Treatment of Comminuted Subtrochanteric Fractures by Dynamic Hip Screw

Similar documents
JMSCR Vol. 03 Issue 08 Page August 2015

Fractures of the tibia shaft treated with locked intramedullary nail Retrospective clinical and radiographic assesment

A comparative study of 30 cases of trochanteric fracture femur treated with dynamic hip screw and proximal femoral nailing

Failed Subtrochanteric Fracture How I Decide What to Do?

MRIMS Journal of Health Sciences 2016;4(1) pissn: , eissn:

Distal femoral fracture with subsequent ipsilateral proximal femoral fracture

Technique Guide. LCP Proximal Femoral Hook Plate 4.5/5.0. Part of the LCP Periarticular Plating System.

Salvage of failed dynamic hip screw fixation of intertrochanteric fractures

THE RING BUTTERFLY FRAGMENT

Use of Unlocked Intramedullary Nailing in Winquist Type I and II Femoral Isthmus Fracture

Comparitive Study between Proximal Femoral Nailing and Dynamic Hip Screw in Intertrochanteric Fracture of Femur *

9/24/2015. When Can I Use a SHS? When CAN T I Use a SHS? Sliding Hip Screw. Time proven. Technically simple. Cheap. Quick

Valgus subtrochanteric osteotomy for malunited intertrochanteric fractures : Our experience in 5 cases

INTERTROCHANTERIC FEMORAL FRACTURES TREATED BY DYNAMIC HIP SCREW

Assessment of Prognosis of Patients with Intertrochanteric Fractures Undergoing Treatment with PFN: An Observational Study

Vasu Pai FRACS, MCh, MS, Nat Board Ortho Surgeon Gisborne

BRIDGE PLATING OF COMMINUTED SHAFT OF FEMUR FRACTURES

Provision of Rotational Stability: Prevention of Collapse: Closed Fracture Reduction: Minimally Invasive Surgery with no Exposure of the Fracture:

The Lateral Trochanteric Wall A Key Element in the Reconstruction of Unstable Pertrochanteric Hip Fractures

Internal fixation of femoral neck fractures

Comparative Study of Fixation Devices for Intertrochanteric Fractures

Types of Plates 1. New Dynamic Compression Plate: Diaphyseal fracture: Radius, Ulna, Humerus, Rarely tibia

Indirect Reduction with Sliding Compression Screw Stabilization for Subtrochanteric Fractures

DISLOCATION AND FRACTURES OF THE HIP. Dr Károly Fekete

Biomet Large Cannulated Screw System

A Clinical Study For Evaluation Of Results Of Closed Interlocking Nailing Of Fractures Of The Shaft Of The Tibia

Closed reduction and internal fixation of fractures of the shaft of the femur by the Titanium Elastic Nailing System in children.

EXTENDED TROCHANTERIC OSTEOTOMY SURGICAL TECHNIQUE FPO EXTENSIVELY COATED FIXATION

Type I : At the level of lesser trochanter Type II : Less than 2.5 cm below lesser trochanter. Type III : cm below lesser trochanter

Ipsilateral femoral neck and shaft fractures: a retrospective analysis of two treatment methods

Trochanter Stabilization Plate for DHS Implants

Cannulated Pediatric Osteotomy System (CAPOS)

HOW TO CITE THIS ARTICLE:

Unlocked Nailing vs. Interlocking Nailing for Winquist Type I and II Femoral Isthmus Fractures. Is there a Difference?

ILIZAROV TECHNIQUE IN CORRECTING LIMBS DEFORMITIES: PRELIMINARY RESULTS

Pre-Operative Planning. Positioning of the Patient

COMPARATIVE STUDY OF MANAGEMENT OF DIAPHYSEAL FEMUR FRACTURE WITH INTRAMEDULLARY INTERLOCKING NAIL AND K. NAIL

Treatment of traumatic conditions of the femur using the Huckstep nail

ORIGINAL ARTICLE. INTER TROCHANTERIC # NECK FEMUR FIXATION WITH TFN 250 CASES. Prasad Vijaykumar Joshi, Chandrashekar Yadav.

TECHNIQUE GUIDE. DHS /DCS Dynamic Hip and Condylar Screw System

Technique Guide. DHS Blade. For osteoporotic bone.

