Beaked whales. 1) Zoophysiology, Dept. of Bioscience, Aarhus University, Denmark. 2) BIOECOMAC, La Laguna University, Tenerife, Spain

Similar documents
Population parameters of Blainville s and Cuvier s beaked whales

Population parameters of Blainville s and Cuvier s beaked whales

Seismic testing and the impacts of high intensity sound on whales. Lindy Weilgart Department of Biology Dalhousie University Halifax, Nova Scotia

Baseline Behavior of Pilot Whales and their Responses to Playback of Anthropogenic and Natural Sounds

Answer to DG Environment request on scientific information concerning impact of sonar activities on cetacean populations

Dolphins. By lily pad

Behavioural Response Study 2008

Population Consequences of Acoustic Disturbance of Blainville s Beaked Whales at AUTEC

Ceteacean Social Behavioral Response to Sonar

MBA Education. For non profit use only.

Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC)

BIODIVERSITY ANNUAL REPORT 2016 STATUS OF DOLPHINS IN ABU DHABI

Nekton Nekton adaptations

Chapter 12: Marine Mammals. By: Da Lynne Cousar, Megan Dudenbostel, Kyle Nemeth, Matt Boyle, and Steven Miller

FY14 Summary. Contact: David J. Moretti Robin W. Baird Naval Undersea Warfare Center Cascadia Research Collective

Ecological Constraints on Sound Production in Marine Animals: the Importance of Listening

The reaction of Southern resident orca to sensitive frequencies produced by nearby vessels

Notes. Insights into Blainville s beaked whale (Mesoplodon densirostris) echolocation ontogeny from recordings of mother-calf pairs

Tagging and Playback Studies to Toothed Whales

Protecting Cuvier s Beaked Whales from Underwater Noise. Lindy Weilgart, Ph.D. Dept. of Biology

3S2 Behavioral Response Studies of Cetaceans to Naval Signals in Norwegian Waters

Effects of Disturbance on Populations of Marine Mammals

Sonar induced temporary hearing loss in dolphins

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency

Population Consequences of Acoustic Disturbance of Marine Mammals

CONCERTED ACTION FOR SPERM WHALES (Physeter macrocephalus) OF THE EASTERN TROPICAL PACIFIC

Overview of the 3S-project in Norwegian waters

Cetacean fact sheet. What are cetaceans? BALEEN WHALES TOOTHED WHALES

Conserving cetaceans and manatees in the western African region

Killer whales of Sea Lion Island (Falkland Islands)

Movements and Habitat Use of Dwarf and Pygmy Sperm Whales using Remotely-deployed LIMPET Satellite Tags

Cetacean Social & Reproductive Systems

Sperm Whale. The Kid s Times: Volume II, Issue 8. NOAA s National Marine Fisheries Service, Office of Protected Resources

Dolphins. By Emmy Richards

The Vocal Behavior of Mammal-Eating Killer Whales: Communicating with Costly Calls. Cayenne, Angela, Yiru, and Kyra

Flipping Fins By Olivia Robitaille

Cetaceans whales, dolphins and porpoises

Basic Hearing and Echolocation Mechanisms of Marine Mammals: Measured Auditory Evoked Potential and Behavioral Experiments FY 2008

Whale Week Activity Booklet!

Marine Turtles, Mammals and Seabirds. Chapter 9

Ultra-High Foraging Rates of Harbor Porpoises Make Them Vulnerable to Anthropogenic Disturbance

Report on the research activities with Orcinus orca in Loro Parque

Erin A. Falcone Æ Gregory S. Schorr Æ Annie B. Douglas Æ John Calambokidis Æ Elizabeth Henderson Æ Megan F. McKenna Æ John Hildebrand Æ David Moretti

GRAY WHALE. Text source: The Marine Mammal Center

Deafening Silence: The Impact of Naval Sonar Activity on Cetaceans

Assessing Beaked Whale Reproduction and Stress Response Relative to Sonar Activity at the Atlantic Undersea Test and Evaluation Center (AUTEC)

Fine-scale Focal Dtag Behavioral Study of Diel Trends in Activity Budgets and Sound Production of Endangered Baleen Whales in the Gulf of Maine

