Determination of biological thiols by high-performance liquid chromatography following derivatization by ThioGlo maleimide reagents

Similar documents
Determination of thiocyl in biological samples by liquid chromatography with ThioGlo TM 3 derivatization


High performance liquid chromatography analysis of MESNA (2-mercaptoethane sulfonate) in biological samples using fluorescence detection

Liquid chromatography analysis of N-(2-mercaptopropionyl)-glycine in biological samples by ThioGlo TM 3 derivatization

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Analysis of L- and D-Amino Acids Using UPLC Yuta Mutaguchi 1 and Toshihisa Ohshima 2*

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

Analysis of Amino Acids Derived Online Using an Agilent AdvanceBio AAA Column

OxisResearch A Division of OXIS Health Products, Inc.

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

Sanjog Ramdharane 1, Dr. Vinay Gaitonde 2

DEVELOPMENT OF RP-HPLC METHOD FOR ESTIMATION OF DROTAVERINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

SIMPLE AND VALIDATED RP-HPLC METHOD FOR THE ESTIMATION OF CARBOPLATIN IN BULK AND FORMULATION DOSAGE FORM. Subhashini.Edla* B.

Pelagia Research Library

PAPRIKA EXTRACT SYNONYMS DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

Available online at Scholars Research Library

Amudha S et al., Asian Journal of Pharmthiaceutical Technology & Innovation, 04 (21); 2016; Research Article

SIMULTANEOUS DETERMINATION OF ATORVASTATIN AND EZETIMIBE BY RP-HPLC IN PURE AND PHARMACEUTICAL DOSAGE FORM

SUMMARY, CONCLUSION & RECOMMENDATIONS

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

CYCLOSERINI CAPSULAE - CYCLOSERINE CAPSULES (AUGUST 2015)

Scholars Research Library. Der Pharmacia Lettre, 2016, 8 (6): (

Determination of Tetracyclines in Chicken by Solid-Phase Extraction and High-Performance Liquid Chromatography

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

International Journal of Pharma and Bio Sciences

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

Product Guide for LudgerSep TM R1 HPLC Column for DMB labelled Sialic Acid Analysis

Effects of N-acetylcysteine and 2,3-dimercaptosuccinic acid on lead induced oxidative stress in rat lenses

This student paper was written as an assignment in the graduate course

Available online at ScienceDirect. IERI Procedia 5 (2013 )

TENOFOVIR TABLETS: Final text for addition to The International Pharmacopoeia (June 2010)

F. Al-Rimawi* Faculty of Science and Technology, Al-Quds University, P.O. Box 20002, East Jerusalem. Abstract

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

Development and validation of liquid chromatographic method for trazodone hydrochloride

RITONAVIRI COMPRESSI RITONAVIR TABLETS. Final text for addition to The International Pharmacopoeia (July 2012)

Supplementary Material

REVERSE PHASE HPLC METHOD FOR THE ANALYSIS OF ALFUZOSIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORMS

Transferring a Method for Analysis of DNPH-Derivatized Aldehydes and Ketones from HPLC to UHPLC

Tenofovir disoproxil fumarate (Tenofoviri disoproxili fumaras)

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

New RP - HPLC Method for the Determination of Valproic acid in Human Plasma

Application Note. Abstract. Author. Biotherapeutics & Biosimilars. Sonja Schneider Agilent Technologies, Inc. Waldbronn, Germany

Mercaptoethanesulfonic acid as the reductive thiol-containing reagent employed for the derivatization of amino acids with o-phthaldialdehyde analysis

Nature Protocols: doi: /nprot Supplementary Figure 1. Fluorescent titration of probe CPDSA.

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

Ergovaline. [Methods listed in the Feed Analysis Standards] 1 Liquid chromatography Note 1, 2 [Feed Analysis Standards, Chapter 5, Section 2

Scholars Research Library. Der Pharmacia Lettre, 2015, 7 (5):44-49 (

NOVEL RP-HPLC METHOD. B.Lakshmi et a. concentration range KEY INTRODUCTION. Diltiazem is used to. . It works by of contractionn of the. (dilate).