CASE REPORT. Bone transport utilizing the PRECICE Intramedullary Nail for an infected nonunion in the distal femur

The Journal of the Korean Society of Fractures Vol.13, No.3, July, 2000

The Journal of the Korean Society of Fractures Vol.16, No.1, January, 2003

ICUC Paper. The treatment of trochanteric fractures revisited: Pietro Regazzoni, Alberto Fernandez, Dominik Heim, Stephan M. Perren.

LCP Low Bend Medial Distal Tibia Plates 3.5 mm. Anatomic plates with low profile head for intra- and extraarticular fractures.

Technique Guide. 3.5 mm LCP Periarticular Proximal Humerus Plate. Part of the Synthes locking compression plate (LCP) system.

LISS DF and LISS PLT. Less Invasive Stabilization Systems for Distal Femur and Proximal Lateral Tibia.

VA-LCP Anterior Clavicle Plate. The anatomically precontoured fixation system with angular stability for clavicle shaft and lateral clavicle.

3.5 mm Clavicle Hook Plates

Cannulated Pediatric Osteotomy System (CAPOS). A single system of osteotomy blade plates and cannulated instrumentation.

PediNail Pediatric Femoral Nail

A comparative study of less invasive stabilization system and titanium elastic nailing for subtrochanteric femur fractures in older children

Medial Malleolus Fracture Fixation in the Setting of Concomitant Tibial Shaft Fractures

Randomized comparative study to evaluate the role of proximal femoral nail and dynamic hip screw in unstable trochanteric fractures

Angular Malalignment in Subtrochanteric and Proximal Shaft Femur Fractures after Intramedullary Nailing using SIGN Nails

PediLoc 3.5mm and 4.5mm Contour Femur Plate Surgical Technique

Nonunion of the Femur Treated with Conventional Osteosynthesis Combined with Autogenous and Strut Allogeneic Bone Grafts

TREATMENT OF SUBTROCHANTERIC FEMUR FRACTURES WITH PROXIMAL FEMORAL NAILS: A PROSPECTIVE STUDY

Mandible External Fixator II. Provides treatment for fractures of the maxillofacial area.

Large Distractor Femur

OUTCOME OF MANAGEMENT OF CLOSED PROXIMAL TIBIA FRACTURES IN TERTIARY HOSPITAL OF SURAT Karan Mehta 1, Prashanth G 2, Shiblee Siddiqui 3

Pelvis injuries Fractures of the femur (proximal,shaft) Dr Tamás Bodzay

Elbow Hinge Fixator. Guided Flexion/Extension for Unstable Elbow Fractures.

QUICK REFERENCE GUIDE. The XCaliber Meta-Diaphyseal Fixator

Technique Guide. 3.5 mm LCP Low Bend Medial Distal Tibia Plates. Part of the Synthes locking compression plate (LCP) system.

Low Bend Distal Tibia Plates

Clinical outcomes of muscle pedicle bone grafting (Meyer's Procedure) in cases of old displaced femur neck fractures: A Study Of 20 Cases

Hip Fractures. Anatomy. Causes. Symptoms

INTERTAN Nails Geared for Stability

Intramedullary Nailing: History & Rationale

Subtrochanteric femoral fracture is one of

LCP Medial Distal Tibia Plate, without Tab. The Low Profile Anatomic Fixation System with Angular Stability and Optimal Screw Orientation.

CASE NO: 1 PATIENT DETAILS : Occupation : Housewife Date Of Admission :11/06/15 Residence : Nalgonda IP NO :

Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw

Outcome evaluation of dynamic condylar screw fixation for subtrochanteric femur fracture

OPERATING MANUAL AND TECHNIQUE GUIDE FOR TITANIUM FEMORAL AND TIBIAL NAILING SYSTEMS

Technique Guide. DHS/DCS System. Including LCP DHS and DHS Blade.

SWEMAC CHS. Compression Hip Screw System

Of approximately 2 million long bone fractures

Comparative Study between Locking Compression Plate vs. Supracondylar Nail for Supracondylar Femur Fractures

QUICK REFERENCE GUIDE. Arthrodiatasis. Articulated Joint Distraction

Evaluation and Treatment of High Energy Proximal Femur Fractures OVERVIEW 6/23/2014. Introduction of Speakers - Objectives (2 minutes)

A3.1 Simple, oblique A3.2 Simple, transverse A3.3 Comminuted

Femoral Fractures in Adolescents: A Comparison of Four Methods of Fixation

Locked Plating: Clinical Indications

Surgical Care at the District Hospital. EMERGENCY & ESSENTIAL SURGICAL CARE

A Prospective Study to Evaluate the Management of Sub-trochanteric Femur Fractures with Long Proximal Femoral Nail

