Seizures in palliative care

Similar documents
In our patients the cause of seizures can be broadly divided into structural and systemic causes.

Neuromuscular Disease(2) Epilepsy. Department of Pediatrics Soochow University Affiliated Children s Hospital

Anticonvulsants Antiseizure

Images have been removed from the PowerPoint slides in this handout due to copyright restrictions.

On completion of this chapter you should be able to: list the most common types of childhood epilepsies and their symptoms

1/31/2009. Paroxysmal, uncontrolled electrical discharge of neurons in brain interrupting normal function

Epilepsy CASE 1 Localization Differential Diagnosis

Epilepsy and Epileptic Seizures

Measures have been taken, by the Utah Department of Health, Bureau of Health Promotions, to ensure no conflict of interest in this activity

4. GUIDELINES FOR THE USE OF ANTI- EPILEPTICS IN PALLIATIVE CARE

Epilepsy 7/28/09! Definitions. Classification of epilepsy. Epidemiology of Seizures and Epilepsy. International classification of epilepsies

Introduction. 1 person in 20 will have an epileptic seizure at some time in their life

CrackCast Episode 18 Seizures

Antiepileptics Audit

Prescribing and Monitoring Anti-Epileptic Drugs

Status Epilepticus in Children

Review of Anticonvulsant Medications: Traditional and Alternative Uses. Andrea Michel, PharmD, CACP

1. GUIDELINES FOR THE MANAGEMENT OF AGITATION IN ADVANCED CANCER

There are several types of epilepsy. Each of them have different causes, symptoms and treatment.

Is it epilepsy? Does the patient need long-term therapy?

Objectives / Learning Targets: The learner who successfully completes this lesson will be able to demonstrate understanding of the following concepts:

Dr. Dafalla Ahmed Babiker Jazan University

Talk outline. Some definitions. Emergency epilepsy now what? Recognising seizure types. Dr Richard Perry. Management of status epilepticus

Chapter 15. Media Directory. Convulsion. Seizures. Epilepsy. Known Causes of Seizures. Drugs for Seizures

Antiepileptic agents

Ernie Somerville Prince of Wales Hospital EPILEPSY

Antiepileptics Audit

Objectives. Amanda Diamond, MD

CANINE EPILEPSY. Types of epilepsy: Types of seizures:

SEIZURES PHARMACOLOGY. University of Hawai i Hilo Pre-Nursing Program NURS 203 General Pharmacology Danita Narciso Pharm D

Unit VIII Problem 7 Pharmacology: Principles of Management of Seizure Disorders

Chapter 1 Introduction

Symptoms and problems in the End of Life Phase of High Grade Glioma Patients

ESETT OUTCOMES. Investigator Kick-off Meeting Robert Silbergleit, MD

11/1/2018 STATUS EPILEPTICUS DISCLOSURE SPEAKER FOR SUNOVION AND UCB PHARMACEUTICALS. November is National Epilepsy Awareness Month

Epilepsy the Essentials

Chapter 15. Seizures. Learning Objectives. Learning Objectives 9/11/2012

WHOLE LOTTA SHAKIN GOIN ON

Types of epilepsy. 1)Generalized type: seizure activity involve the whole brain, it is divided into:

Index. Note: Page numbers of article titles are in boldface type.

APPENDIX K Pharmacological Management

Status Epilepticus: Implications Outside the Neuro-ICU

Child-Youth Epilepsy Overview, epidemiology, terminology. Glen Fenton, MD Professor, Child Neurology and Epilepsy University of New Mexico

NonConvulsive Seizure

Epilepsy: diagnosis and treatment. Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM

David Dredge, MD MGH Child Neurology CME Course September 9, 2017

Delirium. Assessment and Management

Outline. What is a seizure? What is epilepsy? Updates in Seizure Management Terminology, Triage & Treatment

2016 Treatment Algorithm for Generalized Convulsive Status Epilepticus (SE) in adults and children > 40 kg

Status Epilepticus. Ednea Simon, MD Swedish Pediatric Neuroscience Center

Anticonvulsant or Antiepileptic Drugs. Munir Gharaibeh, MD, PhD, MHPE School of Medicine, The University of Jordan March, 2018

Discerning Seizures and Understanding VNS Therapy Delia Nickolaus, CPNP-PC/AC

Refractory Status Epilepticus in Children: What are the Options?