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

Removal of Unreacted Dinitrophenyl Hydrazine from Carbonyl Derivatives. Amira Barkal Mentored by Dr. Gary Merrill Biochemistry and Biophysics

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Product Guide for LudgerSep TM ur2 UHPLC Column for DMB Sialic Acid Analysis

LANCE Eu-W1024 ITC Chelate & Europium Standard AD0013 Development grade

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Available online Research Article

HPLC-UV Determination of Abacavir Sulphate in Pharmaceutical Dosage Forms

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

CHAPTER 8 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) ANALYSIS OF PHYTOCHEMICAL CONSTITUENTS OF M. ROXBURGHIANUS AND P. FRATERNUS PLANT EXTRACTS

Caution: For Laboratory Use. A product for research purposes only. Eu-W1284 Iodoacetamido Chelate & Europium Standard. Product Number: AD0014

Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring

Application Note. Determination of Amino acids by UHPLC with automated OPA- Derivatization by the Autosampler. Summary. Fig. 1.

Determination of Clinically Relevant Compounds using HPLC and Electrochemical Detection with a Boron-Doped Diamond Electrode

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Caution: For Laboratory Use. A product for research purposes only. Eu-W1024 ITC Chelate & Europium Standard. Product Number: AD0013

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

THIN LAYER CHROMATOGRAPHY

International Journal of Medicine and Pharmaceutical Research. International Journal of Medicine and Pharmaceutical Research

Isocratic Reversed Phase Liquid Chromatographic Method Validation for the Determination of Cilostazol in Pure and Formulations

Pelagia Research Library

Aminothiols and Disulfides

Determination of propranolol in dog plasma by HPLC method

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

USP purity analysis of pravastatin sodium using the Agilent 1120 Compact LC

ISSN (Print)

A Validated Chiral Liquid Chromatographic Method for The Enantiomeric Separation of Dapoxetine Hydrochloride

Determination of taurine in energy drinks by high-performance liquid chromatography

Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column

Cuvette Assay for GSH/GSSG (Reduced/Oxidized Glutathione) For Research Use Only INTRODUCTION

Kit for assay of thioredoxin

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

Determination of Amantadine Residues in Chicken by LCMS-8040

Selectivity Comparison of Agilent Poroshell 120 Phases in the Separation of Butter Antioxidants

PROPOSAL FOR REVISION OF MONOGRAPH PUBLISHED IN The International Pharmacopoeia: REVISION OF ph test ABACAVIR ORAL SOLUTION (JULY 2012)

UV Tracer TM Maleimide NHS ester

EMTRICITABINE AND TENOFOVIR TABLETS

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Simplified Gas Chromatographic Assay for Paracetamol

ASSAY AND IMPURITY METHOD FOR DURACOR TABLETS BY HPLC

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

Impurity Profiling of Carbamazepine by HPLC/UV

Transcription:

Journal of Chromatography B, 753 (2001) 287 292 www.elsevier.com/ locate/ chromb Determination of biological thiols by high-performance liquid chromatography following derivatization by ThioGlo maleimide reagents * Nuran Ercal, Ping Yang, Nukhet Aykin Department of Chemistry, University of Missouri-Rolla, 142 Schrenk Hall, Rolla, MO 65409-0010, USA Received 14 March 2000; received in revised form 29 August 2000; accepted 19 October 2000 Abstract The importance of thiols has stimulated the development of a number of methods for determining glutathione and other biologically significant thiols. Methods that are currently available, however have some limitations, such as being time consuming and complex. In the present study, a new high-performance liquid chromatography (HPLC) method for determining biological thiols was developed by using 9-Acetoxy-2-(4-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)phenyl)-3-oxo- 3H-naphtho[2,1-b]pyran (ThioGloE3) as a derivatizing agent. ThioGloE reacts selectively and rapidly with the thiols to yield fluorescent adducts which can be detected fluorimetrically (lex5365 nm, lem5445 nm). The within-run coefficient of variation for glutathione (GSH) by this method ranges from 1.08 to 2.94% whereas the between-run coefficient of variation for GSH is 4.31 8.61%. For GSH, the detection limit is around 50 fmol and the GSH derivatives remain stable for 1 month, if kept at 48C. Results for GSSG and cysteine are also included. The ThioGloE method is compared to our previous method in which N-(1-pyrenyl)maleimide (NPM) is used to derivatize thiol-containing compounds. The present method offers various advantages over the currently accepted techniques, including speed and sensitivity. 2001 Elsevier Science B.V. All rights reserved. Keywords: Thiols; ThioGlo maleimide 1. Introduction and/ or excess production of Reactive Oxygen Species (ROS) [1]. Glutathione is an antioxidant Thiol compounds have important biological func- which protects cells against oxidative stress. During tions. Glutathione (L-g-glutamyl-L-cysteinyl-glycine, oxidative stress, it has been shown that depletion of GSH), the most abundant low molecular mass thiol, GSH along with an increase in its oxidation product, is widely distributed in living cells and is involved in glutathione disulfide (GSSG), levels occurs. Theremany biological reactions. Oxidative stress can result fore, it is usually preferred to determine both levels from depletion of antioxidants due to malnutrition and report the ratio of GSH to GSSG in free radicalrelated research. *Corresponding author. Tel.: 11-573-341-6950; fax: 11-573- Other important bio-thiols studied include Homo- 341-6033. cysteine (Hcy) and N-acetylcysteine (NAC). Hcy is E-mail address: nercal@umr.edu (N. Ercal). generated from the metabolism of essential amino 0378-4347/ 01/ $ see front matter 2001 Elsevier Science B.V. All rights reserved. PII: S0378-4347(00)00560-0

288 N. Ercal et al. / J. Chromatogr. B 753 (2001) 287 292 acid methionine. It has recently received significant chromatography (HPLC) is the most popular method attention because hyperhomocysteinemia is a risk for determining thiol content. Previous methods, factor for some cardiovascular diseases such as however, have some disadvantages, including being atherosclerosis and thrombosis [2,3]. It is suggested time consuming and having complicated derivatizathat Hcy exhibits its role in the pathogenesis of tions. Therefore, developing a new method for atherosclerosis through the mechanisms involving determining thiols has been the focus for many oxidative stress-induced damage [4]. NAC is a researchers. Recently, 9-Acetoxy-2-(4-(2,5-dihydroprecursor of GSH and is an antioxidant itself. NAC 2,5-dioxo-1H-pyrrol-1-yl)phenyl)-3-oxo-3Hhas long been used as a mucolytic agent for treat- naphtho[2,1-b]pyran (ThioGloE3, C25H15NO 6, mol. ment of chronic bronchitis and is an effective wt. 425.4) maleimide reagent has been shown to antidote for acetaminophen poisoning [5,6]. have a very high affinity for thiol groups and, once it In addition, many radioprotectors and other phar- is bound to any thiol-containing compound, the maceutical agents are thiol-containing compounds. reaction product fluoresces (Fig. 1A). Previous Therefore, determining thiol status becomes very studies used ThioGloE3 to identify thiol compounds important in understanding the basic biochemical in intact cells under fluorescent microscopy [10]. The response of cells when exposed to ROS and toxic purpose of this study is to develop a method for substances. Numerous methods, including enzymatic, determining thiol in biological samples by HPLC, chromatographic, and flow cytometric approaches, using ThioGloE3 as a derivatizing agent. have been described to determine the thiol content in biological samples [7 9]. High-performance liquid 2. Experimental 2.1. Reagents and chemicals Acetonitrile, acetic acid, water, and phosphoric acid (all HPLC grade) were purchased from Fisher (St. Louis, MO). Glutathione, cysteine, homocysteine, glutathione disulfide, glutathione reductase and NADPH were purchased from Sigma (St. Louis, MO). NPM and 2-vinylpyridine were obtained from Aldrich (Milwaukee, WI). ThioGloE was obtained from Covalent Associate Inc. (Woburn, MA). 2.2. Animals and cells Fig. 1. (A) Reaction of ThioGloE3 with compounds containing sulfhydryl functional groups. (B) Reaction of NPM with com- 2 pounds containing sulfhydryl functional groups. Fisher 344 rats (weighing 200 250 g) were anesthetized with metofane and sacrificed; samples of their brains, kidneys, lungs, and livers were obtained. The samples were maintained at 2708C until analyzed by the ThioGlo assay and the NPM method. Chinese hamster ovary (CHO) cells were propagated in Ham s F-12 culture media, supplemented with 10% fetal calf serum (FCS) and maintained at 378C in 5% CO / 95% air. Cells were harvested after trypsinization and centrifuged at 10003g for 5 min.

