ORIGINAL ARTICLE. parathyroid surgery (MIPS) for primary hyperparathyroidism (HPT) is gaining wide acceptance. A prerequisite for MIPS is preoperative

Similar documents
ORIGINAL ARTICLE. Early, Postinjection MIBI-SPECT as the Only Preoperative Localizing Study for Minimally Invasive Parathyroidectomy

Primary hyperparathyroidism (HPT) has an incidence of

Case 4: 27 yr-old woman with history of kidney stones and hyperparathyroidism.

Case 2: 30 yr-old woman with 7 yr history of recurrent kidney stones

Hyperparathyroidism, whether primary or secondary, is

Outline. Parathyroid Localization Studies. Mira Milas MD, FACS Associate Professor of Surgery Director, The Thyroid Center

PARATHYROID NUCLEAR MEDICINE IMAGING REVIEW DISCLOSURES

Primary hyperparathyroidism is usually a clinical and

RADIOGUIDED PARATHYROIDECTOMY IS SUCCESSFUL IN 98.7% OF SELECTED PATIENTS

Minimally invasive parathyroidectomy

Department of Nuclear Medicine, School of Medicine, Selcuk University, Konya, Turkey

Parathyroid Imaging. A Guide to Parathyroid Surgery

O~iginalArtrc!~'" MINIMALLY INVASIVE RADIO-GUIDED PARATHYROIDECTOMY IN 152 CONSECUTIVE PATIENTS WITH PRIMARY HYPERPARATHYROIDISM

THE PARATHYROID GLAND THEORY AND NUCLEAR MEDICINE PRACTICE

Outline. SPECT/CT in Parathyroid Disease. Pathophysiology. Current guidelines. SPECT/CT the evidence. SPECT/CT in clinical scenarios

Preoperative Tc-99m-sestamibi (MIBI) scintigraphy and

Dilemma in diagnosing thyroid adenoma A case report

Parathyroid Imaging What is best

ORIGINAL ARTICLE. Appearance of Ectopic Undescended Inferior Parathyroid Adenomas on Technetium Tc 99m Sestamibi Scintigraphy

42 yr old male with h/o Graves disease and prior I 131 treatment presents with hyperthyroidism and undetectable TSH. 2 hr uptake 20%, 24 hr uptake 50%

Marcin Barczynski, 1 Aleksander Konturek, 2 Alicja Hubalewska-Dydejczyk, 2. Filip Gołkowski, 1 Stanislaw Cichon, 1 Piotr Richter, 1 Wojciech Nowak

Nuclear Medicine Head and Neck Region. Bán Zsuzsanna, MD University of Pécs, Department of Nuclear Medicine

European Journal of Endocrinology (2003) ISSN

Complementary sestamibi scintigraphy and ultrasound for primary hyperparathyroidism

PAPER. The Effectiveness of Radioguided Parathyroidectomy in Patients With Negative Technetium Tc 99m Sestamibi Scans

Index. radiologic.theclinics.com. Note: Page numbers of article titles are in boldface type.

HYPERPARATHYROIDIS M FAISAL GHANI SIDDIQUI MBBS; FCPS; PGDIP-BIOMEDICAL ETHICS; MCPS-HPE

Outline. Primary Hyperparathyriodism. SPECT/CT in Parathyroid Localisation. Ann-Marie Quigley Nuclear Medicine Royal Free Hospital London

This PDF is available for free download from a site hosted by Medknow Publications

Comparison Of Sestamibi Scintigraphy And Ultrasonography In Preoperative Localization Of Primary Hyperparathyroidism

HPI joint pain/arthritis serum calcium 11.5 PTH 147pg/ml

SPECT/CT in Endocrine Diseases and Dosimetry

ORIGINAL ARTICLE. Sestamibi Scans and Intraoperative Parathyroid Hormone Measurement in the Treatment of Primary Hyperparathyroidism

Hyperparathyroidism may present as an incidental finding. Parathyroid Imaging: How Good Is It and How Should It Be Done?

IMPACT OF CONCOMITANT THYROID PATHOLOGY ON PREOPERATIVE WORKUP FOR PRIMARY HYPERPARATHYROIDISM

Role of Imaging in the Localization of Parathyroid Adenoma

Parathyroid Imaging: Current Concepts. Maria Gule-Monroe, M.D. Nancy Perrier, M.D.

