The Management of Intravenous Infiltration Injuries in Infants and Children

Similar documents
Extravasation Management of Non- Chemotherapeutic Agents

Risk factors and drugs/infusion commonly associated with tissue damage include: Extreme Prematurity Dextrose greater than 12.

Yorkshire & Humber Neonatal ODN (South) Clinical Guideline

Lower Extremity Wound Evaluation and Treatment

The Georgetown Team Approach to Diabetic Limb Salvage: 2013

Dressings do not heal wounds properly selected dressings enhance the body s ability to heal the wound. Progression Towards Healing

Pharmaceutics I صيدالنيات 1. Unit 2 Route of Drug Administration

Parenteral Products. By: Howida Kamal, Ph.D

Galen ( A.D) Advanced Wound Dressing

Extravasation injuries. Amendments Date Page(s) Comments Approved by 03/16 ALL Completely updated guideline

Advancing the science of wound bed preparation

PHENTOLAMINE MESYLATE INJECTION SANDOZ STANDARD 5 mg/ ml THERAPEUTIC CLASSIFICATION Alpha-adrenoreceptor Blocker

Clinical Policy: EpiFix Wound Treatment

TOO MANY DRESSING CHOICES!!!! WOUND CARE MANAGEMENT AND PRODUCTS. Should Your Practice Dispense Wound Care Supplies? Pros:

Smart Solutions for Serious Wounds. An advanced bilayer dermal regeneration matrix FDA approved for the treatment of diabetic foot ulcers.

WOUND CARE UPDATE. -Commonly Used Skin Substitute Products For Wound. -Total Contact Casting. Jack W. Hutter DPM, FACFAS, C. ped.

Appropriate Dressing Selection For Treating Wounds

Interesting Case Series. Skin Grafting in Pyoderma Gangrenosum

Mean percent reduction in ulcer area from baseline at six weeks 62 % SANTYL Ointment + supportive care* + sharp debridement 1 (P<0.

8/20/12. Discuss the importance of thermoregulation in the neonate.

1/3/2008. Karen Burke Priscilla LeMone Elaine Mohn-Brown. Medical-Surgical Nursing Care, 2e Karen Burke, Priscilla LeMone, and Elaine Mohn-Brown

NURSING PRACTICE GUIDELINES

Adjunctive Therapies: The Use of Skin Substitutes and Growth Factors in Venous Leg Ulceration (VLU)

Understanding and Managing

DEBRIDEMENT. Professor Donald G. MacLellan Executive Director Health Education & Management Innovations

-> Education -> Excellence

IV Fluids Nursing B23 Objectives Serum Osmolality 275 to 295 Isotonic

Application Guide for Full-Thickness Wounds

Norepinephrine (Levophed )

Wound Management. E. Foy White-Chu, MD, CWSP

Consider the possibility of pressure ulcer development

Veins that are firm to

Assessment & Management of Wounds in primary practice.

CASE 1: TYPE-II DIABETIC FOOT ULCER

Treatment for diltiazem extravasation

Patient Care Information

Chapter 16 IV Flow Rates. Name three reasons why you think a person may need fluid replacement, IV fluids.

Successful IV Starts Revised February 2014

A Pilot Study of Oxygen Therapy for Acute Leg Ulcers

The Proven Multifunctional Dressing

Exudate in the early stages of wound healing

INTRODUCTION TO WOUND DRESSINGS

Chapter 64 Administration of Injectable Medications

Skin Integrity and Wound Care

Regenerative Tissue Matrix in Treatment of Wounds

For the use of only Oncologist or a Cancer Hospital or a laboratory Doxorubicin Hydrochloride Liposome Injection 2 mg/ml KEMODOXA

VACUUM ASSISTED CLOSURE (V.A.C.) THERAPY: Mr. Ismazizi Zaharudin Jabatan pembedahan Am Hospital Kuala Lumpur

IV Fluids. Nursing B23. Objectives. Serum Osmolality

Titrating Critical Care Medications

Evaluation of the Use of a Silver Collagen Amorphous Gel in the Healing of Post Surgical and Dehisced Lesions

Clinical. Summaries. 3M Tegaderm Matrix Matrix Dressing. Delayed wound healing: A major clinical problem

IV Drug Delivery Systems used in Cancer Care

ULCERS 1/12/ million diabetics in the US (2012) Reamputation Rate 26.7% at 1 year 48.3% at 3 years 60.7% at 5 years