N. Ercal et al. / J. Chromatogr. B 753 (2001) 287 292 289 Thiol levels in CHO cells were determined by both of 445 nm for ThioGlo derivatives. The HPLC the ThioGlo assay and the NPM method. column (Astec, Whippany, NJ) is 10034.6 mm I.D. and was packed with 3 mm particles of C18 packing 2.3. Derivatization of thiols material. Quantitation of the peaks from the HPLC system was performed with a Chromatopac Model Tissue samples (liver, lung, kidney and brain) CR 601 integrator (Shimadzu). The mobile phase from Fisher 344 rats or Chinese hamster ovary was 30% water, 70% acetonitrile, with 1 ml/ l acetic (CHO) cells were homogenized in a serine-borate acid and 1 ml/ l phosphoric acid. The ThioGloE buffer (SBB: 100 mm Tris HCl, 10 mm Borate, 5 derivatives were eluted from the column isocratically mm Serine, 1 mm Diethylenetriamine penta acetic at a flow-rate of 0.5 ml/ min. The excitation and acid, ph57.00). Subsequently, 250 ml diluted emission wavelengths for the NPM assay were 330 aliquots of standards or samples were derivatized and 375 nm, respectively. The mobile phase was with 750 ml 0.5 mm ThioGloE in acetonitrile and 1 35% water, 65% acetonitrile, with 1 ml/l acetic acid mm NPM in acetonitrile, respectively. At this point, and 1 ml/l phosphoric acid. The flow-rate was 0.5 the ph of the mixture should be 7 or greater in order ml/min. to facilate the derivatization reaction. After incubation at room temperature for 5 min, the samples are then acidified with 4 ml 2 N HCl to stop the reaction. 2.6. Detection limit The final ph of the solution should be around 2.5, The detection limit of the ThioGlo assay was which is important for stabilizing the derivatives. achieved by preparing diluted solutions of GSH, The derivatized samples were filtered through a 0.2 derivatizing them with a ThioGlo reagent, and then mm acrodisc and then injected onto the HPLC identifying the concentration of GSH that gave the system. Tissue or cell protein concentrations were smallest peak (S/N53) of GSH in the chromatodetermined by the Bradford method [11]. gram. 2.4. Determination of glutathione disulfide (GSSG) Within-run precision was determined by succes- sively injecting the same sample seven times and comparing the peak areas for the glutathione and cysteine derivatives for the seven injections. The between-run precision was obtained by derivatizing the same sample at seven different times, and running the derivatized samples at different times. Subsequently, 16 ml of 6.25% 2-vinylpyridine (in absolute ethanol) were added to an 84 ml diluted sample. The mixture was incubated at room tempera- ture for 60 min in order to block the thiol group of the GSH already present. Then, 95 ml of2mg/ml NADPH in nanopure water and 5 ml of a 1:50 diluted glutathione reductase were added to reduce GSSG. An aliquot of 100 ml and 150 ml H2O was immediately derivatized with 750 ml 0.5 mm ThioGloE and 1 mm NPM, respectively as detailed above. GSSG standards were derivatized at the same time. 2.7. Precision 2.8. Relative recovery Relative recovery was determined by measuring GSH in the sample first, followed by spiking the 2.5. HPLC system sample by adding 10 ml of a concentrated standard The HPLC system (Shimadzu) consisted of a Model LC-10A pump, a Rheodyne injection valve with a 20-ml filling loop and a Model RF 535 spectrofluorophotometer operating at an excitation wavelength of 365 nm and an emission wavelength GSH per 100 ml sample, then redetermining GSH concentration in the sample. Relative recovery of GSSG and cysteine was done by spiking the sample with GSSG and cysteine, respectively. The spiking of GSH, GSSG or cysteine was sufficient to double the original concentrations of these thiol compounds.

