrophotometry [12,13]. Regarding all the above mentioned, we decided to develop a newer RP-HPLC method suitable for determination of DFMO. The chemical structure of DFMO is presented in Figure 1. CHF 2 NH 2 -CH 2 -CH 2 -CH 2 -C-COOH.HCl NH 2 Figure 1. Chemical structure of eflornithine hydrochloride Since there is no RP-HPLC analytical method for the determination of DFMO in the pharmaceutical formulations described in the literature. Therefore, the aim of this work was to develop and validate such a method that was newer, simpler, precise, sensitive, selective, economic, rapid and accurate. In pharmaceutical industry the analysis of pharmaceuticals is an integral and increasingly important part of an overall drug development process. Therefore, rapid and simple methods for routine analysis and quality control of commercial formulations is desirable. Hence, in the present study, new, simple and selective reverse phase high performance liquid chromatography (RP-HPLC) method used for the determination of DFMO drug in commercially available pharmaceutical preparation was developed.

American Journal of Pharmacological Sciences 91 2. Materials and Methods 2.1. Apparatus and Software The HPLC (Shimadzu class LC-10A, including pump LC-10AT, SPD-10A UV VIS detector, Japan) and Hamilton syringe (all from Shimadzu, Kyoto Japan) were used. The separation was achieved on a BDS Hypersil 5µ C18 (150 X 4.6mm) with UV detection at 290 nm. Analytical weighing balance (Shimadzu AUX 200), sonicator (SONICA 2200MH), vacuum pump (model XI 5522050 of Millipore), millipore filtration kit for solvents and sample filtration were used throughout the experiment. The LC solution software-multiple channel was used for acquisition, evaluation and storage of chromatographic data. 2.2. Reagents and Chemicals DFMO obtained as a gift sample (Wintac Pvt. Ltd. Bengaluru, India) and certified to contain 99.6% purity. The drug is used without further purification. All the solvents used in analysis were of HPLC grade. 2.3. Preparation of Solutions 2.3.1 Standard Solution of Eflornithine Hydrochloride Stock solution of DFMO was prepared at a concentration of (1 mg ml 1 ) by dissolving the accurate weighed amount in a definite volume of methanol to get the required concentration. Dilute solutions were prepared by accurate dilution from stock solution to get the desired concentrations. 2.3.2. Preparation of Mobile Phase The mobile phase was prepared by mixing of glacial acetic acid (2%) and methanol in the ratio 80:20 v/v. 2.3.3. Pharmaceutical Sample Solution (from Formulation) Sample Ornidyl (1 mg ml 1 ) solution (label claimed, each fill volume of the vial contains 100 ml and each ml contains 200 mg) was prepared by pipetting out 10 ml of the contents of the vial and geometrically diluted with methanol to get the desired concentration. The solutions were sonicated for 10 mins and filtered into a 100 ml volumetric flask through Whatman filter paper (no. 44). The residue was washed 3 times with 10 ml of methanol, and then the volume was made up to 100 ml with the same solvent. The proposed RP-HPLC method was applied and the concentration of each component in the formulation was determined. The results obtained were shown in Figure 2. 2.4. Chromatography Figure 2. Chromatogram showing Retention Time (R t) of 50 μg ml 1 of DFMO (4.3 mins) The mobile phase 2% of glacial acetic acid and methanol in the ratio 80:20 v/v was selected, because it was found that it ideally resolved the peak with retention time (RT) 4.3 min for DFMO as shown in Figure 1. Wavelength was selected by scanning standard drug over a wide range of wavelength from 200 nm to 400 nm. The component showed reasonably good response at 290 nm. 2.5. Validation of RP-HPLC Method Validation of an analytical method is the process to establish by laboratory studies that the performance characteristic of the method meets the requirements for the intended analytical application. variation in the peak area response ratio of the internal standard to pure analytes is presented in Figure 4. Area is plotted graphically as a function of analyte concentration. The linearity of the calibration graphs was validated by the high value of correlation coefficient, slope and the intercept value Figure 3. A linear relationship was obtained for DFMO in the range of 50-100 µg ml -1. 2.5.1. Linearity The linearity of the proposed HPLC method for determination of DFMO was evaluated by analyzing a series of different concentrations of standard drug. In this study six concentrations were prepared, ranging between 50-100 µg ml -1 of DFMO. Each concentration was repeated three times and obtained information on the Figure 3. Linearity curves of DFMO at different concentration levels

