Sound Waves. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the

Similar documents
Sound Waves. Making Sound Waves

Chapter 17 Sound Sound and Hearing. Properties of Sound Waves 1/20/2017. Pearson Prentice Hall Physical Science: Concepts in Action

17.4 Sound and Hearing

Transfer of Sound Energy through Vibrations

Producing and Detecting Sound

Directions: Review the sound vocabulary words. In the pre column place a 2, 1, or 0 2 = expert 1 = heard of it 0 = do not know it

Sound Workshop. What is sound Longitudinal Waves Frequency and pitch Hearing ranges Sounds in solids, liquids and gases Sound in a vacuum

Sound A Science A Z Physical Series Word Count: 1,093

1.34 Intensity and Loudness of Sound

Hearing. istockphoto/thinkstock

Sound. Audition. Physics of Sound. Properties of sound. Perception of sound works the same way as light.

Audition. Sound. Physics of Sound. Perception of sound works the same way as light.

SUBJECT: Physics TEACHER: Mr. S. Campbell DATE: 15/1/2017 GRADE: DURATION: 1 wk GENERAL TOPIC: The Physics Of Hearing

How Do Our Ears Work? Quiz

ISLAMABAD ACADEMY PHYSICS FOR 10TH CLASS (UNIT # 13)

5. Which word refers to making

DeltaScience. Content Readers. Summary. Science Background. Objectives. Reading Comprehension Skills. Supporting English Learners

Low? High or. v vv \T\ \ C\ [ \(\(\(\(\ PITCH FREQUENCY CHAPTER4

9.3 Sound. The frequency of sound. pitch - the perception of high or low that you hear at different frequencies of sound.

Wonderlab. Sound. The Statoil Gallery. The science and maths behind the exhibits LIGHT WONDERLAB: THE STATOIL GALLERY LEVEL 3, SCIENCE MUSEUM LONDON

9.3 Sound The frequency of sound Frequency and pitch pitch Most sound has more than one frequency The frequency spectrum

Sound (11-16) Click here to buy the clear version of Sound (11-16). This pdf file can be downloaded and used on your PC or tablet.

AND THE EARS HAVE IT! (1 Hour)

Hearing. PSYCHOLOGY (8th Edition, in Modules) David Myers. Module 14. Hearing. Hearing

How Sound Works. Visit for thousands of books and materials.

Norwood Science Center

If sound waves needs molecules, how do astronauts in the vacuum of space talk to each other?

Please visit the website hearingandsound.weebly.com to help you study, as well as viewing the videos and booklet posted.

Sound Travels How sound travels is explained and demonstrated using a spoon and some string to get the vibrations, then sound, to the students ears.

The Nature of Sound. Section 1: What Is Sound? (p. 534)

HEARING GUIDE PREPARED FOR CLINICAL PROFESSIONALS HEARING.HEALTH.MIL. HCE_ClinicalProvider-Flip_FINAL01.indb 1

Sensation and Perception. 8.2 The Senses

Perception of Sound. To hear sound, your ear has to do three basic things:

Sound and hearing 2 The outside of the ear. Sound and hearing 1 How sounds get to our ears

Ear Exam and Hearing Tests

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

When hearing is painful. Can we damage our ears?

Hearing Loss. How does the hearing sense work? Test your hearing

Unit 4P.1: Sound. How sounds are made? Loudness and pitch Hearing sound Noise Traveling of sound Echo

HEARING CONSERVATION & NOISE EXPOSURE. 10/1/99 Created By: C. Miterko 1

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Biological Psychology. Unit Two AE Mr. Cline Marshall High School Psychology

Deafness and hearing impairment

Outline. 4. The Ear and the Perception of Sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

The Human Ear. Grade Level: 4 6

TEAK Bioengineering Artificial Hearing Lesson Plan Page 1 TEAK Traveling Engineering Activity Kits

Two ears are better than one.

Learning Targets. Module 20. Hearing Explain how the ear transforms sound energy into neural messages.

Sound. Cracking the Sound Barrier

The Ear and Sound. The Ear and Hearing The ear detects sound waves that pass through the three parts of the ear and bend small hairs in the inner ear.