Remote Monitoring of Dolphins and Whales in the High Naval Activity Areas in Hawaiian Waters

Effects of Disturbance on Populations of Marine Mammals

Sightings! Secac Secac. Secac horas miles. sightings. Sailing ( km) hours Watching

Effects of Disturbance on Populations of Marine Mammals

Chapter 09 Marine Reptiles, Birds, and Mammals

MARINE SCIENCE. Monday 23 Jan 2017

Assessing Stress Responses in Beaked and Sperm Whales in the Bahamas

Rocket Science Unlocking Secrets of Cuvier s Beaked Whale

High Frequency Acoustic Recording Package Annual Data Summary Report March 14, 2009 March 26, 2010 SOCAL Site N

Term Paper. Midterm Exam

Marine Mammals in Scottish Waters

3S 2 : Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

MARINE MAMMAL SCIENCE, 30(2): (April 2014) 2013 Society for Marine Mammalogy DOI: /mms.12074

Provide a Vessel to Conduct Observations and Deploy Sound Source for a Behavioral Response Study of Cetaceans off Southern California in 2011

BIASES AND DATA LIMITATIONS OF ODONTOCETE CETACEAN SIGHTING DATA FROM SMALL-BOAT BASED SURVEYS AROUND THE MAIN HAWAIIAN ISLANDS

Whales Dolphins And Seals A Field Guide To The Marine Mammals Of The World

Meet the Dolphin. Sample file. Amuse Their Minds Publishing

Behavioural response studies of marine mammals in relation to noise

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency

Foundation for the course:

3S 2 : Behavioral Response Studies of Cetaceans to Navy Sonar Signals in Norwegian Waters

Socal Odontoceti (toothed whales) by Patti Schick Hornblower Cruises & Events

Using Energetic Models to Investigate the Survival and Reproduction of Beaked Whales (family Ziphiidae)

CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATION (CALCOFI) CRUISES:

Comparative and Cumulative Energetic Costs of Odontocete Responses to Anthropogenic Disturbance

Archimer

Marine Mammal Monitoring on Navy Ranges (M3R)- Southern California Offshore Anti-submarine Warfare Range (SOAR) FY12 Test Summary

Coastal Commission Comments on the Effects of Anthropogenic Sound on Marine Mammals. Statement for

I nterspecific interactions across multiple scales (species, population, individual) remain a central question in

BIOLOGY 183 MARINE BIOLOGY PIMA COMMUNITY COLLEGE, DOWNTOWN CAMPUS WORKSHEETS FOR UNIT 7 UNIT 7 LEARNING OBJECTIVES UNIT 7 ACTIVITIES

Listening to wild bottlenose dolphins

Baby whales "whisper" to mothers to avoid predators

Acoustic and Visual Survey of Cetaceans at Palmyra Atoll

Course evaluation submission:

The Metabolic Cost of Click Production in Bottlenose Dolphins

familiar imposter the masquerade tactics of pseudorca Written by Ingrid Visser Photographed by Richard Robinson

Distribution Ecology attempts to explain the restricted and generally patchy distribution of species

Announcements. Announcements 5/18/2012

DolphinWatch: Dolphins in the Chesapeake Bay. Amber Fandel Faculty Research Assistant

May 20, Dear Steve,

WHALE FOOD PYRAMID ACTIVITY

Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider TM

Studies of dolphins and whales on and around the Pacific Missile Range Facility using

Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider TM

Fish 475: Marine Mammalogy

The rapidly increasing pressure of human activity in coastal and pelagic marine environments has led to

DIFFERENCES IN NICHE BREADTH AMONG SOME TEUTHIVOROUS MESOPELAGIC MARINE MAMMALS

More Than Half of Stranded Bottlenose Dolphins May Be Deaf

Playbacks of predator signals and what might they tell us about responses to sonar

Marine Mammals and Sound

Improving attachments of remotely-deployed dorsal fin-mounted tags: tissue structure, hydrodynamics, in situ performance, and tagged-animal follow-up

Dolphins of San Diego County David W. Weller, Ph.D.

