Long-term Training Adaptations in Elite Male Volleyball Players

Similar documents
Volleyball is characterized by short, frequent bouts

PO Box 176, Belconnen, ACT, 2617, Australia 2 School of Exercise, Biomedical and Health Sciences,

S trength and conditioning professionals ABSTRACT

Although leg extensor strength and power assessment

MELDING EXPLOSIVE POWER WITH TECHNIQUES IN THE LONG JUMP. Explosive Strength IS THE RATE OF FORCE DEVELOPMENT AT THE START OF A MUSCLE CONTRACTION.

REVIEW OF LITERATURE

The load that results in the greatest maximal mechanical

Relative Net Vertical Impulse Determines Jumping Performance

NATURAL DEVELOPMENT AND TRAINABILITY OF PLYOMETRIC ABILITY DURING CHILDHOOD BY KIRSTY QUERL SPORT SCIENTIST STRENGTH AND CONDITIONING COACH

The influence of training age on the annual development of physical qualities within. academy rugby league players

SPECIFICITY OF STRENGTH DEVELOPMENT FOR IMPROVING THE TAKEOFF ABILITY IN JUMPING EVENTS

STRENGTH & CONDITIONING

Reviewed by to be arranged, VIS Sport Science, Victorian Institute of Sport, Melbourne, Australia 3205.

International Netball

The Role of Plyometric Training for the T2T and T2C Athlete

Reliability and validity of the GymAware optical encoder to measure displacement data

REVIEW OF RELATED LITERATURE

Jay Dawes, MS Velocity

of Olympic Weightlifters

2014 Athletes Performance inc. Athletic Profiling Discuss the need for athletic profiling and the factors that underpin sports performance

Variability of GPS Units for Measuring Distance in Team Sport Movements

School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Perth, Western Australia; 2

Effectiveness of Muscular Power Performance on Long-Term Training

Can Anthropometric and Physiological Performance Measures Differentiate between Olympic Selected and Non- Selected Taekwondo Athletes?

Power and impulse applied during push press exercise ACCEPTED. Chichester, College Lane, Chichester, United Kingdom

P ERFORMANCE CONDITIONING

The development and evaluation of a testing protocol to assess upper body pressing strength qualities in high performance athletes

in a training program. Why Are Weightlifting Exercises Recommended?

DEVELOPING EXPLOSIVE POWER

Maximising Fitness for Teenage Boys

Effects of Split Style Olympic Weightlifting Training on Leg Stiffness Vertical Jump Change of Direction and Sprint in Collegiate Volleyball Players

differentiate between the various types of muscle contractions; describe the factors that influence strength development;

The Effect of Playing and Training Surface on Vertical. Jump Height in elite junior male volleyball players. A pilot. (c) 2004

Training For The Triple Jump. The Aston Moore Way

Changes in strength and power characteristics over a season in elite English rugby union players

Quantifying the onset of the concentric phase of the force time record during jumping

By Kevin Shattock 2015, All Rights Reserved

vertical jump performance

2017 Coaches Clinic. Strength Development for Athletes

Repetition Maximum Continuum

Changes in the Eccentric Phase Contribute to Improved Stretch Shorten Cycle Performance after Training

ON THE PLYOMETRIC NATURE OF OLYMPIC WEIGHTLIFTING BIOMECHANICAL CONSIDERATIONS FOR PRACTICAL APPLICATIONS IN STRENGTH AND CONDITIONING FOR SPORT

Reliability of Measures Obtained During Single and Repeated Countermovement Jumps

P eriodization is a process to sequentially SUMMARY

BIOMONITORING OF ELITE WOMEN TRIPLE-JUMPERS ELASTIC FORCE

Jump Training Process. Aston Moore

Electrostimulation for Sport Training

Adebate exists as to which load maximizes power

The 1987 World Weightlifting Championship was the

P ERFORMANCE CONDITIONING. Appling National Jr. Team Programming to Your Situation. Off-Bike Sprinting Power Improvement: CYCLING

STAR Research Journal

Influence of reactive strength index modified on force and power time curves

A Cross-Sectional Comparison of Different Resistance Training Techniques in the Squat Exercise

Reliability of Kinematics and Kinetics Associated with Horizontal Single Leg Drop Jump Assessment. A brief report

Running head: COACHING: DESIGNING & IMPLMEMNTING PHYSICAL TRAINING 1

International Journal of Sports Physiology and Performance. Original Article

Power. Introduction This power routine is created for men and women athletes or advanced trainers, and should not be completed by beginners.

Report on the International Hammer Throwing Seminar And Szombathley Hammer Throw Training Center Program

Kinetic responses during landings of plyometric exercises

RESEARCH REPOSITORY.