HEAT STROKE. Lindsay VaughLindsay Vaughn, DVM, DACVECCDVM, DACVECC

ANNA DROSOU, M.D. Pearland Dermatology Shadow Creek Parkway, Suite 340 Tel: Fax:

Your guide to wound debridement and assessment. Michelle Greenwood. Lorraine Grothier. Lead Nurse, Tissue Viability, Walsall Healthcare NHS Trust

Intravenous Infusions

Safety of Peripheral Intravenous Administration of Vasoactive Medication

Multi-Center Clinical Results with PluroGel PSSD in Chronic Wounds

Vascular Disorders of the Hand Self-Assessment. Hand Vascular Disorders

The VERSAJET II Hydrosurgery System

The High-Flow Port Designed & Indicated for Apheresis

Wound Care in the Community. Lisa Sutherland MSc Tissue Viability Senior Lead Ipswich Hospital & Community NHS Trusts

Injection Techniques Principles and Practice. Introduction. Learning Objectives 5/18/2015. Richard E. Castillo, OD, DO

Taking the shock factor out of shock

CARE OF THE NEONATE: ITS ALL ABOUT THE SKIN. Katherine Kunkel, MSN, RNC-NIC, WCC

The Power of a Hydroconductive Wound Dressing with LevaFiber Technology

Case study: A targeted approach to healing complex wounds using the geko device.

Appropriate use of silver dressings

Original Article Tissue engineered skin for diabetic foot ulcers: a meta-analysis

3M Tegaderm Matrix Matrix Dressing. Matrix. Your questions answered

5 Million neonatal deaths each year worldwide. 20% caused by neonatal asphyxia. Improvement of the outcome of 1 million newborns every year

The Reverse Galeal Hinge Flap: Another Valuable Technique in the Repair of Scalp

Photo Diagnosis. Case 1 The upper lip of this three-year-old boy became swollen and itchy an hour after he had ingested some peanuts.

SAMPLE. HLTEN406A Undertake basic wound care. Learner resource. HLT07 Health Training Package. Version 2

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function

Pediatric Sepsis Treatment:

Management of Complex Wounds with Vacuum Assisted Closure

Advancing Lives and the Delivery of Health Care. The High-Flow Port Designed for Apheresis

PACKAGE INSERT CALCIUM GLUCONATE INJECTION, USP 10% Electrolyte Replenisher mosmol/ml 680 mosmol/l Ca meq/ml ph

- Conclusion: This study confirmed the very good acceptability and efficacy of Urgotul in the treatment of skin lesions in patients with EB.

Understanding the pediatric patient and basics of pediatric emergencies. Dr. Alenka Hrovat Vernik DrVetMed PhD MRCVS

PEDIATRIC SKILLED NURSING POLICY AND PROCEDURE MANUAL. Sample Home Health Agency

Extravasation guidelines Implementation Toolkit

Carboplatin / Liposomal Doxorubicin CARBO/CAELYX Gynaecological Cancer

MORPHINE ADMINISTRATION

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital

Integra. Tissue Technologies. Limit uncertainty with a leader in collagen technology

Sarah Medrano, RN, BSN, WOCN; and Mary Jo Beneke, RN, BS, CWOCN Yuma Regional Medical Center, Yuma, Arizona

Use of an Acellular Regenerative Tissue Matrix Over Chronic Wounds

PFIZER INC. PROPRIETARY DRUG NAME /GENERIC DRUG NAME: Cerebyx / Fosphenytoin Sodium

Acute and Chronic WOUND ASSESSMENT. Wound Assessment OBJECTIVES ITEMS TO CONSIDER

Thermal Dermal Burn Modeling in Rats and Minipigs

Alternative Pharmacological Management of Vasopressor Extravasation in the Absence of Phentolamine

CASE REPORT Use of a Hydroconductive Dressing to Treat a Traumatic Avulsive Injury of the Face

Topical antimicrobials (antiseptics) Iodine, Silver, Honey

SOUTHERN WEST MIDLANDS NEWBORN NETWORK

YUJI YAMAGUCHI Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences

Chapter 23 Caring for Clients with Burns

Medical APMLE. Podiatry and Medical.