290 N. Ercal et al. / J. Chromatogr. B 753 (2001) 287 292 2.9. Stability All of the derivatized samples were kept in sample vials and reinjected periodically onto the HPLC system until significant changes in peak areas were noticed. 2.10. Protein assay The Bradford method was used to determine the protein content of the tissue and cell samples [11]. Concentrated Coomassie Blue (Bio-Rad) was diluted 1:5 (v/v) with distilled water. Then, 2.5 ml of the diluted dye was added to 50 ml of the sample or standard solution. The mixture was incubated at room temperature for 5 min and the absorbance was measured at 595 nm by spectrophotometer. A standard curve, constructed by using bovine serum albumin (BSA), ranged between 0.1 and 1 mg/ml. The homogenized samples were appropriately diluted before protein determination was performed. 3. Results Fig. 2. Chromatogram A is a blank chromatogram prepared by substituting water for a thiol-containing sample. Chromatogram B shows separation of ThioGloE3 derivatives. GSH, glutathione derivative; CYS, cysteine derivative; HCY, homocysteine derivative. Fig. 2 shows chromatograms of the blank (A) and standards (B) obtained by the ThioGloE3 method. method. Thiol levels detected are shown in Table 1. ThioGloE3 derivatives of GSH, Cys, and Hcy were Comparisons of values for GSH, GSSG, and Cys in separated retention times of 6.0, 6.7 and 7.8 min, tissues and cells, using the NPM method are also respectively. The detection limits per 20 ml sample were 50 fmol for GSH, 100 fmol for GSSG, and 50 fmol for Cys. Within-run precisions for GSH, GSSG, and Cys were 1.08 2.94%, 0.85 7.29% and 0.58 4.13%, respectively. Between-run precision was 4.31 8.61% for GSH, 3.02 7.64% for GSSG, and 2.07 7.55% for Cys. GSSG and Cys derivatives are stable for 2 weeks, if kept at 48C. GSH derivatives can be kept for 1 month at 48C without breakdown. Calibration curves (Fig. 3) were plotted by using integrated peak areas as y-axis and the standard concentration as x-axis. GSH and GSSG had linear ranges of 2.5 1250 nm with regression constants of 0.9996 and 0.9986, respectively. Cys had a linear range of 5.0 1250 nm and a regression constant of 0.9996. To demonstrate that the ThioGlo method is applicable to biological samples, rat tissues and CHO cells were homogenized in SBB and analyzed by this Fig. 3. Calibration curves for GSH, GSSG, and Cys.