SPECT/CT Fusion in the Diagnosis of Hyperparathyroidism

ORIGINAL ARTICLE. Clinicopathologic and Radiopharmacokinetic Factors Affecting Gamma Probe Guided Parathyroidectomy

A rare case of solitary toxic nodule in a 3yr old female child a case report

Association of Histological Findings with Tc-99m Sestamibi Parathyroid Imaging in Hyperfunctional Parathyroid Gland

Nuclear medicine in endocrinology

Clinical Medicine Insights: Endocrinology and Diabetes 2013:6

PARATHYROID IMAGING. James Lee, MD Chief, Endocrine Surgery Co-Director NY Thyroid-Parathyroid Center Columbia University Medical Center

Value of Dual-Phase 99m Tc- Sestamibi Scintigraphy With Neck and Thoracic SPECT/CT in Secondary Hyperparathyroidism

Thyroid remnant volume and Radioiodine ablation in Differentiated thyroid carcinoma.

CURRENTLY THERE is considerable discussion about

declipse SPECT Imaging Probe Worldwide first registration-free ultrasound fusion with high-resolution 3D SPECT images

Thyroid nodules 3/22/2011. Most thyroid nodules are benign. Thyroid nodules: differential diagnosis

hypercalcemia of malignancy hyperparathyroidism PHPT the most common cause of hypercalcemia in the outpatient setting the second most common cause

POSTER SESSION. Predictors of an Accurate Preoperative Sestamibi Scan for Single-Gland Parathyroid Adenomas

Minimally invasive parathyroid surgery

International Journal of Case Reports and Images (IJCRI)

Women s Health in General Practice Symposium 2015 Thyroid & Parathyroid Cases

Endoscopic Parathyroidectomy: Why and When?

Sporadic primary hyperparathyroidism is the most common cause

ORIGINAL ARTICLE. An Optimal Algorithm for Intraoperative Parathyroid Hormone Monitoring

PTH > 60pg/ml PRIMARY HYPERPARATHYROIDISM. Introduction Biochemical Diagnosis. Normal Parathyroid. Parathyroid Glands

Volume 2 Issue ISSN

Thyroid Nodules. Hossein Gharib, MD, MACP, MACE

Minimally invasive surgery for primary hyperparathyroidism with or without intraoperative parathyroid hormone monitoring

Thyroid Ultrasound for the Endocrine Surgeon: A Valuable Clinical Tool that Enhances Diagnostic and Therapeutic Outcomes

The CaPTHUS Scoring Model revisited: Applicability from. with Primary Hyperparathyroidism

The Concept of GOSTT

General Surgery Curriculum Royal Australasian College of Surgeons, General Surgeons Australia & New Zealand Association of General Surgeons

PAPER. An Algorithm to Maximize Use of Minimally Invasive Parathyroidectomy

Thyroid nodules. Most thyroid nodules are benign

Case 4: Disseminated bone metastases from differentiated follicular thyroid cancer

Thyroid nodules - medical and surgical management. Endocrinology and Endocrine Surgery Manchester Royal Infirmary

5/18/2013. Most thyroid nodules are benign. Thyroid nodules: new techniques in evaluation

Parathyroid Glands: location, condition and value of imaging tests.

Reoperative central neck surgery

ORIGINAL ARTICLE. A Cost Justification for Routine Preoperative Localization With Technetium Tc 99m Sestamibi Scan

Imaging in Pediatric Thyroid disorders: US and Radionuclide imaging. Deepa R Biyyam, MD Attending Pediatric Radiologist

Abhijit Thakur Æ Frederic Sebag Æ Eveline Slotema Æ Giuseppe Ippolito Æ David Taïeb Æ Jean François Henry

INDEX. Note: Page numbers of issue and article titles are in boldface type. cell carcinoma. ENDOCRINE SURGERY

CIC Edizioni Internazionali. Parathyroid nuclear scan. A focused review on the technical and biological factors affecting its outcome.

Health Sciences Centre, Team A, Dr. L. Bohacek (Endocrine Surgery) Medical Expert

Technetium-99m Sestamibi Scintigraphy Pattern in Patients with Secondary Hyperparathyroidism

Coexistence of parathyroid adenoma and papillary thyroid carcinoma. Yong Sang Lee, Kee-Hyun Nam, Woong Youn Chung, Hang-Seok Chang, Cheong Soo Park

USEFULNESS OF INTRAOPERATIVE PARATHYROID HORMONE MONITORING DURING MINIMALLY INVASIVE VIDEO-ASSISTED PARATHYROIDECTOMY

Re-explorative Parathyroid Surgery for Persistent and Recurrent Primary Hyperparathyroidism

Avi Khafif, MD, Rami Ben-Yosef, MD, Avrum Abergel, MD, Ada Kesler, MD, Roee Landsberg, MD, Dan M. Fliss, MD

A Move Towards Focused Parathyroidectomy in BSMMU Even Under Local Anesthesia

A Study of Thyroid Swellings and Correlation between FNAC and Histopathology Results

Thyroid Nodules: What to do next?