Cetaceans and Naval Sonar: Behavioral Response as a Function of Sonar Frequency

Transcription:

1 2 3 4 5 6 7 8 9 Beaked whales Madsen P.T. 1*, Aguilar de Soto N. 2, Tyack P.L. 3, and Johnson M. 3 10 11 12 13 14 15 1) Zoophysiology, Dept. of Bioscience, Aarhus University, Denmark 2) BIOECOMAC, La Laguna University, Tenerife, Spain 3) SMRU, University of St. Andrews, Scotland * peter.madsen@biology.au.dk 16 17 18 19 20 21 22 23 1

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 What is a beaked whale? The beaked whales (Ziphiidae) belong to a little known cetacean family of more than 21 species that range in size from 3m and a few hundred kg to more than 10 meters and 8,000 kg. Even though beaked whales all belong to the suborder toothed whales, most species, ironically, have few if any erupted teeth, with these serving as tusks in male-male interactions rather than for foraging. Despite few geographical boundaries in their deep ocean habitat, superficially similar, but genetically distinct, species of beaked whales share what appear to be similar foraging niches. Beaked whales routinely dive deeper than 1km for an hour or more, and surface for such a short time that they are very difficult to sight. This cryptic lifestyle has, until recently, left us with very little information about some of the world s biggest predators beyond what can be gathered from stranded specimens. This second largest family of toothed whales is so little known that two new species, Perrin's beaked whale and the pygmy beaked whale, have been identified in the last 25 years, and a few more beaked whale species may be awaiting discovery. It is thought-provoking that there are likely elephant-sized, mammalian predators still roaming the world s oceans that science has not yet even named. However, after many years of being a largely overlooked zoological oddity, beaked whales have recently received substantial public attention after a series of mass-strandings caused by mid frequency naval sonars. 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Why do beaked whales dive so deep? The need to understand why beaked whales may respond so strongly to navy sonar has prompted the development of techniques to study these elusive predators of the high seas. Deployments of electronic tags have revealed the underwater behavior of bottlenose, Blainville s and Cuvier s beaked whales, showing that these species routinely dive to more mesopelagic depths where they hunt for small, deepwater squid and fish. These food resources are found so deep that beaked whales often dive to more than 1000m depths for around an hour (figure 1) routinely exceeding their aerobic dive limit. They therefore return to the surface with a substantial oxygen debt that is paid off in a prolonged surface time that includes a series of shallow non-foraging dives (figure 1). Recently, a tagged Cuvier s beaked whale was recorded diving more than 3000 meters during a 2 hour long dive that is by far the deepest dive recorded for any air-breathing endotherm. How a mammal can hold its breath for so long and survive a hydrostatic pressure of >300 kg/cm 2 is still very much an unsolved mystery. But a consequence of this deep water foraging is that beaked whales spend <20 % of their time foraging, which may explain why they are often found around islands and in upwelling areas that provide stable and dense patches of food resources at depth. 2

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 How do they find and catch food in the deep sea? The task of locating, approaching and catching small, agile prey in the cold, dark abyss may seem almost impossible to us humans. Beaked whales and other toothed whales have solved that problem by emitting ultrasonic clicks and listening for returning echoes to hunt by echolocation. When the first sound recording tags were deployed on Blainville's beaked whales, we were astounded to find that not only could the tags record the emitted echolocation clicks, but also the echoes returning from prey, allowing us a unique opportunity to tap into the sensory stream of a predator hunting in the wild. Because of this, beaked whales are now among the best-studied animals that use echolocation to hunt, and they have become a very unlikely model for how toothed whales in general operate their sonars in the wild. Tagged whales emit some 3500 echolocation clicks to detect and approach about 25 prey per dive. When whales catch their prey, they accelerate the click rate to a buzz, as is the case for echolocating bats, revealing a remarkable functional convergence of biosonars in air and water. Analysis of echo data from two species of beaked whales show that they ensonify many more organisms than they try to capture, indicating careful prey selection via echo information to optimize energy returns during intense bouts of foraging with durations that are limited by breath-hold dives. What is their social structure? Little is known about the social structure of beaked whales, but the smaller species seem to live in groups of females and young with a single mature male. The heavily scarred older males may be seen with different groups of females over time suggesting that they fight over access to the females using their tusks. Females are often larger than males, which may relate to the large birth weight of beaked whale calves enabling them to achieve deep diving capabilities sooner. Beaked whale groups remain close together but, unlike in other toothed whales, this is not mediated by social calls at the surface, at least in the smaller species, which seem to keep track of one another at depth by eavesdropping on one another s echolocation clicks. Blainville s beaked whales also produce social sounds but these are made at depths below 200 m, which together with long silent ascents from deep dives suggest a strategy of acoustic crypsis perhaps to reduce the risk of predation from killer whales that seldom dive deep. Species with larger body size, such as the bottlenose and Baird s beaked whales, may have a more relaxed crypsis, forming larger groups while making some sounds near the surface. 84 85 86 3