STUDY OF RESULTS OF ENDER NAILING AND CANNULATED CANCELLOUS SCREW IN THE TREATMENT OF INTERTROCHANTERIC FRACTURE FEMUR

Peritroch Hip Fractures. Robert M Harris MD. Hip Fractures. Factors Influencing Construct Strength: Uncontrolled factors 4/28/2016

JOURNALOF ORTHOPAEDIC TRAUMA

LCP Anterolateral Distal Tibia Plate 3.5. The low profile anatomic fixation system with optimal plate placement and angular stability.

Comparison of two modality of fixation in unstable trochantric fractures in elderly patients

Pediatric LCP Plate System. For osteotomies and fracture fixation of the proximal and distal femur.

LCP Anterolateral Distal Tibia Plate 3.5. The low profile anatomic fixation system with optimal plate placement and angular stability.

3.5 mm LCP Distal Tibia T-Plates

Technique Guide. LCP Posterior Medial Proximal Tibial Plate 3.5. Part of the Synthes small fragment LCP system.

Crossed Steinmann Pin Fixation In Supracondylar Femur Fractures In Adults A Case Series

Comparison between Conventional and Minimally Invasive Dynamic Hip Screws for Fixation of Intertrochanteric Fractures of the Femur

Transcription:

Treatment of Comminuted Subtrochanteric Fractures by Dynamic Hip Screw Pages with reference to book, From 212 To 215 Modood Ali ( Department of Surgery, College of Medicine, King Saud University, P.O. Box 641, Abha, Saudi Arabia. ) Abstract Twenty four cases of fracture of the proximal femoral shaft treated with dynamic hip screw fixation are included. All had severe comminution with subtrochanteric extensions. Dynamic hip screw provided stable osteosynthesis and helped to achieve bone union within 18 weeks in 19 of 21 followed-up cases. The anatomical configuration of the femur was maintained with minimal limb length discrepancy in one case and knee flexion of more than 110 degrees in all. Weight bearing was achieved after a mean period of 7.5 weeks post-fixation. Complications of treatment are also presented. Different implants are used to treat this injury with variable results. Dynamic hip screw system is a satisfactory implant for internal fixation in patients with these difficult fractures (JPMA 45:212, 1995). Introduction The proximal femur includes the head, neck and the trochanters with the adjoining region. The precise extent ofthe region designated the subtrochanteric area remains undefined. Commonly this includes the area from the level of the lesser trochanter to within the center of the isthmus of the femoral shaft 1 and fractures in this area are believed to have a high incidence of unsatisfactory results alter operative treatment. This paper analyses the result of treatment with Dynamic Hip Screw (DHS) system of extensively comminuted fractures. of the upper femoral shaft with subtrochanteric extension. The fractures reviewed in this study do not include the intertrochanteric or subtrochanteric fractures that are considered within the premise of hip fractures nor are all fractures limited to the upper third of the femoral shaft. Inclusion of trochantenc fractures is believed to confuse the analysis of results of treatment 2. Patients and Methods This is a retrospective study of 24 cases treated at Asir Central Hospital, Abha, Saudi Arabia, between January, 1988 and June, 1993. The sample included 5 females and 19 males. The age ranged between 20 and 60 years, the mean being 36.5 years. The peak incidence was observed to occur between 20 to 40 years. Twenty- three patients had been involved in road traffic accidents and one had fallen from a height. Left sided fractures accounted for 15 cases and right for 9 cases. There were no open fractures. Fourteen patients had associated osseous and/or torso injuries. Patients were treated with DHS fixation using a long barrel plate. The type of fractures treated, were broadly of the types B 1.1, B2.1, B3. land C3.l of the AO classification 3. All fractures involved the proximal shalt of femur with upward extension. They were severely comminuted (Figure 1).

Fifteen cases had dismptionof the medial cortex, two of these had fractures of both medial and lateral cortices (Figure 2).