Sound You might have tried the following

Sound and its characteristics. The decibel scale. Structure and function of the ear. Békésy s theory. Molecular basis of hair cell function.

Outline. The ear and perception of sound (Psychoacoustics) A.1 Outer Ear Amplifies Sound. Introduction

Required Slide. Session Objectives

Consciousness and Blindsight

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

SENSORY SYSTEM VII THE EAR PART 1

HEARING. Structure and Function

TERRESTRIAL S Traveling Noise

Intensity and Loudness of Sound

Science5 (SoundMulberry4th)

Become a good listener LESSON PLAN / MARCH 2015 SPONSORED BY

THE EAR Dr. Lily V. Hughes, Audiologist

Hearing Conservation for Children

COMMON CORE Lessons & Activities SAMPLE

Hearing The ice show was in its final moments and the music was louder than ever. There was a final chord that echoed across the arena.

Dalkeith High School Level 4 Physics. Waves and Sound

You ve got to be kidding Dad. You wouldn t be able to hear anything with ear plugs. Sure I could, his father said. Your mother and I wore them when

Hearing Sound. The Human Auditory System. The Outer Ear. Music 170: The Ear

Music 170: The Ear. Tamara Smyth, Department of Music, University of California, San Diego (UCSD) November 17, 2016

Receptors / physiology

A community of VALUED individuals. Versatile Aspirational Learning Understanding Engaged Determined. Year 7 Physics Sound Name. Red, amber or Green?

Science - Year 4. Sound Block 4S. Listen Up! Session 2 Resource Pack

26.1 The Origin of Sound

Psychology Chapter 4. Sensation and Perception. Most amazing introduction ever!! Turn to page 77 and prepare to be amazed!

Sound. Chapter Test A. Multiple Choice. 1 Pearson Education, Inc., or its affiliates. All rights reserved.

Hearing and Sound Study Guide

Draw a cross section of the human ear and label its parts.

Hearing Loss. Understanding hearing loss, its effects and available solutions.

Hearing for life Facts about hearing. How hearing works, how hearing fades and how to assist your hearing

Hearing Conservation and Noise Control

This test contains questions that are borrowed from other sources. It was not accepted to the exchange but is included in this folder because it was

LISTEN! You might be going deaf DEPARTMENT OF LABOUR TE TARI MAHI OCCUPATIONAL SAFETY & HEALTH SERVICE

Assistive Technology Project. Presented By: Rose Aldan

Converting Sound Waves into Neural Signals, Part 1. What happens to initiate neural signals for sound?

Protect Your Hearing!

The Senses. senses are almost impossible to describe, and yet we use them every moment of the day.

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

PSY 310: Sensory and Perceptual Processes 1

HEAR YE! HEAR YE! (1.5 Hours)

Formatting notes: Bold black text are questions to ask your students to answer Blue bold: learning goals write these on the board.

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics

Angel International School - Manipay 2 nd Term Examination March, 2018 Physics

MECHANISM OF HEARING

managing safely Noise at Work Course Notes Mark Mallen Group Health and Safety Manager December 2005 Noise at Work: Version 1 Page 1 of 23

Chapter 3. Sounds, Signals, and Studio Acoustics

Audiology - Hearing Care Torbay and South Devon. Before you receive your hearing aid

2 Sensing the Environment

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc.

Animal Senses 9/2/16

Transcription:

Sound Waves Making Sound Waves How does the motion of a drummer s drumsticks produce sound waves? The impact of the sticks on the head of a drum causes the drum head to vibrate. These vibrations transfer energy to nearby air particles, producing sound waves in air. You can hear the sound because energy from the drums travels as sound waves to your ears. Every sound you hear is caused by something vibrating. For example, when you talk, tissues in your throat vibrate in different ways to form sounds. Sound Waves are Compressional Waves Sound waves produced by a vibrating object are compressional waves. Figure 10 shows how the vibrating drum produces compressional waves. When the drummer hits the drum, the head of the drum vibrates. Nearby air particles vibrate with the same frequency as the frequency of vibrations. The drum head moving outward compresses nearby air particles. The drum head moving inward causes rarefactions in nearby air particles. The inward and outward movement of the drum head produces the same pattern of compressions and rarefactions in the air particles. Sound waves can only travel through matter. The energy carried by a sound wave is transferred by the collisions between the particles in the material the wave is traveling in. A spaceship traveling outside Earth s atmosphere, for example, does not make any sound outside the ship. Describe how sound waves are produced. Explain how sound waves travel through matter. Describe the relationship between loudness and sound intensity. Explain how humans hear sound. A knowledge of sound helps you understand how to protect your hearing. Review Vocabulary perception: a recognition, sense, or understanding of something New Vocabulary intensity pitch reverberation Compression Compression Rarefaction Figure 10 A vibrating drumhead produces a sound wave. The drum head produces a compression each time it moves upward and a rarefaction each time it moves downward. SECTION 2 Sound Waves 701

Table 1 Speed of Sound in Different Materials Material Speed (m/s) Air (20 C) 343 Glass 5,640 Steel 5,940 Water (25 C) 1,493 Seawater (25 C) 1,533 Rubber 1,600 Diamond 12,000 Iron 5,130 Figure 11 The loudness of a sound depends on the amount of energy the sound waves carry. The Speed of Sound Like all waves, the speed of sound depends on the matter through which it travels. Sound waves travel faster through solids and liquids. Table 1 shows the speed of sound in different materials. The speed of sound through a material increases as the temperature of the material increases. The effect of temperature is greatest in gases. For example, the speed of sound in air increases from about 330 m/s to about 350 m/s as the air temperature increases from 0 to 30 C. How does temperature affect the speed of sound through a material? The Loudness of Sound What makes a sound loud or soft? The girl in Figure 11 can make a loud sound by clapping the cymbals together sharply. She can make a soft sound by clapping the cymbals together gently. The difference is the amount of energy the girl gives to the cymbals. Loud sounds have more energy than soft sounds. Intensity The amount of energy that a wave carries past a certain area each second is the intensity of the sound. Figure 12 shows how the intensity of sound from the cymbals decreases with distance. A person standing close when the girl claps the cymbals would hear an intense sound. The sound would be less intense for someone standing farther away. The intensity of sound waves is related to the amplitude. Sound with a greater amplitude also has a greater intensity. Figure 12 The intensity of a sound wave decreases as the wave spreads out from the source of the sound. The energy the wave carries is spread over a larger area. 702 CHAPTER 24 Waves, Sound, and Light David Young-Wolff/Photo Edit, Inc.

Loudness in Decibels Whisper 15 Purring cat Average home Vacuum cleaner Power mower Pain threshold db 0 150 20 25 50 75 80 100 110 120 115 Jet plane taking off Rustling leaves Noisy restaurant Chain saw The Decibel Scale and Loudness The intensity of sound waves is measured in units of decibels (db), as shown in Figure 13. The softest sound a person can hear has an intensity of 0 db. Normal conversation has an intensity of about 50 db. Sound with intensities of about 120 db or higher are painful to people. Loudness is the human perception of the intensity of sound waves. Each increase of 10 db in intensity multiplies the energy of the sound waves ten times. Most people perceive this as a doubling of the loudness of the sound. An intensity increase of 20 db corresponds to a hundred times the energy and an increase in loudness of about four times. Figure 13 The intensity of sound is measured on the decibel scale. Infer how many times louder a power mower is compared to a noisy restaurant. How much has the energy of a sound wave changed if its intensity has increased by 30 db? Frequency and Pitch The frequency of sound waves is determined by the frequency of the vibrations that produce the sound. Recall that wave frequency is measured in units of hertz (Hz), which is the number of vibrations each second. On the musical scale, the note C has a frequency of 262 Hz. The note E has a frequency of 330 Hz. People are usually able to hear sounds with frequencies between about 20 Hz and 20,000 Hz. Pitch is the human perception of the frequency of sound. The sounds from a tuba have a low pitch and the sounds from a flute have a high pitch. Sounds with low frequencies have low pitch and sounds with high frequencies have high pitch. Hearing Damage Prolonged exposure to sounds above 85 db can damage your hearing. Research to find out the danger of noise levels you might experience at activities such as loud music concerts or basketball games. SECTION 2 Sound Waves 703 (tl)ian O'Leary/Stone/Getty Images, (tr)david Young-Wolff/PhotoEdit, Inc., (bl)mark A. Schneider/Visuals Unlimited, (bc)rafael Macia/Photo Researchers, (br)superstock