Mandana Moosavi 1 and Stuart Kreisman Background

Use of PTH at Point of Surgery for Non-Localized Cases of Hyperparathyoidism

A descriptive study on solitary nodular goitre

Primary hyperparathyroidism (PHPT) is characterized, in up to 85% of clinical

Radionuclide Imaging of the Parathyroid Glands

Endocrine Surgery When to Refer and What We Do

Minimally Invasive Endocrine Surgery. How far have we come?

The parathyroid glands participate in the regulation

Nonrecurrent inferior laryngeal nerves and anatomical findings during thyroid surgery: report of three cases

Disclosures. Learning objectives. Case 1A. Autoimmune Thyroid Disease: Medical and Surgical Issues. I have nothing to disclose.

Primary hyperparathyroidism is the most common cause

Surgical treatment of primary hyperparathyroidism due to parathyroid tumor: A 15-year experience

Parathyroids, Small but Mighty Current Pathways to Early Diagnosis and Cure of Parathyroid Disease

Incidental Thyroid Nodules at Non FDG PET Nuclear Medicine Imaging: Evaluation of Prevalence and Malignancy Rate

Transcription:

ORIGINAL ARTICLE Preoperative Technetium Tc 99m Sestamibi SPECT Imaging in the Management of Primary Hyperparathyroidism in Patients With Concomitant Multinodular Goiter Mordechai Lorberboym, MD; Tiberiu Ezri, MD; Pinhas P. Schachter, MD Hypothesis: Preoperative parathyroid and thyroid imaging using technetium Tc 99m sestamibi scintigraphy single-photon emission computed tomography (Tc 99m MIBI SPECT) and technetium Tc 99m sodium pertechnetate, respectively, in patients with parathyroid adenomas and concomitant multinodular goiters enables the selection of those suitable for minimally invasive radioguided surgery. Design: One hundred thirty patients with primary hyperparathyroidism were treated surgically during a 30- month period. Forty-one of these 130 patients had an associated multinodular goiter. All patients underwent planar and SPECT parathyroid scintigraphy using Tc 99m MIBI, and thyroid scintigraphy with technetium Tc 99m pertechnetate 2 to 5 days before surgery. On the morning of surgery each patient was reinjected with Tc 99m MIBI for intraoperative localization and validation. Minimally invasive radio-guided parathyroidectomy was performed using a handheld gamma-detection device with a thyroid probe. Removed glands were submitted for histopathologic examination for comparison with the scintigraphic results. Quantitative analysis of parathyroid activity was performed. Results: Minimally invasive, radioguided parathyroidectomy was successfully performed in 21 (51%) of 41 patients who had a concomitant multinodular goiter. The remaining 20 patients underwent standard neck exploratory surgery because of associated thyroid disease; 5 of them had malignant thyroid disease. Among the 41 patients planar scintigraphy correctly identified 28 adenomas (68%). Single-photon emission computed tomographic imaging identified an additional 11 adenomas for a sensitivity of 95% and a specificity of 100%. Moreover, SPECT imaging correctly identified malignant thyroid nodules in 4 of 5 patients. Technetium Tc 99m MIBI retention was noted in only 25 adenomas (61%) while the remaining adenomas demonstrated a rapid washout. The average uptake ratio of parathyroid counts to maximum thyroid activity was significantly correlated with parathyroid hormone levels before surgery (P=.04). Conclusions: Our data encourage the use of preoperative SPECT imaging of parathyroid adenomas in patients who have multinodular goiters to select those suitable for minimally invasive radioguided surgery. This technique also offers important information regarding thyroid nodules that are suspicious for malignancy. The intraoperative gamma-probe technique enables the surgeon to focus his or her search, provides instant feedback regarding the progress of the operation, reduces surgical trauma and complications, and yields better cosmetic results. Patients with higher presurgical parathyroid hormone levels may especially benefit from radioguided surgery. Arch Surg. 2005;140:656-660 Author Affiliations: From the Departments of Nuclear Medicine (Dr Lorberboym), Anesthesiology (Drs Ezri), and General Surgery (Dr Schachter), The Edith Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel. MINIMALLY INVASIVE parathyroid surgery (MIPS) for primary hyperparathyroidism (HPT) is gaining wide acceptance. A prerequisite for MIPS is preoperative localization of the hyperfunctioning parathyroid gland. 1 Concomitant thyroid disease, in particular multinodular goiter (MNG), is common, ranging from 20% to 75% in endemic regions. 2-5 A major limitation related to parathyroid imaging using ultrasonography, or technetium Tc 99m sestamibi scintigraphy (Tc 99m MIBI), or both is the presence of concomitant thyroid nodules that often are MIBI avid and can, therefore, mimic a parathyroid lesion, causing false-positive scintigraphic results. 6 Several authors found different effects of thyroid abnormalities on the sensitivity of the scan. 6-8 For this reason, some physicians discourage the use of preoperative Tc 99m MIBI scintigraphy and the gamma-probe technique in patients with hyperparathyroidism who have a concomitant MNG. 9 However, studies 656