Comminution of the lateral cortex was present in 5 cases and vertical splitting of the femoral shalt in 4 cases, one of which was associated with anterior cortex separation. Twenty one cases were followed up in the clinic over a mean period of 14.8 months (range 8-28 months). Surgical Treatment

The patients were positioned on a fracture table. Fracture fragments were manipulated and checked under image intensifier until gross bony alignment was achieved. The fracture was approached through a lateral incision 4. Vastus lateralis muscle was released at its upper attachment, mobilized and retracted to expose the fracture. Through a combination of image intensification and visual inspection., the fracture was reduced and fragments repositioned anatomically. Caution was exercised to avoid excessive soft tissue dissection from the fragments particularly on the medial side. Bone clamps were used to hold reduction. Interfragnientary screws or cerciage wire were used, when necessary, to keep fragments in position. Under intensifier control, a cancellous hip screw, of suitable length, was inserted into the neck and head of femur. Along, 10 to 12 hole, barrel plate was then coupled and held in position with screws. Cancellous bone grafts for medial cortex deficiency were used in 7 cases only. The wound was closed when stability of the fracture was achieved. Active movements of the knee were instituted on the first postoperative day. Non-weight-bearing ambulation was allowed on the third post operative day and graduated weight bearing was allowed in accordance with the appearance of radiological signs of union. Full weight bearing was achieved at a mean period of 7.5 weeks (range 6-16 weeks). Patients were allowed to return to sedentary jobs once they were fully weight bearing. Mobilization was delayed in patients with associated head or upper limb injuries. However, active and passive movements were encouraged in bed, before upright mobilization was allowed. An antibiotic (Cephalosporin) was administered prophylactically in all patients. Results Union was achieved in 19 patients between 8 and 18 weeks (mean 11.5 weeks) (Figure 3).

None of the patients had less than 110 degrees of knee flexion. Pseudomonas infection was encountered in one case with uncontrolled diabetes mellitus. This resulted in delayed healing of the fracture and was treated with debndenient, insertion of antibiotic impregnated cement beads and repeated lavage with systemic antibiotic therapy. The fracture healed 20 months afterfixation and did

not require removal of implant. One patient developed non-union. This patient, in retrospect, should have had a primary bone graft for his medial comminution. He was subsequently treated by bone graft 18 months after his first surgery and proceeded to healing, though with avams deformity resulting in a shortening of 2.5 cms. Deep vein thrombosis occurred in one case who was confined in bed due to associated injuries. This delayed the time to achieve weight-bearing and increased the duration of hospitalisation. He made full recovery with appropriate medication. Discussion The limiting factors in these fractures were the amoutit of bone mass involved and the degree of comminution. The linear extension into the proximal subtrochanteric region carried the diaphyseal fractures into an area of high stress concentration with compression on the inside and tension on the outside 5. These factors posed additional problems in achieving adequate osteosynthesis. The variety of methods available for the management of such fractures include intramedullaiy nails, with or without cerclage wire or tangential screw fixation, intramedullary nails with locking 1,6, Smith-Peterson pin and plate, fixed angled nail plate 2,7, condylar blade plate 8,9, Zickel nail 10, codviocephalic insertion of malleable rods 11,12, dynamic condylar screw 13 and sliding screw system 14. This spectrum reflects the difficulty in the management of such fractures 15. Each of these modalities has listed advantages for its use and variable results have been obtained by each 16-19. However, no single option of treatment can be recommended for all cases 20. Favourable results have been obtained by the use of different sliding screws14,21,22. Head penetration may be avoided and the rigid plate enables stabilization of the fracture. Failure generally result from technical 20 or mechanical 23 errors. In our patients DHS allowed a firm hold on the proximal fragment. When coupled with a long barrel plate, firm fixation was obtained. Reposition of the medial cortex under direct and intensified visualization reduced soft tissue stripping from the fracture fragments. This minimized the chance of avascular necrosis and enabled medialization of the cortex. Primary union in 19 of these cases, achieved within 18 weeks implies that the judicious use of the DHS system can favourably influence osteosynthesis of femoral shaft fractures irrespective of the degree ofcomminution and location. An anatomical reduction, stable fixation and restoration of the medial cortex are important for tile success of the dynamic hip screw 21,24. A predominantly satisfactory clinical result obtaified in the majority of our patients, all of whom were victims of severe tmuma, supports this contention. It is concluded that with appropriate reduction and adequate bone contact, fixation with compression hip screw can allow stable osteosynthesis and ensure satisfactory bone healing in such difficult fractures. References 1. Russell, T. A. Fractures of Hip and Pelvis. In 8th ed. Crenshaw, A. H., ed. Campbell s Operative Orthopaedics. St. Louis, Missouri, Mosby Year Book Inc., 1992; pp. 895-987. 2. DeLee, J. C. Fractures and Dislocations ofthe Hip. In: 2nd ed. Rockwood, C. A., Green, D. P eds. Fractures in Adults. Philadelphia, J. B. Lippincott, 1984, pp. 1211-1356. 3. Muller, M. E., Nazarian, S., Koch, P. et al. The comprehensive classification of Fractures of Long Bones. Berlin, Heidelberg, Springer-Verlag, 1990, pp. 134-37. 4. Ruedi, 1., von Hochstetter, A. H. C. and Schlumpf, R. Surgical Approaches for Internal Fixation. Berlin Heidelberg, Springer- Verlag, 1984, pp. 115-129. 5. Inman, V. T. Functional Aspects of the Abductor Muscles of the Hip. J. Bone Joint Surg., 1 947:29:607-619. 6. Wiss, D. A, and Brien, W. W. Subtrochanteric fractures of the femur, Results of treatment by