Transcription:

The Management of Intravenous Infiltration Injuries in Infants and Children Terry Treadwell, MD, FCS bstract The intravenous administration of fluids and medications is critical for the treatment of seriously ill patients. Unfortunately, especially in infants and children, fluid infiltration into the surrounding tissue can occur. Early recognition and prompt treatment usually limits the extent of tissue damage. Early treatment may include the injection or application of medication (eg, hyaluronidase, phentolamine, or nitroglycerin ointment) and appropriate dressings. Research to guide the care of more extensive extravasation injury remains limited. t the author s institution, the protocol of care for children and infants with extensive tissue damage and necrotic tissue consists of careful debridement followed by the use of oxidized regenerative cellulose (ORC)/collagen dressings and skin replacement if needed. Research to help clinicians develop evidence-based protocols of care for both minor and more severe intravenous fluid infiltration or extravasation injury is needed. Keywords: IV infiltration, infants, children, wounds, extravasation Index: Ostomy Wound Management 2012;58(7):40 44 Potential Conflicts of Interest: none disclosed The intravenous route of administering blood, fluid, and medications to patients is a relatively recent phenomenon that provides rapid effect of the fluid or medication without the problems of absorption from the gastrointestinal tract and the uncertainty of giving medication via the intramuscular route. 1 The first recorded intravenous administration of blood to man was done by Jean-aptiste Denis on June 15, 1667. 2,3 Due to political issues and the fact that the different blood types and anticoagulation were not well understood, the transfusion of blood did not become acceptable until the early 20th century. The first intravenous administration of saline was performed in the 1830s, but it did not become common practice until the early 1900s. 4 Not until medication was sufficiently pure was intravenous administration considered reasonable. 1 Unfortunately, complications soon followed; most were found to be related to delivery of the fluid and/or medication into the subcutaneous tissues instead of the vein. Over a 5-year period at the author s institution, intravenous infiltration injuries were found to have occurred in 10% to 30% of pediatric patients receiving intravenous infusions; 55% of the injuries occurred in neonates (see Figure 1). 5 The high incidence of these injuries in young patients stimulated a review of these cases and resulted in the development of a treatment protocol now in use. Risk Factors Case studies 6,7 have shown several factors are important in the potential development of an intravenous infusion injury. The younger the patient, the more likely the injury is to occur; the smaller catheter size used for the infusion (the larger the gauge of the catheter) and the use of butterfly catheters (needles) are associated with a greater chance of extravasation of fluid and medication. ccording to several case studies, 5,6,8 children and neonates with darker skin are more likely to suffer from extravasation because of the difficulty visualizing the very small veins in this population. In addition, injury from extravasation of fluids and medications is directly related to the medication and/or fluid administered (see Table 1). lso, hyperosmolar fluids and fluids containing electrolytes are likely to cause tissue damage when leaked into the tissues, as are many antibiotics and chemotherapeutic agents. 5,6,9 s expected, vasopressors (common intravenous medications in these very young and very fragile patients) are caustic to the tissues when leaked out of the vein. 8 Treatment Considerations Early recognition. Obviously, early recognition to minimize fluid and/or medication volume deposited into the subcutaneous tissues is important to minimize the tissue damage. Routine evaluation of the catheter insertion site is Dr. Treadwell is Medical Director, Institute for dvanced Wound Care, aptist Medical Center, Montgomery, L. Please address correspondence to: Terry Treadwell, MD, FCS, Institute for dvanced Wound Care, aptist Medical Center, 2167 Normandie Drive, Montgomery, L 36111; email: tatread@aol.com. 40 ostomy wound management july 2012 www.o-wm.com

Intravenous infiltration injuries Table 1. Medications and fluids likely to cause tissue damage following extravasation 5,6,8 ll intravenously administered medications and fluids Hyperosmolar solutions (total parenteral nutrition solutions, hypertonic glucose, hypertonic saline) lood Electrolytes (calcium, potassium) Vasopressors (dopamine, dobutamine, norepinephrine, epinephrine) Mannitol Digoxin ll antibiotics (especially tetracyclines, penicillin, vancomycin) minophylline Phenytoin ll sedative-type medications (sodiumthiopental, diazepam, chlordiazepoxide) ll chemotherapeutic agents Figure 1. Intravenous infiltration injuries in infants.. Intravenous infiltration of saline on the scalp; Intravenous infiltration of dopamine infusion. Figure 2. Intravenous infiltration injury treated with collagenase applied once daily for 4 weeks;. efore treatment;. fter 4 weeks of treatment with collagenase. Ostomy Wound Management 2012;58(7):40 44 Key Points Infiltration of vesicant or nonvesicant intravenous solution or medication into the surrounding tissue is a potentially serious complication of intravenous therapy. Patients at both ends of the age continuum are at highest risk for this injury. Prevention, early recognition, and prompt treatment usually limits tissue damage, and these wounds will heal in a timely fashion. The author describes a protocol of care developed to address this complication. critical for the early recognition of the problem. Once the problem is noted, the infusion should be discontinued immediately and moved to another site if needed. If the catheter is still in the subcutaneous tissues, the author recommends aspirating through the catheter to remove as much residual fluid as possible. The catheter then is removed. Elevation. Elevating the limb can result in more extensive spreading of the toxic material through the tissue and is not recommended. 8 lthough this approach goes against current thinking, the author has observed less tissue damage. Temperature. Case studies 7 have shown the use of warm or cold compresses to be controversial. The conventional idea is that warm compresses cause vasodilatation in the tissues, increasing the blood flow and thus resulting in faster removal of the toxic material. Heat actually may cause more injury to the damaged tissues by increasing the tissue demands for oxygen. Heat is beneficial only for the treatment of extravasation of hypertonic saline solutions. Cold www.o-wm.com july 2012 ostomy wound management 41