The fitting child. Dr Chris Bird MRCPCH DTMH, Locum consultant, Paediatric Emergency Medicine

Introduction to seizure and epilepsy

DIAH MUSTIKA HW SpS,KIC Intensive Care Unit of Emergency Department Naval Hospital dr RAMELAN, Surabaya

Epilepsy T.I.A. Cataplexy. Nonepileptic seizure. syncope. Dystonia. Epilepsy & other attack disorders Overview

Phenytoin, Levetiracetam, and Pregabalin in the Acute Management of Refractory Status Epilepticus in Patients with Brain Tumors

Use of Subcutaneous Levetiracetam at the end of life:

Electroencephalography. Role of EEG in NCSE. Continuous EEG in ICU 25/05/59. EEG pattern in status epilepticus

FEBRILE SEIZURES. IAP UG Teaching slides

EPILEPSY: SPECTRUM OF CHANGE WITH AGE. Gail D. Anderson, Ph.D.

SEIZURE IN CHILDREN. IAP UG Teaching slides

Buspirone Carbamazepine Diazepam Disulfiram Ethosuximide Flumazeil Gabapentin Lamotrigine

Neurology Clerkship Learning Objectives

Management of Seizures at the End of Life A new way forward?

Chapter 24 Antiseizures

Pediatrics. Convulsive Disorders in Childhood

A Neurologist s Approach to Altered Mental Status

Jeffrey W Boyle, MD, PhD Avera Medical Group Neurology Sioux Falls, SD

Status Epilepticus in Children. Azhar Daoud Professor of Child Neurology Jordan Univ of science and Tech

*Pathophysiology of. Epilepsy

Use of Subcutaneous Levetiracetam at the end of life:

Management of the Fitting Child. Dr Mergan Naidoo

NEUROPATHIC CANCER PAIN STANDARDS AND GUIDELINES

New antiepileptic drugs

Neurological Emergencies. Aaron J. Katz, AEMT-P, CIC

Lieven Lagae Department of Paediatric Neurology Leuven University Leuven, Belgium. Management of acute seizure settings from infancy to adolescence

Use of Subcutaneous Levetiracetam at the end of life:

Seizures explained. What is a seizure? Triggers for seizures

EPILEPSY DIAGNOSIS. Investigations- EEG, MRI, CT, blood tests. Appendix 1 contains a guide to questions to help with diagnosis

7/31/09. New AEDs. AEDs. Dr. Yotin Chinvarun M.D. Ph.D. Comprehensive Epilepsy and Sleep disorder Program PMK hospital. 1 st genera*on AEDs

Anticonvulsant or Antiepileptic Drugs

The Fitting Child. A/Prof Alex Tang

survey Parenteral anti-epileptics What is your experience? May July 2015

CHAIR SUMMIT 7TH ANNUAL #CHAIR2014. Master Class for Neuroscience Professional Development. September 11 13, Westin Tampa Harbour Island

Neonatal Seizure. Dr.Nawar Yahya. Presented by: Sarah Khalil Zeina Shamil Zainab Waleed Zainab Qahtan. Supervised by:

Anti-epileptic Drugs

Index. Note: Page numbers of article titles are in boldface type.

Disclosure. Learning Objectives

SAGE-547 for super-refractory status epilepticus

A. Incorrect! Seizures are not typically linked to alcohol use. B. Incorrect! Epilepsy is a seizure that is commonly associated with convulsions.

Delirium. A Geriatric Syndrome. Jonathan McCaleb, MD, CMD, HMDC UNSOM, Assistant Professor of Medicine Geriatrics / Hospice & Palliative Medicine

Management of acute seizure and status epilepticus. Apisit Boongird, MD Division of Neurology Ramathibodi hospital

Management of acute seizure and status epilepticus

Management of Epilepsy in Primary Care and the Community. Carrie Burke, Epilepsy Specialist Nurse

Case 1: Issues in this case. Generalized Seizures. Seizure Rounds with S.Khoshbin M.D. Disclosures: NONE

Can t Stop the Seizing!