11th Annual Coaches and Sport Science College December 2016 INTRASET VARIABILITY OF CONCENTRIC MEAN VELOCITY IN THE BACK SQUAT

A Comparison of Plyometric Training Techniques for Improving Vertical Jump Ability and Energy Production

How To Fly High With Plyometrics

EVOLVED TECHNOLOGY IMMEDIATE RESULTS

Literature Review: Anthropometric, strength and physical capacities of senior and junior Australian footballers

Session Title: Plyometrics for Everyone Presented by: Jonathan Ross,

Administration, Scoring, and Interpretation Scoring, of Selected and Tests

PART III STRUCTURAL WORK (same weight from week to week)

PART III STRUCTURAL WORK (same weight from week to week)

PROGRESSION MODEL WEEK 1 WEEK 2 WEEK 3 WEEK 4 BASE STRESS SHOCK PEAK D1 3 x 8 4 x 8 5 x 6 3 x 4 D2 3 x 8 4 x 8 5 x 6 3 x 4

Journal of Exercise Physiologyonline

Effects of a short term plyometric training program on biochemical and physical fitness parameters in young volleyball players

IDENTIFYING A SURROGATE MEASURE OF WEIGHTLIFTING PERFORMANCE

RESULTS AND DISCUSSIONS

TRAINING OF TECHNIQUE AND SPECIFIC POWER IN THROWING EVENTS

Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women

Intersession Reliability of Kinematic and Kinetic Variables During Vertical Jumps in Men and Women

Impulses and ground reaction forces at progressive intensities of weightlifting variations.

The Importance of Muscular Strength in Athletic Performance

ACTIVITY TYPE. Stretching COACHING RESOURCE

Strength Training for the Average Collegiate or H.S. Athlete: A Return to Push-Ups & Sit-Ups

Male Academy rugby union student-athletes in-season physical anthropometrical and physical performance changes, and comparisons with available data

Expression and Development of Maximal Muscle Power. Robert U. Newton Ph.D.

Five for Life Student Portfolio

TRAINING PERIODIZATION

EFFECT OF KINETICALLY ALTERING A REPETITION VIA THE USE OF CHAIN RESISTANCE ON VELOCITY DURING THE BENCH PRESS

2011 USTFCCCA Annual Meeting

Peer Review THE EFFECTS OF AN 8 WEEK SUPPLEMENTED PLYOMETRIC EXERCISE TRAINING PROGRAM ON LEG POWER, AGILITY AND SPEED IN ADOLESCENT NETBALL PLAYERS.

Supplements are to be used to improve performance in the gym and to enhance health on a day to day basis.

Lower body isoinertial (constant gravitational load)

Indigo-3G Dosing Protocols : Update 1

Relationships between lower-body muscle structure and, lower-body strength, explosiveness and eccentric leg stiffness in adolescent athletes

Inside The Park Baseball NYO Speed-Strength / Performance Training

The Influence of 16-weeks of Periodized Resistance Training on Vertical Leap and TW20meters Performance Tests for Volleyball Players

Speed-endurance allows for the. Speed is the result of applying explosive. What is our recipe? Speed, Agility, and Speed- 11/5/2007

What is Olympic Weightlifting?

Neuromuscular fatigue and endocrine responses in elite Australian Rules football players

Neither Stretching nor Postactivation Potentiation Affect Maximal Force and Rate of Force Production during Seven One-Minute Trials

CHAPTER 5: VALIDATION OF AN OPTICAL ENCODER DURING FREE WEIGHT RESISTANCE MOVEMENTS AND ANALYSIS OF BENCH PRESS

Correlations Between Internal and External Power Outputs During Weightlifting Exercise

Transcription:

Edith Cowan University Research Online ECU Publications 2011 2011 Long-term Training Adaptations in Elite Male Volleyball Players Jeremy Sheppard Edith Cowan University Robert Newton Edith Cowan University 10.1519/JSC.0b013e31823c429a This is a non-final version of an article published in final form as: Sheppard, J.M., & Newton, R. (2012). Long-term training adaptations in elite male volleyball players. Journal of Strength and Conditioning Research, 26 (8), 2180-2184. Original article available here This Journal Article is posted at Research Online. http://ro.ecu.edu.au/ecuworks2011/846

Long-term training adaptations in elite male volleyball players R-335211 Jeremy M. Sheppard 1,2 & Robert U. Newton 1 1. School of Exercise, Biomedical, and Health Sciences, Edith Cowan University, Joondalup, Western Australia 2. Australian Volleyball Federation, Canberra, Australia Corresponding Author: Dr. Jeremy M. Sheppard This manuscript was completed without the assistance of any grant or external financial support.