Figure 3. Treatment of intravenous infiltration injury with ORC/collagen.. efore therapy in 26-week gestation baby at 1 day of age;. fter 2 weeks of therapy with ORC/collagen. Table 3. Injuries best treated with phentolamine or nitroglycerin ointment 11 Dopamine Dobutamine Epinephrine Norepinephrine Table 2. Injuries best treated with hyaluronidase 11 TPN solutions of all types Electrolyte infusions ntibiotics minophylline Manitol Chemotherapeutic agents including vinca alkaloids compresses often are thought beneficial by causing vasoconstriction and preventing the spread of the toxic material. However, the vasoconstrictive effect of cold causes the tissue to become ischemic and makes most infusion injuries worse. 10 Medications. ccording to a review of the literature, 11 certain medications have been found beneficial in extravasation injuries. 11 One is hyaluronidase, an enzyme that allows the infiltrated fluid to diffuse through the tissues. Its effects last 24 to 48 hours. The medication should be diluted to 15 units/ml; 1 ml is injected into the tissues either through the catheter, if still present, or subcutaneously. It is most effective if used within the first 2 hours post-infiltration, but has been found beneficial if given up to 12 hours after infiltration. 7,11 The injuries that respond well to hyaluronidase are listed in Table 2. Phentolamine is beneficial for use following infiltration of medications causing vasoconstriction. 11 This vasodilator improves blood flow to the area to facilitate removal of the toxic medication and to protect the damaged tissue. The dose is 0.1 to 0.2 mg/kg to a maximum of 10 mg given through the catheter or subcutaneously. It is effective up to 12 hours after the infiltration. 7,10 It should not be given to premature infants, and all patients should be monitored for hypotension and tachycardia. 10 The injuries best treated with phentolamine are listed in Table 3. Nitroglycerin also has been found to be beneficial following infiltration of medications causing vasoconstriction. 11 It also causes vasodilatation of local vessels, improving blood flow to the area and facilitating removal of the toxic medication and increasing the blood flow to the injured tissues. Only small amounts should be used, and care should be taken because of the possibility of hypotension and tachycardia. 5 The injuries best treated with nitroglycerin ointment are listed in Table 4. Dressings. The area of injury should be protected with a nonadherent dressing and followed closely. Many of these injuries will be self-limited and resolve with no further treatment. Debridement. Tissue necrosis can occur as a result of the tissue damage; in such cases, the author recommends using the enzymatic debriding agent collagenase to remove the eschar. In vivo research 12, and a review of the literature 13 have shown that collagenase does not damage normal tissue, making it a good treatment choice. lthough experience using this product in this age group is limited, the author has found it to be a useful and safe alternative for these patients (see Figure 2). In the author s experience, aggressive sharp debridement in these very small and delicate patients can result in more tissue damage. However, as the eschar loosens, sharp debridement can be used to completely remove only the necrotic tissue. If a significant amount of tissue has been lost, a practitioner familiar with children and neonates should be consulted for sharp debridement. Following removal of the eschar in wounds not requiring skin replacement, case studies 14 suggest the use of an oxidized regenerated cellulose (ORC)/collagen product can be beneficial. ORC/collagen is composed of 55% type 1 bovine collagen and 44% ORC. The collagen component has been shown in vitro 15 to provide structural support for cellular and capillary ingrowth and is capable of reducing proinflammatory cytokines and mediators and proteases. The product dissolves into the wound bed within 2 to 3 days, making the dressing changes easy and comfortable for these fragile patients (see Figure 3). Other collagen dressings and nonadherent dressings can be considered. 42 ostomy wound management july 2012 www.o-wm.com