Epilepsy / Seizures EPI

TRANSPARENCY COMMITTEE OPINION. 19 July 2006

Transcription:

Seizures in palliative care Golda Tradounsky MD CCFP Mr J.K. is a 65-year-old man who has stage IV non small cell lung cancer with recently diagnosed brain metastases. A month ago, he was treated with whole-brain radiotherapy. He takes a low dose of dexamethasone daily (4 mg), from which he is being weaned after irradiation. Today Mr J.K. consults his physician because last night his wife witnessed him have tonic-clonic movements in his left arm, which lasted 3 minutes. Seizures in the palliative care context can occur in about 13% of cases. 1,2 About 25% to 50% of palliative patients who develop seizure activity have brain metastases. 2,3 Of patients with primary brain tumours, 20% to 45% will present at diagnosis with convulsions 3 and more will develop seizures as their cancer progresses. It is interesting to note that slow-growing primary brain cancers such as oligodendroglioma and low-grade astrocytoma tend to present more often with seizures, with a prevalence of 70% to 100%, unlike the more aggressive glioblastoma, with a prevalence of 10% to 20%. 3,4 It was also noticed that being female could double the risk of developing seizures, 4 and that children with cancer have a higher incidence of seizure activity 2 than adults with cancer do. Seizures can be caused by structural damage to the brain or by a systemic insult to the brain. Structural damage can be due to primary tumours, metastases, abscesses, Table 1. Classification of seizure type Seizure characteristics types Partial or focal seizures Generalized (with loss of consciousness) Data from Caraceni et al. 5 Simple: without loss of consciousness or Complex: with loss of consciousness Primary or secondary (following partial seizure) With or without aura Motor Sensory Autonomic Affective Nonconvulsive: Absence or petit mal Convulsive: Grand mal or tonic-clonic Clonic (upper limb, neck, and face contractions) Myoclonic (limbs) Tonic (generalized rigidity and falls) Atonic (sudden loss of muscle tone) reversible posterior leukoencephalopathy syndrome, paraneoplastic limbic encephalitis, hemorrhage, or radiation necrosis. Systemic causes include hypoxia, hypoglycemia, hyperglycemia, hyponatremia (eg, in the syndrome of inappropriate antidiuretic hormone secretion), hypernatremia, low levels of magnesium, hypocalcemia, hypercalcemia, uremia, and hepatic failure, as well as various medications, such as ondansetron, antipsychotics, and chemotherapeutic agents, 1,2 either through their proconvulsant effect or by lowering the seizure threshold. Seizures are classified according to their level of origin in the brain. Table 1 5 shows the nomenclature of seizures. An altered state of consciousness can present as a loss of contact with the surroundings or purposeless and automatic behaviour such as snapping fingers, smacking lips, and undressing. Any time a seizure is accompanied by a loss of consciousness, there will follow a postictal state, which might include somnolence, confusion, or a headache, and can last several hours. History and physical examination Mr J.K. does not relate any recent changes in his medications except for the decrease in dexamethasone during the past 2 weeks and the addition of hypoglycemic agents 3 weeks ago for the glucose intolerance he developed since taking the steroid. He has had a declining appetite during the past 14 days. He has been having some left-sided paresis, which preceded the diagnosis of the cerebral tumours, but it seems to have worsened since last night. This finding is confirmed on the physical examination. When a patient develops a seizure, a prompt history and physical examination are useful to determine the cause. A structural cause can be suspected if there was an aura before the seizure, if the seizure was focal, if there were versive eye movements during the seizure, or if the physical examination revealed focal neurologic findings. These latter neurologic findings might disappear within a few hours after the seizure event. A review of the patient s medications should be conducted; for example, determine whether the patient is taking drugs This article is eligible for Mainpro-M1 credits. To earn credits, go to www.cfp.ca and click on the Mainpro link. La traduction en français de cet article se trouve à www.cfp.ca dans la table des matières du numéro de septembre 2013 à la page e401. Vol 59: september septembre 2013 Canadian Family Physician Le Médecin de famille canadien 951