comparing sensitivity, specificity, and positive predictive values show ultrasonography to be inferior to Tc 99m MIBI scintigraphy in detecting parathyroid adenomas in patients with concomitant MNG. 10 In addition, the rate of malignancy in thyroid nodules associated with MNG may reach 10% and correct preoperative identification of suspicious nodules is mandatory. 11-13 A thyroid scan with technetium Tc 99m sodium pertechnetate is useful to evaluate cold nodules, and fine-needle aspiration biopsy of the thyroid is a common procedure to search for malignancy. However, manually or ultrasonography-guided fine-needle aspiration of multiple, nonpalpable nodules is technically difficult, yielding results that are not always equivocal. 14 The purpose of our study was to prospectively evaluate minimally invasive, radioguided parathyroidectomy in patients with concomitant MNG and the additive value of combined parathyroid-thyroid imaging using Tc 99m MIBI single-photon emission computed tomography (Tc 99m MIBI SPECT) and technetium Tc 99m pertechnetate in developing an index of suspicion for potentially malignant thyroid lesions that require surgical management. METHODS During a 30-month period we prospectively evaluated 130 patients with primary HPT who were surgically treated in our department. The study population included 41 of 130 patients who had primary HPT associated with an MNG (30 women and 11 men; mean age, 63.5 years; age range, 32-84 years). Gland weight was recorded after surgery. The removed parathyroid glands of all of the patients had a histopathologic examination for comparison with the scintigraphic results. SCINTIGRAPHY All of the patients underwent planar and SPECT parathyroid scintigraphy 2 to 5 days before surgery. Anterior planar images of the neck and chest were acquired for 10 minutes and at 10 minutes and 120 minutes after intravenous injection of 20 mci (740 MBq) of Tc 99m MIBI, using a large-field-of-view gamma camera equipped with a parallel-hole collimator. Immediately after the first planar image, a SPECT study was acquired using 60 projections of 30 seconds each over a 180 anterior arc from the right lateral to the left lateral position in a 128 128 matrix at 3 angular steps. In addition, a delayed (120 minutes) 10-minute image was performed after the injection of 10 mci (370 MBq) of technetium Tc 99m sodium pertechnetate. On the morning of surgery, each patient was reinjected with 20 mci (740 MBq) of Tc 99m MIBI for intraoperative localization and validation. A SPECT study, as previously described, was acquired for comparison prior to sending the patient to the operating room. INTERPRETATION The SPECT study was compared with the planar technique. A distinct focus of increased or separate Tc 99m MIBI uptake relative to thyroid tissue on early images, late images, or both was considered positive for abnormal parathyroid tissue. In each case a 3-dimensional image was created from the SPECT data and presented to the surgeon before the operation. For quantitative analysis a region of interest was drawn around the diseased parathyroid gland, and a region of interest of similar size was drawn in the left thyroid lobe (P/L), right thyroid lobe (P/R), and in the region of maximal thyroid gland activity (P/M). A count ratio of parathyroid to thyroid was determined using the average counts in each region of interest (ie, P/L, P/R, and P/M). TECHNIQUE OF RADIOGUIDED PARATHYROIDECTOMY Minimally invasive radioguided parathyroidectomy was performed through a 2.0- to 2.5-cm low transverse incision. A handheld gamma-detection device (Navigator; US Surgical Corp, Norwalk, Conn) with a thyroid probe (US Surgical Corp) was used to direct the skin incision and the dissection through the strap muscles. The thyroid gland was revealed and retracted medially exposing the medial part of the carotid sheath. The gammadetection device was used to guide the dissection of the parathyroid adenoma. In instances of concomitant thyroid pathology that required surgical management, in particular when a malignant lesion was suspected, standard neck exploratory surgery was performed through a collar incision. A midline incision in the fascia and lateral retraction of the strap muscles exposed the thyroid gland. The gamma-detection device was used to identify all hot parathyroid glands prior to excision of the enlarged one and for localization of the hot thyroid nodule. Frozensection examination was obtained for parathyroid glands with an equivocal appearance and for all suspect thyroid nodules (hot nodules were marked for examination). Radioactivity contained within the resected adenoma was determined ex vivo and compared with background radioactivity in the neck. Frozen sections were not obtained if the resected tissue appeared clinically to be an adenoma. The mean time for the entire procedure was 30 minutes (range, 20-40 minutes) for the minimally invasive procedure and 60 minutes (40-70 minutes) for the formal exploration of the neck. Most patients were admitted for a 24-hour stay after the operation to watch for complications. All patients had a histopathologic examination of the removed parathyroid glands for comparison with the scintigraphic results. STATISTICAL ANALYSIS Analysis of data was performed using SPSS statistical analysis software (1999 version; SPSS Inc, Chicago, Ill). Descriptive statistics were calculated and are reported as mean±sd. Normality of distribution of variables was determined using the Kolmogorov-Smirnov test. Pearson correlation coefficients were calculated to describe intervariable associations. All tests were 2-sided and considered statistically significant at P.05. RESULTS Among the 41 patients, planar scintigraphy using delayed imaging and dual isotope technique correctly identified 28 adenomas (68%). Single-photon emission computed tomographic imaging correctly identified those adenomas thereby providing additional 3-dimensional information for the surgeon. Additionally, 11 more adenomas were identified on SPECT, for a sensitivity of 95%, a specificity of 100%, and a positive predictive value of 1(Table 1). Single-photon emission computed tomography was superior to planar imaging in identifying 3 patients with small adenomas lying just posterior to a large MNG and in 8 patients with MIBI-avid thyroid nodules 657