N. Ercal et al. / J. Chromatogr. B 753 (2001) 287 292 291 Table 1 GSH, GSSG, and Cys measurements using ThioGloE assay and NPM assay ThioGloE assay a NPM assay GSH GSSG Cys GSH GSSG Cys Liver 45.00064.06 1.23060.30 ND 40.04067.73 1.91060.91 ND Kidney 0.09260.035 0.50360.105 25.9361.67 0.08260.041 0.38460.107 24.4761.15 Lung 7.77060.72 3.44061.54 3.3360.51 6.32061.66 2.06060.51 4.1161.07 Brain 19.02060.78 0.88060.15 ND 18.42060.94 1.30060.35 ND CHO cell 27.41061.7 0.24060.12 ND 21.71060.71 0.29060.05 ND a All values are mean6sd of nmol/mg protein determined from three separate samples using the two different assays. included in Table 1. Both methods provided similar This method uses mono bromobimane (mbbr) as a results. fluorescent probe and can measure many biologically important thiols. It is both specific and sensitive to thiols, but the sample preparation and derivatization 4. Discussion are complex and lengthy. Winters et al. (1995) developed a new HPLC method using N-(1-pyrenyl)- Although there are several methods available for maleimide (NPM) as a derivatizing agent [15]. The detecting of thiols, such as an enzymatic assay and NPM assay is very specific to thiols (Fig. 1B). Its gas chromatography mass spectrometry (GC MS), advantages include increased sensitivity, rapid analythe most widely-used method is high-performance sis, and ease of use when compared to the mbbr liquid chromatography (HPLC). HPLC can be cou- method. However, hydrolysis peaks present at the pled with UV, fluorescent, or electrochemical detec- beginning and the end of elution [15] may interfere tors. The HPLC method of Fariss and Reed is one of with the separation and quantification of thiols, the most popular HPLC procedures for the quantifi- particularly in samples. Another disadvantage of the cation of GSH, GSSG, and protein mixed disulfides NPM method is the impurity of the NMP. As [12]. Carboxymethylation of the thiol group is mentioned above, the NPM method was developed initially used to block thiol-disulfide exchange re- in our lab and we have used it for several years but actions in this method. Free amino groups are then after discovering that each batch provides inconsisderivatized by fluoro-dinitro benzene to form a tent results due to its impurity, we decided to chromophoric group. The derivatives are separated develop another method. on a 3-aminopropylsilane derivatized silica column ThioGloE3 reagent is a new fluorescent probe and detected by UV with nanomole sensitivity. Since which has little or no fluorescence before reacting any compound having free amino groups is detected, with thiols and a high quantum yield after reaction this method is not highly specific to thiol com- with thiols [16]. This makes it possible to use pounds. Sample preparation is also complicated. In ThioGloE3 as a precolumn derivatizing agent for addition, thiols lacking free amino groups can not be biological thiols (Fig. 1A). The ThioGlo assay was measured with this approach. HPLC with an electro- shown to be reproducible with good within-run and chemical detector does not require sample derivatiza- between-run precision. This method offered high tion; it is specific and rapid. However, oxygen and sensitivity with a GSH detection limit of 50 fmol, temperature can easily interfere with the detector. In using 0.5 mm ThioGloE3. The GSH detection limit addition, sensitivity may decrease as injection times was 1 pmol by the mbbr assay and 50 fmol by the increase. Furthermore, the purity of water affects the NPM method (NPM concentration is 1.0 mm). When baseline [9,13]. Therefore, HPLC with fluorescent 1 mm ThioGloE3 was used, it provided an even detection is preferred by most researchers. lower detection limit. Among methods that have been developed using Another advantage of the ThioGlo assay was that different fluorescent tags, the method developed by it had less hydrolysis interference. ThioGloE3 was Fashey and Newton is the most popular one [14]. very resistant to hydrolysis in an aqueous buffer.