that can lower the seizure threshold, experiencing withdrawal from benzodiazepines or alcohol, or weaning from steroids, or has subtherapeutic levels of anticonvulsants. Rarely, a patient might develop severe opioid-induced neurotoxicity accompanied by convulsions. Investigations might be warranted; a complete blood count and a biochemical workup might reveal further potentially reversible anomalies. Cerebrospinal fluid can be cultured for infectious causes and be submitted for cytologic examination. 2 Radiologic investigations such as computed tomographic scan with contrast or preferably magnetic resonance imaging of the brain might reveal a previously unsuspected mass, leptomeningeal disease, progression of brain tumours, or an ischemic or hemorrhagic stroke. Some strokes are secondary to cancer complications or to its treatments (hypercoagulable or hypocoagulable states, tumour cell embolization, occlusion of cerebral arteries, etc). 1,2 An electroencephalogram is warranted if there is the suspicion of subtle seizure activity; however, normal electroencephalogram results will not completely exclude such a diagnosis. 1 Investigations might reveal more than 1 cause of seizures. 1 Prophylaxis Anticonvulsant prophylaxis is not recommended in patients with brain tumours, whether primary or metastatic, if the patient has never had any seizures. This is because of the relatively low risk of developing convulsions for most tumours, and the considerable potential burden of antiseizure side effects (drugdrug interactions, sedation, cognitive impairment, etc). However, brain metastases from melanoma, choriocarcinoma, renal cell carcinoma, thyroid papillary cancer, and cancer of the testis might be exceptions, as these cancers might have a higher risk of causing seizures owing to their increased risk of bleeding. 1,5 A small study by Forsyth et al 4 did not show any benefit of seizure prophylaxis, as patients still developed convulsions due to tumour progression or subtherapeutic levels of anticonvulsants on the same order as those patients not taking prophylaxis. Patients should take dexamethasone before, during, and immediately after cerebral radiotherapy to prevent the edema secondary to acute radiation toxicity, which could otherwise provoke seizures. 1 Treatment The treatment of seizures will vary according to the frequency of the convulsive episodes, the duration of each episode, and whether there is a reversible cause. Indeed, a first-time seizure with a reversible cause does not require long-term anticonvulsants. On the other hand, a first episode of seizure in a patient with a brain lesion should warrant the institution of long-term anticonvulsants. When this lesion is a known brain tumour (primary or metastatic) and no other reversible cause of seizure activity has been identified, the institution or increase in dosage of a steroid, such as dexamethasone, could be considered as the first-line treatment alongside long-term anticonvulsant treatment. 5,6 If the brain tumour, whether primary or secondary, can be excised surgically, then anticonvulsants might be weaned off after surgery. 5 If patients require long-term anticonvulsants but are candidates for further chemotherapy, then institution of antiseizure medications with little risk of interaction with the chemotherapeutic agents should be considered. These include levetiracetam, gabapentin, lamotrigine, topiramate, and pregabalin, as they do not induce cytochrome P450 activity. 2 Enzyme-inducing medications to avoid include phenytoin, phenobarbital, carbamazepine, oxcarbazepine, and topiramate. 2 Table 2 3,5 shows the anticonvulsants usually prescribed for partial and generalized seizures. Table 3 3,5 presents the starting doses, therapeutic doses, and side effects of these anticonvulsants. Moribund patients will need to have their usual anticonvulsants changed when the oral route is lost; then the choices are to give medications through sublingual (SL) administration, such as with lorazepam (0.5 to 1 mg every 8 hours); per rectum (PR) with diazepam (10 to 20 mg twice a day), carbamazepine, valproic acid, or phenobarbital (check dosing with a pharmacist) 3,7 ; or subcutaneous (SQ) administration with midazolam (30 to 60 mg per 24 hours in a continuous infusion), lorazepam (0.5 to 1 mg every 8 hours), or phenobarbital (200 to 600 mg per 24 hours in a continuous infusion or divided doses). Table 2. Recommended anticonvulsant according to seizure type Seizure type Partial (with or without secondary generalized seizure) Generalized Absence Myoclonic Tonic-clonic First-Line treatment Carbamazepine Phenytoin Oxcarbazepine (for secondary generalized seizure) Clonazepam Clonazepam Carbamazepine Phenytoin Data from Beaulieu and Nadeau, 3 and Caraceni et al. 5 Second-Line treatment Phenobarbital Clobazam (for simple partial seizures) Gabapentin Levetiracetam Clobazam Clobazam Phenobarbital Oxcarbazepine 952 Canadian Family Physician Le Médecin de famille canadien Vol 59: september septembre 2013