Table 1. Sensitivity of Parathyroid Scintigraphy Methods Method Sensitivity, % Dual-phase technique 60 Combined planar techniques 78 Early Tc 99m MIBI SPECT imaging 96 Abbreviation: Tc 99m MIBI SPECT, technetium Tc 99m sestamibi scintigraphy single-photon emission computed tomography. that often mimic ectopic adenomas. Moreover, SPECT imaging correctly identified malignant thyroid nodules in 4 of 5 patients, being cold on technetium Tc 99m pertechnetate imaging but showing avid uptake of Tc 99m MIBI (Figure 1 and Figure 2). The parathyroid adenomas were usually more posterior in location and could, therefore, be separated from the malignant nodules. Gland size did not affect significantly the detectability of the SPECT studies compared with planar imaging. Technetium Tc 99m MIBI retention was noted in only 25 adenomas (61%) while the remaining adenomas demonstrated a rapid washout. Minimally invasive, radioguided parathyroidectomy was successfully performed in 21 patients (51%) with concomitant MNG. One patient was converted to standard neck exploratory surgery because of a suspicious thyroid nodule that proved to be malignant. The remaining 20 patients had concomitant thyroid disease requiring surgery, 4 of them with malignant thyroid disease and 2 with inconclusive Tc 99m MIBI-SPECT localization. The Tc 99m MIBI-SPECT failed to demonstrate a small adenoma (95 mg) adjacent to a warm thyroid nodule and the second patient had a huge MNG, which displaced the parathyroid adenoma in an anterior position. Both adenomas were revealed at surgery and resected. The mean uptake ratios of parathyroid counts to the P/L, P/R, and P/M were 1.22±0.40, 1.30±0.42 and 0.81±0.33, respectively. Statistical analysis showed that the uptake ratio of parathyroid to P/M was significantly correlated with parathyroid hormone (PTH) levels before surgery (P=.04). Otherwise, no significant correlation was found between parathyroid activity ratios and any of the blood chemistry or clinical variables. The mean adenoma weight was 1.09 g (range, 0.17-3.6 g). There was no correlation between gland size and parathyroid uptake of the radioisotope. The mean calcium and PTH levels before surgery and the calcium levels after surgery are summarized in Table 2. No persistent or recurrent hyperparathyroidism was recorded during a follow-up period of at least 6 months (range, 6-36 months). Only 3 patients (after total thyroidectomy) had transient symptoms of hypocalcemia following surgery. No laryngeal nerve injuries were encountered. COMMENT The association of primary HPT and thyroid pathology, in particular MNG, is common (26%) in our recently published series 15 and it requires not only careful localization of parathyroid adenoma but also meticulous preoperative assessment of suspicious nodules to direct intraoperative biopsy. An experienced endocrine surgeon performing bilateral neck exploratory surgery can cure primary HPT in most patients (up to 98% of cases) without the aid of any preoperative imaging. 16 Since a solitary parathyroid adenoma is the most frequent cause of primary HPT (in 80%-90%), bilateral neck exploratory surgery seems an overtreatment in most cases. Exploratory surgery of a wide area distorts the normal anatomy of the neck, carries a higher rate of complications, 17 and yields poorer cosmetic results. 18 In accord with the criteria proposed by Sidhu et al, 19 bilateral neck exploratory surgery is indicated when (1) there is no preoperative localization; (2) concomitant thyroid pathology is present; (3) parathyroid hyperplasia is suspected; and (4) patients have more than 1 parathyroid adenoma. The surgical approach, however, varies between bilateral neck exploratory surgery, unilateral neck exploratory surgery, and guided, focused parathyroidectomy. Pros and cons for each procedure are still widely debated. Issues like success rates, operative time, complications, cost, and cosmetic results are considered. Our experience reveals that a patient-tailored approach should be adopted, considering the educated patients choice regarding his or her preferred surgical procedure. Unilateral neck exploratory surgery and even more so focused parathyroidectomy are dependent on reliable, accurate preoperative and intraoperative localization and validation, especially in the presence of concomitant thyroid pathology. Parathyroid adenomas typically have a high metabolic rate for their size and show high avidity for labeled MIBI. The presence of mitochondria-rich oxyphil cells and increased vascularity presumably accounts for Tc 99m MIBI trapping. 20,21 However, planar Tc 99m MIBI parathyroid imaging is associated with a large number of equivocal or false-negative studies. 22,23 Additionally, falsepositive results may occur in the presence of thyroid nodules that often are MIBI avid and can, therefore, mimic a parathyroid lesion, particularly when using the dualphase Tc 99m MIBI technique. 6,22,23 Several authors reported various effects of thyroid abnormalities on the sensitivity of the scan, 6-8 discouraging the use of preoperative Tc 99m MIBI scintigraphy and intraoperative gammaprobe technique in patients with concomitant MNG. 9 In our study planar imaging correctly identified only 68% (28) of the parathyroid adenomas while SPECT imaging correctly identified 95% of the adenomas in 39 patients. This discrepancy is explained by the fact that most adenomas were posterior to the thyroid gland and, therefore, difficult to identify on planar imaging. More importantly, depth information and 3-dimensional location of the adenoma are crucial factors for the surgeon in planning and performing a limited surgery. In addition, the SPECT correctly identified malignant nodules in 4 of 5 patients, being cold on technetium Tc 99m pertechnetate imaging but showing avid uptake of MIBI. The malignant nodules could be easily separated from the parathyroid adenomas by their conspicuous anterior location. The overall malignancy rate in thyroid nodules among patients with MNG may reach 658