92 American Journal of Pharmacological Sciences 2.5.2. Limit of Detection (LOD) and Limit of Quantification (LOQ) The limit of detection (LOD) and limit of quantitation (LOQ) were calculated according to ICH [14] recommendations where the approach based on the signalto-noise ratio. Chromatogram signals obtained with known low concentrations of analytes were compared with the signals of blank samples. A signal-to-noise ratio 3:1 and 10:1 was considered for calculating LOD and LOQ respectively. All analytical parameters obtained were shown in Table 1. Table 1. Analytical Parameters of the Proposed RP-HPLC Method Parameters RP-HPLC (DFMO) Calibration range (µg ml-1 ) 50-100 Detection limit ( µg ml-1 ) 0.008438 Quantitation limit (µg ml-1) 0.028126 Slope (b) 675.5 Standard deviation of the slope (Sb) 1.9 Intercept (a) 8198 Correlation coefficient 0.999 Retention time 4.3 Theoretical plates # 6494.87 Tailing factor 1.3 2.5.3. Precision The precision of the analytical method was studied by analysis of multiple sampling of homogeneous sample. The precision expressed as % RSD is given in Table 2. Table 2. Precision Study Results of Prepared Solutions HPLC Validation parameter Repeatability a Peak area Retention time Eflornithine HCl 1017852 4.35 Intermediate precision b Eflornithine HCl 1019308 4.33 a Repeatability, three replicates of four concentration levels within-day b Intermediate precision, three replicates of four concentration levels between-days (3-days) 2.5.3.1. Method Reproducibility The repeatability (within-day in triplicates) and intermediate precision (for 3 days) was carried out at four concentration levels for each compound. The obtained results within and between days trials are in acceptable range indicating good precision of the proposed method. The graphs were shown in Figure 4. 2.5.4. Accuracy The resulting mixtures were analyzed by the proposed HPLC method and the response obtained was plotted against the initial unknown concentration set at 0 as shown in Figure 5. The results obtained are compared with expected results. The excellent mean recoveries and standard deviation Table 3 suggested good accuracy of the proposed method and no interference from formulation exicipients. Figure 4. Linearity graphs of DFMO Table 3. Application of Standard Addition Technique to the Analysis of Eflornithine Serial No Eflornithine HCl Concentration in µg ml -1 % recovery Claimed Added HPLC 1 50 25 99.1 2 50 50 100.5 3 50 75 102.2 *Average of three experiments

American Journal of Pharmacological Sciences 93 2.5.5. Ruggedness Figure 5. HPLC Chromatograms of DFMO in Eflornithine vials for Accuracy studies The assay of DFMO was performed by using different condition, different analyst, and different dates. As the results were within the acceptance limit, the proposed method is found to be rugged. 2.5.6. Robustness The robustness of the proposed HPLC method was assessed for peak resolution and symmetric factor Table 4. The parameters investigated at column temperature (± 5 o C), mobile phase flow rate (± 0.8 ml min -1 ) and detection wave length (± 5 nm). The robustness of the method shows that there were no marked changes in the chromatographic parameters, which demonstrates that the method developed was robust. 2.5.7. System Suitability A solution of 50µg ml -1 of DFMO (in triplicate) was prepared and same was injected, then the system suitability parameters were calculated from the following chromatogram Figure 6. The results obtained are represented in Table 5. Table 5. Results of System Suitability Parameters Parameters Data obtained (DFMO) Theoretical plates per column 3609.823 Symmetryfactor/Tailing factor 1.325 Table 4. Robustness of Chromatographic Method PARAMETERS (DFMO) Rt Area 4.358 1308639 Original Column temperature (35 C ± 5 C) 4.367 1314236 4.321 1336321 Mobile phase flow rate 3.611 1328428 (0.8 ± 0.1 ml min -1 ) 4.809 1353768 Detection wave length 4.324 1345212 (290 ± 5 nm) 4.332 1326612 *Average of three experiments Figure 6. Chromatogram showing system suitability