Table 3. Anticonvulsant doses and side effects Anticonvulsant Starting dose Usual effective dose Side effects Phenytoin NA 200-500 mg/d in single or divided doses Drug-drug interactions including dexamethasone, CNS (ataxia), liver, GI, dermatologic, hirsutism, anemia, osteoporosis Carbamazepine 200 mg/d; increase by 200 mg/wk 300-1600 mg/d in 3-4 divided doses or 2 divided doses if long-acting Drug-drug interactions, SIADH, CNS (sedation, vertigo, ataxia, diplopia), myelotoxicity 15 mg/kg daily; 250-500 mg/d, increased weekly by 250 mg/wk 1000-3000 mg/d, up to 60 mg/kg daily (check serum levels) in 3 divided doses or 2 divided doses if long-acting; decrease dose if hepatic failure occurs Oxcarbazepine 300-600 mg/d 900-2400 mg/d; decrease dose if renal failure occurs Phenobarbital NA 60-250 mg/d, maximum 600 mg/d (1-5 mg/kg in adults) in single or divided doses; decrease dose if renal or hepatic failure occur Gabapentin NA 300-3600 mg/d as monotherapy; up to 1800 mg/d as adjuvant therapy, in 3-4 divided doses; decrease dose if renal failure occurs 50 mg/d for 2 wk, then increase by 25-50 mg/wk 25 mg/d; increase by 25-50 mg/wk 100-500 mg/d in 2 divided doses; decrease dose if renal or hepatic failure occur 75-400 mg/d in 2 divided doses; decrease dose if renal failure occurs Levetiracetam 750-1000 mg/d 1000-3000 mg/d in 2 divided doses; decrease dose if renal failure occurs Clobazam 10 mg/d 10-30 mg/d, maximum 60-80 mg/d in 2 divided doses Drug-drug interactions, CNS (ataxia, tremors, sedation), weight gain, hair loss, GI, thrombocytopenia, liver toxicity Hyponatremia, dizziness, somnolence, nausea, ataxia, diplopia Drug-drug interactions, CNS depressor, respiratory depression, somnolence, rash Interaction with antacids; decrease in memory and concentration; somnolence, ataxia, dizziness, edema, weight gain Rash, especially if dose escalation is rapid Drug-drug interactions, somnolence, confusion, weight loss, metabolic acidosis, angle-closure glaucoma Anxiety, aggressivity, somnolence, asthenia, dizziness Same as for benzodiazepines; rash Clonazepam NA 1-6 mg/d in 2-3 divided doses Same as for benzodiazepines; paradoxical excitation CNS central nervous system, GI gastrointestinal, NA not applicable, SIADH syndrome of inappropriate antidiuretic hormone secretion. Data from Beaulieu and Nadeau, 3 and Caraceni et al. 5 Status epilepticus Status epilepticus has traditionally been defined as either seizure activity, convulsive or nonconvulsive, lasting longer than 30 minutes, or 3 episodes without return of consciousness within a 30-minute span. 5,6 It carries a mortality risk of 11% to 34%, 3 with acidosis, rhabdomyolysis, and cerebral damage as further complications. With a prolonged convulsive episode, neuronal injury will make pharmacoresistance more likely and anticonvulsants less effective. 5,8 Because the probability of spontaneous resolution of the seizure decreases with time, treatment of status epilepticus should be instituted when a convulsion lasts 5 minutes or more. The treatment might vary according to the patient s location: home care, hospice, or hospital. In hospital, intravenous (IV) access, blood pressure monitoring, and electrocardiogram can be the routine of the initial handling of status epilepticus. Patients should be positioned in such a way that they cannot hurt themselves; airways should be maintained; and supplemental oxygen should be provided as necessary. In a palliative care population, it is not always possible to obtain venous access and medications will be given by an alternate route, mostly by SQ, SL, intranasal, or PR administration. It is also not always indicated to have such aggressive monitoring, which might be the case on a palliative care unit or in home care. In all settings, lorazepam is the drug of choice, 7,9 for its speed of activity (3 minutes via IV administration 5 ), duration of effectiveness (8 to 24 hours 5 ), and ease of administration. Dosage recommendations vary, but a 2-mg dose can be given by IV, SQ, SL, or PR administration, 7 and repeated 10 minutes later if the seizure continues. Alternatively, administer 10 mg of Vol 59: september septembre 2013 Canadian Family Physician Le Médecin de famille canadien 953