A B C Figure 1. Standard image of a 55-year-old woman with a multinodular goiter. A, The early technetium Tc 99m sestamibi scintigraphic (MIBI) image shows a hot focus in the lower pole of the left lobe (black arrow) consistent with a parathyroid adenoma and a second focus in the upper pole of the left lobe (white arrow), a histologically confirmed thyroid carcinoma. B, Delayed MIBI image shows persistent activity in the carcinoma but significant washout from the adenoma. Arrows indicate same locations as noted in Figure 1A. C, The technetium Tc 99m sodium pertechnetate scan shows neither activity in the region of the adenoma norinthe carcinoma (circles). 10% and multinodularity of a goiter is no longer considered an indicator of probable benign disease. 6,14,24 Moreover, a large proportion of histologically malignant nodules are nonpalpable. Chest radiography, highresolution ultrasonography, and computed tomography help to delineate the size and extent of a goiter in evaluating compression symptoms 2 and a fine-needle aspiration biopsy of the thyroid is the procedure of choice to search for malignancy. We routinely use ultrasongraphy to diagnose MNGs; it has been our experience [and others 10,25 ] that ultrasonography has relatively lower sensitivity and specificity compared with MIBI scintigraphy for identification of parathyroid adenoma in patients with MNG. A thyroid scan with technetium Tc 99m pertechnetate is a useful and simple test to evaluate cold thyroid nodules while Tc 99m MIBI scintigraphy is a highly accurate test for localization of parathyroid adenomas 26-28 with a high target-background ratio. Our study suggests an important additive contribution of the SPECT study not only in localization of the parathyroid adenoma but also in the differentiation between a suspect thyroid nodule and a parathyroid gland. A small number of oxyphil cells in some adenomas may account for rapid washout of Tc 99m MIBI from the adenoma. Thus, delayed imaging may be nondiagnostic when similar washout rates between thyroid and parathyroid tissue are observed. In our study only 61% of the adenomas showed retention of activity on delayed images. We found that early SPECT imaging on the morning of surgery was most useful for localizing parathyroid adenomas and is superior to delayed dual-phase imaging. Delayed SPECT is not recommended, as it may cause unnecessary delay in surgery and may yield falsenegative results due to rapid washout. The weight of the adenoma had no significant effect on the higher sensitivity of SPECT imaging in our study, although Takebayashi et al 29 used semiquantitative analysis with planar imaging (including only 9 parathyroid adenomas) and found a greater ratio of parathyroidthyroid counts in larger glands. The use of quantification analysis in our study showed that high PTH levels before surgery predicted a significantly higher uptake of Tc Figure 2. A 3-dimensional volume rendered technetium Tc 99m sestamibi scintigraphic image from the same patient as in Figure 1 shows distinct foci of activity associated with the carcinoma (top arrow) and the adenoma (bottom arrow). Table 2. Serum Calcium and Parathyroid Hormone Levels* Serum Calcium Level, mg/dl PTH Level, pg/ml At 1 At 2 At 3 180.2 (72.0-400.0) 11.6 (10.0-17.0) 9.4 (8.0-11.4) 9.25 (8.0-11.2) Abbreviation: PTH, serum parathyroid hormone levels before surgery (reference range, 10-65 pg/ml). SI unit conversion factor: To convert parathyroid hormone values to picomoles per liter, multiply by 0.1053; calcium values to millimoles per liter, multiply by 0.25. *Data are given as the mean (range). 1 indicates serum calcium levels before surgery (reference range, 8.5-10.3 mg/dl); 2, serum calcium levels 8 hours after surgery; and 3, serum calcium levels 24 hours after surgery. 99m MIBI in the adenoma. This relationship between the intensity of tumor uptake and hormonal function suggests that patients with higher preoperative PTH levels may benefit better from radioguided surgery. Our data strongly supports the use of preoperative SPECT imaging of parathyroid adenomas in patients with MNGs. This technique has a significant effect on the op- 659