87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 Why do some beaked whales strand when exposed to navy sonars? The anti-predation strategies of beaked whales may also explain why some smaller beaked whale species are prone to strand in conjunction with naval sonar exercises. Recent playback studies suggest that the strandings happen as a result of strong behavioral responses that appear to be elicited by low level sonar pulses at frequencies around 3-4 khz. Playbacks of killer whale calls in a similar frequency range also evoke strong flight responses, suggesting that the sonar pulses may trigger an antipredator avoidance behaviour with potential physiological consequences that may include decompression sickness from repeated dives to escape the perceived threat. What is their conservation status? Although mass-strandings of beaked whales provide a dramatic example of the vulnerability of these species to human activities, sonar exposure is not the only, nor necessarily the most important, conservation threat to these large predators. Beaked whales live in areas that are hard to survey and their diving behavior precludes reliable visual counts, leading the IUCN to list most species as data deficient. Currently, we know next to nothing about how beaked whale populations are affected by potential environmental stressors such as toxins, shipping noise, or bycatch in fisheries, nor do we know anything about their global population sizes. However, their distinctive frequency-modulated clicks with potential species-specific differences now enable acoustic surveys to estimate habitat use and population sizes. The echolocation clicks, vital for their foraging, may thus also provide researchers with a unique window to study and protect some of the largest and most cryptic predators alive. Where can I learn more? Aguilar Soto N., Madsen P. T., Tyack P., Arranz P., Marrero J., Fais A., Revelli E. and Johnson M. P. (2011), "No shallow talk: Cryptic strategy in the vocal communication of Blainville s beaked whales". Marine Mammal Science, DOI: 10.1111/j.1748-7692.2011.00495.x Cox, T. M., Ragen, T. J., Read, A. J., Vos, E., Baird, R. W., Balcomb, K., Barlow, J., Caldwell, J., Cranford, T., Crum, L. et al. (2006). Why do beaked whales strand? Report of workshop to understand the impacts of anthropogenic sound. J. Cetacean Res. Manag. 7, 177-187. Dalebout, M.L, Baker, C.S., Cockcroft,V.G., Mead, J.G., and Yamada, T.K. 2004. A comprehensive and validated molecular taxonomy of beaked whales, family Ziphiidae. Journal of Heredity 96, 459-473. Hooker, S.K., and R.W. Baird. 1999. Deep-diving behaviour of the northern bottlenose whale, Hyperoodon ampullatus (Cetacea: Ziphiidae). Proceedings of the Royal Society, London B. 266: 671-676. Madsen P.T., Aguilar Soto N., Arranz P. and Johnson M.(2013) "Echolocation in Blainville s beaked whales (Mesoplodon densirostris)". J. Comp. Physiol. A 199: 451-469. Tyack, P.L., Johnson, M., Aguilar Soto, N., Sturlese, A., Madsen, P.T. (2006), "Extreme diving of beaked whales", Journal of Experimental Biology 209, 4238-4253. 4

122 123 124 125 126 127 128 129 Figure 1. A) Dive profile of a Blainville s beaked whale. Echolocation clicks (yellow line) are only made during the deep foraging dive where red dots mark foraging buzzes. B) Male Blainville s beaked whale with barnacles on its large tusks (Photo credit ULL group). C) Breaching Cuviers beaked whale of El Hierro in the Canary Islands (Photo credit ULL group). 5