Long-term training adaptations in elite male volleyball players

3 Abstract Several investigations have demonstrated differences in anthropometry, jump performance, and strength variables between developmental and elite level volleyball players. However, within the elite level of play, the magnitude of change that can occur with training is unclear. The purpose of this investigation was to examine the anthropometric, vertical jump, and strength quality changes over two years in a group of national team volleyball players. Fourteen national team volleyball players (23.0 ±4.1 yrs, 1.98 ±0.07 m, 91.7 ±7.9 kg) began and completed this study. Participants had all played international matches (representing Australia) prior to the examination time period, and continued to do so during the international season. Anthropometry (stature, mass, and 7 skin-folds), vertical jump measures (counter-movement vertical jump, CMVJ; depth-jump from 0.35 m, DJ; spike-jump SPJ, all including arm-swing), lower body power (jump squat at body-mass, JSBW and jump squat +50% body-weight, JS50) measures were tested prior to and at the conclusion of the investigation period. Significant (p<0.05) improvements were observed in 7 skin-folds, DJ, SPJ, and JS50 performance, with large magnitude changes (d >0.70) in the 7 skin-folds reduction, SPJ, and leg extensor power. This study has demonstrated that elite male volleyball players can improve leanness and power which contribute to improvements in vertical jump. Keywords: jump, spike jump, elite, volleyball, training

INTRODUCTION Volleyball is an intermittent and explosive sport, involving brief but frequent movements such as jumping and diving (3, 8). Jumping activities can include both horizontal approach movements (spike jumps, SPJ), as well as movements without a horizontal approach (jump setting, jousts, blocking). Considering the importance of these jumping activities to the performance outcome in volleyball, and the frequency that they occur in a typical match (7), both counter-movement vertical jump ability (CMVJ) and spike jump ability (SPJ) are considered important qualities contributing to game performance by elite volleyball players, and they are the primary targets that training programs aim to enhance (4, 6, 12). Recent studies have examined the difference between junior and senior elite volleyball players (7), highlighting the importance of vertical jump improvement for developing athletes to progress successfully from lower to higher levels. Cross-sectional examinations of junior and senior groups provides strong evidence for the need to improve both CMVJ and SPJ, as well as presenting useful performance data for setting standards and benchmarks for athletes aspiring to play at the international level (6, 7, 8, 11). Despite the acknowledged significance, little is known as to the trainability of CMVJ and SPJ and other potentially related qualities within senior elite populations of volleyball players. Of great interest to the sport scientist and strength and conditioning coach working with elite volleyball athletes, is the magnitude of trainability of these qualities, and which specific variables require development to underpin these improvements in vertical jump ability. As studies with elite populations of athletes is rare, the magnitude of improvement possible with elite athletes is poorly understood, nor is the inter-play of these trainable aspects. The purpose of this investigation was to examine potential changes in anthropometry, vertical jump ability, and fundamental neuromuscular capacities over a 2 year time period in elite male volleyball players to gain insight into the trainability of these qualities within an elite population. METHODS

5 Experimental Approach to the Problem To assess the changes that occurred in jump performance, speed-strength, and anthropometric variables, a longitudinal analysis was performed over a 2 year time period with a cohort of elite national team volleyball players. Subjects Fourteen national team volleyball players (23.0 ±4.1 yrs, 1.98 ±0.07 m, 91.7 ±7.9 kg) began and completed this study. Participants had all played international matches (representing Australia) prior to the examination time period, and continued to do so during the international season. During professional seasons, match play volume varied depending on club, with training time typically involving 4-7 court and 2 strength sessions per week. During international seasons, participants typically engaged in 7-9 court and 2-4 strength sessions per week, with match involvement varying by player from 15-40 per season. Strength training sessions varied throughout the 2 year time period, based on individual and to a large extent their professional club commitments. However, the main components of the sessions typically involved 1-2 Olympic lifts and/or variations (e.g. Snatch, power clean) (3-10 sets total), 1-3 maximal strength training exercises (Squat, Front Squat, Pull-up)(1-6 repetitions, 4-10 sets total), 2-4 supplementary exercises (uni-lateral leg strength, rows, etc.), followed by any prescribed medical exercise. Total sets for workouts ranged greatly depending on the athlete and the time of year, from 8-22 main working sets. All participants received a clear explanation of the study, including the risks and benefits of participation and if following this explanation their decision was to not be included in the analysis it did not adversely affect any current or future team selection. All included participants provided