Intravenous infiltration injuries C D Figure 4. Treatment of intravenous infiltration injury with bilayered tissue-engineered skin.. Injury due to dopamine infiltration: before debridement;. Post debridement; C. pplication of bilayered, tissue-engineered skin; D. Healed 3 weeks post-application of bilayered, tissue-engineered skin. Silver-containing dressings should be used with great care in children and neonates; while dressings releasing very low levels of silver have been found in pediatric case studies to be well-tolerated and not damage the cells in the wound bed, toxicity of silver dressings, a growing concern in children, has resulted in systemic serum levels 800 times normal 18,19 and their use should be avoided. Skin replacement. If the tissue defects are large, closure may be difficult and require skin replacement. Skin grafting in very young children is fraught with hazard and produces another wound just as difficult to close as the original lesion. The author and other clinicians have found that the use of cell-containing tissue-engineered skin products that have been approved for use in chronic wounds can have a great benefit in these patients. 20-23 (lthough these products are only approved for use with diabetic foot ulcers, pligraf [Organogenesis, Inc, Canton, M] has approval for humanitarian use in infants and children with epidemolysis bullosa.) These products are designed to provide healthy cells to the wound bed to stimulate and accelerate healing (see Figure 4). Conclusion Extravasation injury from intravenous fluid is a potentially serious complication in infants and children. When prevention efforts fail, early recognition and appropriate treatment are essential to minimize the extent of the injury. Most injuries will heal spontaneously without complications. Per opinion and research, 10 having a clinical practice guideline in place before injuries occur is critical to encourage early recognition and immediate and informed treatment. The guideline used by the Institute for dvanced Wound Care at aptist Medical Center, Montgomery, L, (see Table 4) has worked well in the author s center; use by others is pending. Fortunately, technology has provided treatment options for the patients with significant injuries that have been useful in the author s clinical practice. dditional work will be required to accomplish earlier recognition of these injuries, if possible, and continued research with various wound dressings will be required to find the optimal treatment of wounds in this age group. n References 1. Treadwell T. Intramuscular injection site injuries masquerading as pressure ulcers. WOUNDS. 2003;15(9):302 312. 2. rown H. Jean Denis and the Transfusion of lood, Paris, 1667-1668. Isis rown Harcourt;1947;39z;15 29. 3. Tucker H. lood Work: Tale of Medicine and Murder in the Scientific Revolution. New York, NY: W.W. Norton and Co;2011:233. 4. Weatherhill T. Case of malignant cholera in which four hundred and eighty ounces of fluid were injected into the veins with success. Lancet. 1832;18(470):688 5. Treadwell T, Fuentes ML, Walker D, Mara L. The pproach to Injuries Due to Extravasation of Intravenous Medications and Fluids. Poster presented at the Symposium on dvanced Wound Care. Dallas, TX. pril 2009. 6. Thomas D, Rowe HN, Keats J, Morgan RJH. The Management of Extravastion Injury in Neonates. vailable at: www.worldwidewounds. com/1997/october/neonates/neonatepaper.html. ccessed June 11, 2012. 7. Hastings-Tolsma MT, Yucha C, Tompkins J, Robson L, Szevereny N. Effect of warm and cold applications on the resolution of IV infiltrations. Res Nurs Health. 1993;16:171 178. 8. Yucha C, Hastings-Tolsma M, Szeverenyi NM. Effect of elevation on intravenous extravasations. J Intraven Nurs. 1994;17:231 234. 9. Larson DL. What is the appropriate management of tissue extravasation by antitumor agents? Plast Reconstr Surg. 1985;75:397 405. 10. Montgomery L, udreau GK. Implementing a clinical practice guideline to improve pediatric intravenous infiltration outcomes. CN Clin www.o-wm.com july 2012 ostomy wound management 43