erative time and success of surgery. It is important not only in helping to select patients who are candidates for minimally invasive radioguided surgery 9 and provide accurate 3-dimensional information, but it can also identify thyroid nodules suspicious for malignancy. The intraoperative gamma-probe technique enables the surgeon to focus his or her search, provides instant feedback regarding the progress of the operation, reduces surgical trauma and complications, and yields better cosmetic results. Accepted for Publication: November 1, 2004. Correspondence: Pinhas P. Schachter, MD, Department of Surgery A, The Edith Wolfson Medical Center, Holon 58100, Israel (pini_sc@yahoo.com). Acknowledgment: We thank N. Barnea, MD; M. Bogat, MD; H. Serov, MD; and N. Shafran, MD, Endocrinology Center, Maccabi, Rishon Lezion, Israel. REFERENCES 1. Prager G, Czerny C, Ofluoglu S, et al. Impact of localization studies on feasibility of minimally invasive parathyroidectomy in an endemic goiter region. JAmColl Surg. 2003;196:541-548. 2. Hurley DL, Gharib H. Evaluation and management of multinodular goiter. Otolaryngol Clin North Am. 1996;29:527-540. 3. Bentrem DJ, Angelos P, Talamonti MS, Nayar R. Is preoperative investigation of the thyroid justified in patients undergoing parathyroidectomy for hyperparathyroidism? Thyroid. 2002;12:1109-1112. 4. Walgenbach S, Bernhard G, Jungingern T. Morbidity in concomitant interventions in neck exploration for primary hyperparathyroidism: results of a prospective study. Chirurg. 1996;67:933-938. 5. Spelsberg F, Peller-Sautter RH. Operative technique in primary hyperparathyroidism. Chirurg. 1999;70:1102-1112. 6. Taillefer R, Boucher Y, Potvin C, Lambert R. Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-sestamibi (double-phase study). J Nucl Med. 1992;33:1801-1807. 7. Kresnik E, Gallowitsch HJ, Mikosch P, Gomez I, Lind P. Technetium-99m-MIBI scintigraphy of thyroid nodules in an endemic goiter area. J Nucl Med. 1997; 38:62-65. 8. Rubello D, Mazzarotto R, Casara D. The role of technetium-99mmethoxyisobutylisonitrile scintigraphy in the planning of therapy and follow-up of patients with differentiated thyroid carcinoma after surgery. Eur J Nucl Med. 2000;27:431-440. 9. Casara D, Rubello D, Piotto A, Pelizzo MR. 99mTc-MIBI radio-guided minimally invasive parathyroid surgery planned on the basis of a preoperative combined 99mTc-pertechnetate/99mTc-MIBI and ultrasound imaging protocol. Eur J Nucl Med. 2000;27:1300-1304. 10. Krausz Y, Lebensart PD, Klein M, et al. Preoperative localization of parathyroid adenoma in patients with concomitant thyroid nodular disease. World J Surg. 2000;24:1573-1578. 11. Leitha T, Staudenherz A. Concomitant hyperparathyroidism and nonmedullary thyroid cancer, with a review of the literature. Clin Nucl Med. 2003;28:113-117. 12. Sachmechi I, Miller E, Varatharajah R, et al. Thyroid carcinoma in single cold nodule and in cold nodules of multinodular goiters. Endocr Pract. 2000;6:5-7. 13. Pelizzo MR, Bernante P, Toniato A, Fassina A. Frequency of thyroid carcinoma in a recent series of 539 consecutive thyroidectomies for multinodular goiter. Tumori. 