diazepam PR or by IV and repeat every 5 minutes until it is effective a maximum total dose of 40 mg 3,7 could be used. Midazolam is also a very good alternative, 5 to 10 mg 3,7 either IV or SQ, and possibly by buccal or intranasal (0.2 mg/kg) 3 administration as some research seems to show. 9 Midazolam could be repeated every 15 minutes up to a total of 3 times. 3 At this step, some would suggest the simultaneous initiation of IV phenytoin. 3 Others would recommend phenytoin only if there is no response to the benzodiazepine. 5-7 The phenytoin dose is 15 to 20 mg/kg every 24 hours, at a rate not exceeding 50 mg per minute. 5-7 Another choice of anticonvulsant at this third step could be phenobarbital. Phenobarbital carries a risk of respiratory failure, especially after the use of benzodiazepines. 5,6 The phenobarbital dose is 10 to 15 mg/kg infused at a rate of 100 mg per minute, 7 for a maximum total dose of 1 g. Alternatively, 20 mg/kg of phenobarbital infused at a rate of 60 mg per minute has also been recommended. 5 Phenobarbital can also be given by SQ administration, 3 which makes it easier to use in a hospice or home-care setting. If the seizure is refractory, persisting despite the use of 2 or 3 different anticonvulsants, the recommendation is intubation and transfer to the intensive care unit for treatment with propofol or pentobarbital, 3,5,7,8 should the patient s prognosis and goals of care allow for aggressive treatment. A differential diagnosis of status epilepticus should include syncope, transient ischemic attacks, arrhythmia, Munchausen syndrome, and other psychiatric disturbances, parasomnias, and deliriums. 5 Another complicating factor for diagnosing status epilepticus is the existence of nonconvulsive partial complex status epilepticus. These seizures are more often secondary to metabolic disorders, presenting as confusion that might be continuous or recurring, with partial complex seizures and recovery of consciousness between episodes the entire status lasting 1 to 10 days. Nonconvulsive partial complex status epilepticus might resemble delirium with automatisms or psychotic behaviour or affective changes. Unlike convulsive status epilepticus, it does not lead to cerebral damage and therefore its treatment can be more progressive. 5 Conclusion Mr J.K. s management involves increasing his dexamethasone dose, the addition of 100 mg of phenytoin 3 times daily, as well as doing bloodwork. The results of Mr J.K. s bloodwork do not reveal any biochemical anomalies. A repeat computed tomographic scan of the brain shows increased edema and stable size of the metastases. He has no convulsions for the following 2 months. Mr J.K. develops progressive generalized weakness and is admitted to a hospice. One evening, he has a generalized tonic-clonic seizure, which lasts longer than 5 minutes. The nurse uses the convulsion protocol written by the admitting doctor: 10 mg of midazolam SQ and 1 mg of lorazepam SL, which are administered simultaneously within 10 minutes of the beginning of the seizure. Five minutes later, there is a decrease in the amplitude of the clonic movements, and within another 5 minutes the clonic movements cease altogether. Unfortunately, Mr J.K. never regains consciousness and dies the next morning, peacefully, with his family by his bedside. The presence of seizures can be traumatizing for the patient and the family. Seizures might signal the progression of underlying brain lesions; however, there might be other reversible causes. 10 Proper management must include reassurance and education of the patient and family, as well as prescriptions for the acute management of future episodes of seizures whether care is in the home or a palliative care unit. Most seizures can be controlled with prompt treatment with BOTTOM LINE Seizures might signal the progression of underlying brain lesions or, alternatively, be due to biochemical or drug imbalances. When a patient develops a seizure, a prompt history and physical examination are useful to determine the cause. The presence of seizures can be traumatizing for patients and their families. Proper management must include reassurance and education of patients and families, as well as prescriptions for the acute management of future episodes of seizures. Because the probability of spontaneous resolution of the seizure decreases with time, treatment of status epilepticus should be instituted when a convulsion lasts 5 minutes or more. Treatment might vary according to the patient s location of care. Most seizures can be controlled with prompt treatment with benzodiazepines, and although status epilepticus might be a terminal event, it can be made to be as peaceful as possible. Palliative Care Files is a quarterly series in Canadian Family Physician written by members of the Palliative Care Committee of the College of Family Physicians of Canada. The series explores common situations experienced by family physicians doing palliative care as part of their primary care practice. Please send any ideas for future articles to palliative_care@cfpc.ca. 954 Canadian Family Physician Le Médecin de famille canadien Vol 59: september septembre 2013