292 N. Ercal et al. / J. Chromatogr. B 753 (2001) 287 292 Some hydrolysis products formed, but since they In summary, a new HPLC method has been were nonfluorescent, there were fewer hydrolysis developed for determining biologically important peaks in the chromatograms. thiols by using ThioGloE3 as a derivatizing agent. Table 1 demonstrates that the NPM assay and the The ThioGlo assay provides a sensitive, rapid, and ThioGlo method showed very similar results. Both simple method for analysis of GSH, GSSG, Cys, methods were easy to perform. The total elution time Hcy and NAC. The high sensitivity, low cytotoxiciwas less than 10 min for the ThioGlo method and ty, and resistance to hydrolysis make ThioGloE3 a less than 15 min for the NPM assay although NPM distinguished fluorescent probe. Since thiols play an elution time significantly changed from one batch to important role in the biological system and thiol another. Thus, the ThioGlo method is very rapid and status has been associated with signal transduction, more reliable. gene expression, and pathogenesis of several dis- Another biologically important thiol, NAC, was eases, the ThioGlo method provides a powerful tool also derivatized by ThioGloE3 and injected onto an for studying the role of thiols. HPLC system. The NAC derivative was eluted at a retention time of 2.5 min. Although NAC was eluted shortly after the breakthrough volume, standards References 2 showed good linearity (R 50.9902, 0 1250 nm). The advantage is that it can be eluted together with [1] B. Halliwell, Nutr. Rev. 52 (8) (1994) 253. GSH, Cys, and Hcy by the same mobile phase. [2] C.J. Boushey, S.A. Beresford, G.S. Omenn, G.A. Motulsky, Under the circumstances, where only NAC needs to J. Am. Med. Assoc. 274 (1995) 1049. [3] J. Townend, J. O Sullivan, J.T. Wilde, Blood Rev. 12 (1998) be determined, modified mobile phase compositions 23. may help improve the separation similar to the that [4] J. Loscalzo, J. Clin. Invest. 98 (1996) 5. of NPM assay [17]. [5] G. Bowman, U. Backer, S. Larsson, B. Melander, L. g-glutamyl cysteine and cysteinylglycine were Whalander, Eur. J. Respir. Dis. 63 (1983) 405. also analyzed by the ThioGlo method. Resolutions [6] L.F. Prescott, J.A. Critchley, Ann. Rev. Pharmacol. Toxicol. 23 (1983) 87. between g-glutamyl cysteine and cysteine, [7] F. Tietze, Anal. Biochem. 27 (1969) 502. cysteinylglycine and Hcy were not complete (results [8] G.L. Newton, R.C. Fahey, Methods Enzymol. 251 (1995) are not shown here). Further research is required to 148. improve the resolution. However, most tissues and [9] J. Lakritz, C.G. Plopper, A.R. Buckpitt, Anal. Biochem. 247 cells had very low concentrations of g-glu-cys and (1997) 63. [10] M.E. Langmuir, J.R. Yang, A.M. Moussa, R. Laura, K.A. Cys-Gly [18]; therefore, this method is an excellent LeCompte, Tetrahedron Lett. 36 (1995) 3989. assay for determining GSH, GSSG, Cys, and Hcy. It [11] M.A. Bradford, Anal. Biochem. 72 (1976) 248. is sensitive, specific, rapid and easy to use. If g-glu- [15] R.A. Winters, J. Zukowski, N. Ercal, R.H. Matthews, D.R. Cys and Cys-Gly need to be determined, gradient Spitz, Anal. Biochem. 227 (1995) 14. elution and/or a longer column may be used. [12] M.W. Fariss, D.J. Reed, Methods Enzymol. 143 (1987) 101. [13] J.P. Richie Jr., C.A. Lang, Anal. Biochem. 163 (1987) 9. The lower cytotoxicity makes ThioGloE3 par- [14] R.C. Fahey, G.L. Newton, Methods Enzymol. 143 (1987) 83. ticularly suitable for intracellular determination of [16] M.E. Langmuir, J.R. Yang, K.A. LeCompte, R.E. Durand, in: GSH and other thiols in viable cells. The ThioGlo J. Slavik (Ed.), Fluorescent Microscopy and Fluorescent method gives very promising results on GSH, GSSG, Probes, Plenum Press, New York, 1996, p. 229. Cys, and Hcy analysis. It may also be applicable to [17] N. Ercal, S. Oztezcan, T.C. Hammond, R.H. Matthews, D.R. Spitz, J. Chromatogr. B. Biomed. Sci. Appl. 685 (1996) 329. other biological thiols (cysteamine, D-penicillamine, [18] R.C. Fahey, G.L. Newton, R. Dorian, E.M. Kosower, Anal. ergothioneine, etc.). Future research should focus on Biochem. 111 (1981) 357. how to improve the current separation and extend its usage to detect more biological thiols.