1997;83:653-655. 14. Poller DN, Ibrahim AK, Cummings MH, Mikel JJ, Boote D, Perry M. Fine-needle aspiration of the thyroid. Cancer. 2000;90:239-244. 15. Lorberboym M, Minski I, Macadziob S, Nikolov G, Schachter P. Incremental diagnostic value of preoperative 99mTc-MIBI SPECT in patients with a parathyroid adenoma. J Nucl Med. 2003;44:904-908. 16. Diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann Intern Med. 1991;114:593-597. 17. Bergenfelz A, Lindblom P, Tibblin S, Westerdahl J. Unilateral versus bilateral neck exploration for primary hyperparathyroidism: a prospective randomized controlled trial. Ann Surg. 2002;236:543-551. 18. Henry JF, Defechereux T, Gramatica L, de Boissezon C. Minimally invasive videoscopic parathyroidectomy by lateral approach. Langenbecks Arch Surg. 1999; 384:298-301. 19. Sidhu S, Neill AK, Russell CF. Long-term outcome of unilateral parathyroid exploration for primary hyperparathyroidism due to presumed solitary adenoma. World J Surg. 2003;27:339-342. 20. Staudenherz A, Abela C, Niederle B, et al. Comparison and histopathological correlation of three parathyroid Imaging methods in a population with a high prevalence of concomitant thyroid diseases. Eur J Nucl Med. 1997;24:143-149. 21. Sandrock D, Merino MJ, Norton JA, Neumann RD. Ultrastructural histology correlates with results of thallium-201/technetium-99m parathyroid subtraction scintigraphy. J Nucl Med. 1993;34:24-29. 22. Kim CK, Kim S, Krynyckyi BR, Machac J, Inabnet WB. The efficacy of sestamibi parathyroid scintigraphy for directing surgical approaches based on modified interpretation criteria. Clin Nucl Med. 2002;27:246-248. 23. Krausz Y, Shiloni E, Bocher M, Agranovicz S, Manos B, Chisin R. Diagnostic dilemmas in parathyroid scintigraphy. Clin Nucl Med. 2001;26:997-1001. 24. Deandrea M, Mormile A, Veglio M, et al. Fine-needle aspiration biopsy of the thyroid: comparison between thyroid palpation and ultrasonography. Endocr Pract. 2002;8:282-286. 25. Wakamatsu H, Noguchi S, Yamashita H, et al. Parathyroid scintigraphy with 99mTc- MIBI and 123I subtraction: a comparison with magnetic resonance imaging and ultrasonography. Nucl Med Commun. 2003;24:755-762. 26. Casas AT, Burke GJ, Mansbe AR Jr, Wei JP. Impact of technetium-99msestamibi localization on operative time and success of operations for primary hyperparathyroidism. Am Surg. 1994;60:12-16. 27. Wei JP, Burke GJ, Mansberger AR Jr. Preoperative imaging of abnormal parathyroid glands in patients with hyperparathyroid disease using combination Tc- 99m-pertechnetate and Tc-99m-sestamibi radionuclide scans. Ann Surg. 1994; 219:568-572. 28. O Doherty MJ, Kettle AG, Wells P, Collins RE, Coakley AJ. Parathyroid imaging with technetium-99m-sestamibi: preoperative localization and tissue uptake studies. J Nucl Med. 1992;33:313-318. 29. Takebayashi S, Hidai H, Chiba T, Takagi Y, Nagatani Y, Matsubara S. Hyperfunctional parathyroid glands with 99m Tc-MIBI scan: semiquantitative analysis correlated with histologic findings. J Nucl Med. 1999;40:1792-1797. 660