interlocking nailing. Clin. Ortho., 1992, 231-236. 7. Iqbal, M. Q. An Appraisal of Treatment of Femoral Shaft Fractures, Open Vs. Closed. Med. J. Aust., 1976;1 :392-95. 8. Muller, M. E., Ailgower, M.. Schneider, R. et al. Manual of Internal Fixation-Techniques Recommended by the AO-ASIF Crroup. Berlin Heidelberg, Springer-Verlag. 1992, pp. 535-45. 9. Kinast, C., Bolhofner, B. R., Mast, J. W. et al. Subtrochanteric fractures of the femur. Results of treatment with the 95 degrees condylar blade-plate. Clin. Orthop., 1989;238:122-130. 10. Zickel, R. E. An Intramedullary Fixation Device for the Proximal Part of the Femur. J. Bone Joint Surg., 1976;58-A:866-72. 11. Kudema, H., Bohler, N. and Collon, D. J. Treatment of lntertrochanteric and Subtrochanteric Fractures of the Hip by the Ender Method, J. Bone Joint Surg., 1976;58-A:604-11. 12. Harris, L. J. Condylocephalic Nailing of Proximal Femoral Fractures. Instr CourseLect., 1983;32:292-303. 13. Sanders, R. and Regazzoni, P. Treatment of subtrochanterie femur fractures using the dynamic condylar screw. J. Orthop. Trauma, 1989;3:206-213. 14. Massie, W. K Extracapsular Fractures of the I-Lip Treated by Impaction Using a Sliding Nail Plate. Clin. Orthop., 1962;22:180-202. 15. Waddel, J. P. Altematives in the management ofsuhtrochanterit fractures. Instr. Course Lect., 1984,33:222-229. 16. Papagiannopoulos, G., Stewart, H. D. and Lunn. P.G. Treatment ofsubtrochanteric fractures of the femur: a study of intramedullary compression nailing Injury, 1989;20:106-110. 17. Thomas, W. G. and Villar, R. N. Suhtroehanteric fractures- Zickel nail or nail-plate? J. Bone Joint Surg. (Br.), 1986:68:255-59. 18. Whitelaw, G. P., Segal, D., Sanzone, C. F. et al. Unstable intertrochanteric/subtrochanteric fractures of the femur. Clin. Orthop., 1990;238-45. 19. Dobozi, W.R., Larson, B. J., Zindriek, M. et al. Flexible intramedullary nailing ofsubtrochanteric fractures of the femur. A multicenter analysis. Clin. Orthop., 1986;68-78. 20. Simpson, A.H.R.W., Varthy, K., Dood, C.A.F. Sliding Hip Screws: Modes of failure. injury, 1989;20:227-31. 21. Senter, B., Kendig, R. and Savoie, F. H. Operative stabilization of subtrochanteric fractures of the femur, J. Orthop. Trauma, 1990;4:399-405. 22. Gruss, M. and Traut, R. Management of unstable pertrochanteric and per-to subtrochanteric femoral fractures with the dynamic hip screw. Aktuel. Traumatol., 1992;22;144-148. 23. Mainds, C. C. and Newman, R J. Implant Failures in Patients with Proximal Fernoral Fractures Treated with a Sliding Screw Device. Injury, 1989;20:98-100. 24. Kyle, R. F Fractures of the Proximal Part of the Femur. J. Bone Joint Surg. (Am.), 1994;76-A :924-950.