benzodiazepines, and although status epilepticus might be a terminal event, it can be made to be as peaceful as possible. Dr Tradounsky is a part-time faculty lecturer in the Department of Oncology, as well as Education Program Director of Palliative Medicine, at McGill University in Montreal, Que, and Head of Palliative Care Services at Mount Sinai Hospital Centre in Côte Saint-Luc, Que. Competing interests Dr Tradounsky is a member of a continuing education committee that is organizing a conference at McGill University, for which both Purdue and Paladin have given small, unrestricted grants. References 1. Grewal J, Grewal HK, Forman AD. Seizures and epilepsy in cancer: etiologies, evaluation, and management. Curr Oncol Rep 2008;10(1):63-71. 2. Singh G, Rees JH, Sander JW. Seizures and epilepsy in oncological practice: causes, course, mechanisms and treatment. J Neurol Neurosurg Psychiatry 2007;78(4):342-9. 3. Beaulieu I, Nadeau C. Myoclonies et convulsions. In: Beausoleil M, Association des pharmaciens des établissements de santé du Québec. Guide pratique des soins palliatifs: gestion de la douleur et autres symptômes. 4th ed. Montreal, QC: Association des pharmaciens des établissements de santé du Québec; 2008. p. 287-98. 4. Forsyth PA, Weaver S, Fulton D, Brasher PM, Sutherland G, Stewart D, et al. Prophylactic anticonvulsants in patients with brain tumour. Can J Neurol Sci 2003;30(2):106-12. 5. Caraceni A, Martini C, Simonetti F. Neurological problems in advanced cancer. In: Hanks G, Cherny NI, Christakis NA, Fallon M, Kaasa S, Portenoy RK, editors. Oxford textbook of palliative medicine. 4th ed. New York, NY: Oxford University Press; 2010. p. 1034-58. 6. Downing GM, Wainwright W, editors. Medical care of the dying. 4th ed. Victoria, BC: Victoria Hospice Society; 2006. 7. Twycross RG, Wilcock A, Stark Toller C. Symptom management in advanced cancer. Nottingham, UK: Palliativedrugs.com; 2009. 8. Brophy GM, Bell R, Claassen J, Alldredge B, Bleck TP, Glauser T, et al. Guidelines for the evaluation and management of status epilepticus. Neurocrit Care 2012;17(1):3-23. 9. Cloyd J. Pharmacologic considerations in the treatment of repetitive or prolonged seizures. J Child Neurol 2007;22(5 Suppl):47S-52S. 10. Cavaliere R, Farace E, Schiff D. Clinical implications of status epilepticus in patients with neoplasms. Arch Neurol 2006;63(12):1746-9. Vol 59: september septembre 2013 Canadian Family Physician Le Médecin de famille canadien 955