Table 4. Institute for dvanced Wound Care Guidelines for the Treatment of Intravenous Extravasation Injuries 5 Discontinue the infusion If catheter is out of the vein, aspirate to remove as much residual fluid as possible Remove catheter Elevation of limb is not needed Use of warm or cold compresses controversial a. Only benefit of warm compress is on hypertonic saline infiltration b. Heat may cause further damage with chemotherapy infiltration c. Vinca alkaloid infiltration made worse by cold compresses Consider infiltration of medications to relieve tissue damage a. Hyaluronidase is an enzyme that temporarily decreases viscosity of the ground substance and allows the infiltrated fluid to diffuse through the tissues. The increased permeability is transient lasting only 24 to 48 hours. Dilute to 15 units/ ml, then inject 1 ml into tissues either through the catheter, if still present, or subcutaneously. It is most effective if used with the first 2 hours post infiltration but is still beneficial if given up to 12 hours after infiltration b. Phentolamine for use following infiltration of vasoconstrictor products. It is a vasodilator that inhibits vasoconstriction caused by the infiltrate and improves blood flow to the area. vailable in 5 mg/1 ml vials and should be diluted to 5 to 10 ml. The dose is 0.1 0.2 mg/kg to a maximum of 10 mg given through the catheter or subcutaneously. It is effective up to 12 hours after the infiltration. It should not be given to premature infants, and all patients should be monitored for hypotension and tachycardia c. Nitroglycerin ointment for use following infiltration of vasoconstrictor products. It is absorbed through the skin and causes vasodilatation of local vessels improving blood flow to the area. Care should be taken in its use because its absorption can result in systemic effects, including hypotension and tachycardia. The amount of nitroglycerin ointment required to cause a systemic effect varies from patient to patient, so great care should be taken in its use, especially in unstable patients. Cover the injured area with a protective dressing and change daily noting any changes in the tissue If necrosis of the skin at the infiltration site occurs, apply a small amount of collagenase to the area (enough to cover the eschar with a thin coat) and cover with a moist dressing. Change the dressing twice daily Consult physician for decision about sharp debridement of necrotic tissue Following debridement or enzymatic removal of the necrotic tissue, moist wound care with collagenase, ORC/collagen products, nonadherent dressing, or similar dressings should be continued. The wound should be monitored on a regular basis to evaluate for healing, worsening, or infection dditional wound treatment and coverage will be determined by the consulting physician Issues. 1996;7:411 424. 11. Wright. Reducing infusion failure a pharmacologic approach. review. J Intravenous Nurs. 1996;19:89 97. 12. Riley KN, Herman IM. Collagenase promotes the cellular responses to injury and wound healing in vivo. J urns Wounds. 2005;4(8):141 157. 13. Falanga V. Wound bed preparation and the role of enzymes: a case for multiple actions of therapeutic agents. WOUNDS. 2007;14(2):47 57. 14. Treadwell T, Walker D, Mara L. The Treatment of Extravasation of Intravenous Medications and Fluids in Neonates and Children with ORC/Collagen/Silver (Prisma ). Poster presented at the First International Symposium on Pediatric Wound Care. Rome, Italy. October 2011. 15. Gregory SJ, oothman S, Cullen M. Effect of ORC/Collagen Matrix Containing Silver on Inflammatory Mediators Elevated in Response to acterial Endotoxins. bstract presented at 15th nnual Meeting of the European Tissue Repair Society, Stuttgart, Germany, September 14-17, 2005. (Published in Wound Rep Reg. 2006;14:17) 16. Poon VK, urd. In vitro cytotoxicity of silver: implication for clinical wound care. urns. 2004;30:140 147. 17. Treadwell T, Fuentes ML, Walker D. Treatment of second-degree burns with dehydrated, decellularized amniotic membrane (iovance) versus a silver dressing (cticoat). Wound Rep Reg. 2008;16:39. 18. Denyer J. Safe Topical ntimicrobial Use in Paediatric Wounds. Oral presentation at the First International Symposium on Pediatric Wound Care. Rome, Italy. October 28, 2011. 19. Denyer J. Infection management: antimicrobial management for children with epidermolysis bullosa. rit J Nurs. 2012;3(suppl):8 10. 20. Treadwell T, Walker D, Dixon M, Nicholson. The Use of i-layered Tissue Engineered Skin in the Treatment of Infants and Children, Oral and Poster Presentation at the First International Symposium on Pediatric Wound Care. Rome, Italy. October 2011. 21. Charles C, Kato T, Tzakis G, Miller N, Kirsner RS. Use of a living dermal equivalent for a refractory abdominal defect after pediatric multivisceral transplantation. Dermatol Surg. 2004;30:1236 1240. 22. Drosou, Kirsner RS, Kato T, Mittal N, l-niami, Miller, Tzakis G. Use of a bioengineered skin equivalent for the management of difficult skin defects after pediatric multivisceral transplantation. J m cad Dermatol. 2005;52:854 858. 23. Falabella F, Schachner LS, Valencia IC, Eaglstein WH. The use of tissue-engineered skin (pligraf) to treat a newborn with epidermolysis bullosa. rch Dermatol. 1999;135:1219 1222. 44 ostomy wound management july 2012 www.o-wm.com