Hearing and the Ear The ear is a complex organ that can detect a wide range of sounds. You may think that the ear is just the structure that you see on the side of your head. However, the ear can be divided into three parts the outer ear, the middle ear, and the inner ear. Figure 14 shows the different parts of the human ear. The Outer Ear The outer ear is a sound collector. It consists of the part that you can see and the ear canal. The visible part is shaped somewhat like a funnel. This shape helps the visible part collect sound waves and direct them into the ear canal. The Middle Ear The middle ear is a sound amplifier. It consists of the ear drum and three tiny bones called the hammer, the anvil, and the stirrup. Sound waves that pass through the ear canal cause the eardrum to vibrate. Theses vibrations are transmitted to the three small bones, which amplify the vibrations. Figure 14 The human ear can be divided into three parts. The outer ear is the sound collector, the middle ear is the sound amplifier, and the inner ear is the sound interpreter. The Inner Ear The inner ear contains the cochlea. The cochlea is filled with fluid and is lined with tiny hair-like cells. Vibrations of the stirrup bone are transmitted to the hair cells. The movement of the hair cells produce signals that travel to your brain, where they are interpreted as sound. Outer Ear Gathers sound waves Middle Ear Amplifies sound waves Hammer Anvil Inner Ear Converts sound waves to nerve impulses Cochlea Ear canal Eardrum Stirrup 704 CHAPTER 24 Waves, Sound, and Light

The Reflection of Sound Have you ever stood in an empty room and heard echoes when you talked very loudly? Echoes are sounds that reflect off surfaces. Repeated echoes are called reverberation. Concert halls and auditoriums are designed with soft materials on the ceilings and walls to avoid too much reverberation. Theaters like the one in Figure 15 often have curtains on the walls because sounds won t reflect off soft surfaces. The curtains absorb the energy of the sound waves. The reflection of sound can be used to locate or identify objects. Echolocation is the process of locating objects by bouncing sounds off them. Bats, dolphins, and other animals emit short, high-frequency sound waves toward a certain area. By interpreting the reflected waves, the animals can locate and determine properties of other animals. Doctors use reflection of sound waves in medicine. Computers can analyze ultrasonic waves that reflect off body parts to produce an internal picture of the body. These pictures help doctors monitor pregnancies, heart problems, and other medical conditions. Figure 15 A modern concert hall contains materials that absorb sound waves to control reverberation and other sound reflections. Summary Making Sound Waves Sound waves are compressional waves produced by something vibrating. The speed of sound waves depends on the material in which the waves travel and its temperature. Loudness and Pitch The intensity of a wave is the amount of energy the wave transports each second across a unit surface. The intensity of sound waves is measured in units of decibels. Loudness is the human perception of sound intensity. Pitch is the human perception of the frequency of a sound. Hearing Sound You hear a sound when a sound wave reaches your ear and causes structures in your ear to vibrate. Self Check 1. Explain why you hear a sound when you clap your hands together. 2. Predict whether sound will would travel faster in air in the summer or in the winter. 3. Compare and contrast the sound waves produced by someone whispering and someone shouting. 4. Describe how vibrations produced in your ear by a sound wave enable you to hear the sound. 5. Think Critically Vibrations cause sounds, yet if you move your hand back and forth through the air, you don t hear a sound. Explain. 6. Calculate a Ratio How many times louder is a sound wave with an intensity of 50 db than a sound wave with an intensity of 20 db? 7. Calculate Increase in Intensity If the energy carried by a sound wave is multiplied by a thousand times, by what factor does the intensity of the sound wave increase? blue.msscience.com/self_check_quiz SECTION 2 Sound Waves 705 AFP Photo/Hector Mata/CORBIS