94 American Journal of Pharmacological Sciences 2.5.8. Results of Analysis of Commercial Formulation The values of % recovery from formulation as shown in the Table 6 are found to be very close to the label value of commercial pharmaceutical formulation. It shows that the method is applicable for determination of DFMO from the formulation. Table 6. Results Obtained for the Pharmaceutical Samples by Using Formulation Vial Concentration in µg ml -1 % recovery Ornidyl 200 100.5 Ornidyl label claim: (200 mg of Eflornithine HCl per vial) 3. Results and Discussion RP-HPLC method developed was found rapid, simple, precise, accurate and economical for routine estimation of DFMO in commercial dosage forms. There is no official method for the estimation of DFMO. In RP-HPLC method, the conditions were optimized to obtain good peak of eluted compound. Initially, various mobile phase compositions were tried. Mobile phase and flow rate selection was based on peak parameters (height, tailing, theoretical plates, capacity or symmetry factor, run time, resolution). The system with a ratio of (80:20 v/v methanol: 2% of glacial acetic acid in water) with 0.8 ml/min -1 flow rate was quite robust. The optimum wavelength for detection was 290 nm at which better detector response for the drug was obtained. The average retention time for DFMO was found to be 4.3 mins. System suitability tests were an integral part of chromatographic method. They were used to verify the reproducibility of the chromatographic system. To ascertain its effectiveness, system suitability tests were carried out on freshly prepared stock solutions. The calibration was linear in concentration range of 50-100 μg ml -1, with regression 0.999 intercept 8198 and slope 675.5 for DFMO. The low values of % RSD indicated that method was precise and accurate. Mean recoveries were found in the range of 98-102 %. Sample to sample precision and accuracy were evaluated using five samples of five different concentrations, which were prepared and analyzed on same day. Day to day variability was assessed using five concentrations analyzed on three different days. These results showed the accuracy and reproducibility of the assay. Ruggedness of the proposed method was determined by analysis of aliquots from homogeneous slot in different laboratories, by different analysts, using similar operational and environmental conditions. The % RSD reported was found to be less than 2 %. The proposed method was validated in accordance with ICH parameters and applied for analysis of the same in marketed formulations. 4. Conclusion Proposed study describes a new RP-HPLC method for the determination of DFMO. For routine analytical purpose it was desirable to establish method capable of analyzing large number of samples in a short time period with good accuracy and precision without any prior separation step. The method was validated and found to be simple, sensitive, accurate and precise. Percentage of recovery shows that the method was free from interference of the excipients used in the formulation. Therefore, the proposed method can be used for routine analysis of DFMO in the dosage form. Acknowledgements First author is highly thankful to IFTM University, Moradabad, India for Ph.D. registration and facilities. We thank Mr. S. P. Venkatesh Prasad, PEC College of Pharmacy, Bangalore, India, for his technical support and Wintac Ltd, Bangalore, India, for providing a gift sample of DFMO. Competing Interests None Abbreviations UV, ultra-violet; RP-HPLC, reverse phase high performance liquid chromatography. References [1] Merali, S. and Clarkson, A. B. Jr, Polyamine content of Pneumocystis carinii and response to the ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine, Antimicrob. Agents Chemother. 40(4). 973-978. 1996. [2] Clarkson, A. B. Jr., C J Bacchi, C. J., Mellow, G. H., Nathan, H. C., McCann, P. P. and Sjoerdsma, A, Efficacy of combinations of difluoromethylornithine and bleomycin in a mouse model of central nervous system African trypanosomiasis, Proc. Natl. Acad. Sci., U.S.A. 80(18). 5729-5733. 1983. [3] Milord, F., Loko, L., Mpia, B. and Pepin, J. Eflornithine concentrations in serum and cerebrospinal fluid of 63 patients treated for Trypanosoma brucei gambiense sleeping sickness, Trans. R. Soc. Trop. Med. Hyg, 87(4). 473-7, 1993. [4] Pepin, J., Guern, C., Milord, F. and Schechter, P. J, Difluoromethylornithine for arseno-resistant trypanosoma brucei gambiense sleeping sickness, The Lancet., 330(8573). 1431-1433. 1987. [5] Balfour, J. A. and McClellan, K, Topical eflornithine, Am. J. Clin. Dermatol, 2(3). 197-201. 2001. [6] Cohen, J. L., Ko, R. J., Lo, A. T., Shields, M. D. and Gilman, T. M, High-pressure liquid chromatographic analysis of eflornithine in serum, J. Pharm. Sci., 78(2). 114-6. Feb. 1989. [7] Huebert, N. D., Schwartz, J. J. and Haegele, K. D, Analysis of 2- difluoromethyl-dl-ornithine in human plasma, cerebrospinal fluid and urine by cation-exchange high-performance liquid chromatography, J. Chromatogr. A., 762(1-2). 293-8. Feb. 1997. [8] Saravanan, C., Kumudhavalli, M. V., Kumar, M. and Jayakar, B, A new validated RP-HPLC method for estimation of eflornithine hydrochloride in dosage form, J. Phar. Res., 2. 1730-1731. 2009. [9] Kilkenny, M. L., Slavik, M., Christopher, M. R. and Stobaugh, J. F, Plasma analysis of alpha-difluoromethylornithine using precolumn derivatization with naphthalene-2, 3-dicarboxaldehyde/CN and multidimensional chromatography, J. Pharm. Biomed. Anal., 17. 1205-1213. 1998. [10] Jansson-Löfmark, R., Römsing, S., Albers, E. and Ashton, M, Determination of eflornithine enantiomers in plasma by precolumn derivatization with o-phthalaldehyde-n-acetyl-lcysteine and liquid chromatography with UV detection, Biomed. Chromatogr. 24(7). 768-773. July 2010.

American Journal of Pharmacological Sciences 95 [11] Malm, M. and Bergqvist, Y, Determination of eflornithine enantiomers in plasma, by solid-phase extraction and liquid chromatography with evaporative light-scattering detection, J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci., 846. 98-104. 2007. [12] Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Kumar, P, Spectrophotometric determination of eflornithine hydrochloride as active pharmaceutical ingredient using 1, 2-naphthoquinone-4- sulfonate as the derivative chromogenic reagent, Trade Sci. Inc., 7, 2008. [13] Kumar, A., Venkatesh, Prasad, S. P., Mohan, S. and Singh, A. K, Estimation of eflornithine hydrochloride by UV spectroscopy, Trade Sci. Inc., 8. 2009. [14] Validation of Analytical Procedures, Methodology ICH Harmonised Tripartite Guideline, Having Reached Step 4 of the ICH Process at the ICH Steering Committee meeting on November 6, 1996.