6 written informed consent for testing and data analysis. Approval for this investigation was granted from the Institutional Human Ethics Committee. Procedures Participants performed a maximum effort counter-movement vertical jump (CMVJ), depth jump from a 0.35 m box (DJ), as well as a spike jump (with approach) (SPJ) using a vaned jump and reach apparatus which allowed for recording of the maximum height reached to the nearest centimetre (Yardstick, Swift Systems, Lismore, Australia). In the CMVJ no horizontal approach was allowed, whilst in the SPJ an approach ranging from 3-4 steps was used, based on the athlete s preference. For the DJ, participants stepped off a 0.35 m box, and immediately upon landing, attempted to jump as high as possible. The population-specific intra-class correlation coefficients (ICC) (%TE in parenthesis) of the height of the CMVJ, DJ, SPJ was 0.98 (2.5%), 0.97 (3.0%), and 0.97 (3.2%) respectively. Kinetic and kinematic assessments of jump-squat performance were conducted with the subjects standing on a commercially available force plate (400 Series Performance Force Plate, Fitness Technology, Adelaide, Australia). A position transducer (PT5A, Fitness Technology, Adelaide, Australia) was connected to a 400 g wooden pole (bodyweight jumps, BWJS) or weightlifting bar and weightlifting lifting plates (bodyweight plus 50% of body-weight as additional mass, JS50) held across the shoulders. Both the force plate and position transducer sampled at 200 Hz and were interfaced with computer software (Ballistic Measurement System, Fitness Technology, Adelaide, Australia) that allowed direct measurement of force-time characteristics (force plate) and displacement-time and velocity-time (position transducer) variables. Prior to all data collection procedures, the force plate was calibrated using a spectrum of known loads, and then assessed against 3 criterion masses. The position transducer was calibrated using a known distance of 1 m. The ICC and %TE of the displacement, force, and power measures used in the

7 assessment methodology, with this population group, was 0.95-0.97 (3.1-3.9%), 0.95-0.97 (3.1-4.0%), and 0.80-0.98 (3.0-9.5%) respectively. All subjects were assessed for height, mass, standing reach, and the sum of 7 skin-folds. The sum of 7 skin-folds was determined following measurement of the triceps, subscapula, biceps, supraspinale, abdominal, quadriceps, and calf skin-fold using a Harpenden skinfold calliper (British Indicator, UK). A composite ratio of body-mass divided by the sum of 7 skin-folds was then determined to reflect the amount of mass that is made up of lean tissue, termed the Lean Mass Ratio (LMR). All tests were conducted by a single researcher certified by the International Society for the Advancement of Kinanthropometry (ISAK). The ICC and %TE for height, mass, and standing reach were 0.99 (1.5%), 0.99 (1.2%), and 0.98 (2.0%) respectively. The test-retest ICC and %TE for the skin-fold assessment was 0.99 (2.2%). All testing was conducted under the same conditions, at the same time of day, for each testing type. Although having elite athletes completely recovered for the purpose of testing is unrealistic, to minimize fatigue testing took place after a complete rest day, and was spread over 2 days. Anthropometry was completed in the morning of Day 1 to attempt to control for hydration status, with the vertical jump testing occurring in the afternoon. Speed-strength assessment was completed the following day, in the afternoon. Statistical Analyses Changes in the mean were used to assess the practical differences that occurred across the investigation time period. Paired t-tests were used to assess changes in the anthropometric and vertical jump variables over the 24 month period, with alpha set at p<0.05. Additionally, Cohen s effect sizes (d) were calculated to reflect the magnitude of any changes that may be observed, with the criteria of <0.40 small; 0.40-0.70 moderate; and 0.70-1.00 large.

8 RESULTS Anthropometric changes across the 2 year investigation period are presented in Table 1. A large magnitude reduction in skin-folds (d=0.70, p<0.001) contributed to a moderate increase in the LMR (d=0.65, p<0.001). Jump height for CMVJ, DJ, and SPJ (d=0.52, 0.51, and 0.70 respectively, p<0.001) increased significantly over the 2 year period (Figure 1). Loaded jump squat height (JS50) also increased significantly (Figure 2) with large magnitude increases (d=0.70, p<0.001). With the exclusion of a moderate (d=0.51, p=0.043) increase in peak power in the BWJS, no other changes were observed in the measured kinetic and kinematic descriptors of the jump squat tests. DISCUSSION Of great interest to the strength and conditioning coach working with elite programs, is the specific variables that can be developed to advance performance. This information is invaluable in decision-making and priority setting for optimizing the success of elite athletes. The results of this investigation are novel in that they examine the changes in CMVJ and SPJ, as they relate to changes in anthropometry and speed-strength over 2 years in elite volleyball players. We have demonstrated that large changes in vertical jump ability and speed-strength and improvements in lean mass can be realized, even in such a highly trained population. This investigation provides the strength coach and sport scientist with the basis of a rationale to prioritize: 1. Reducing fat mass; 2. increasing stretch load tolerance (through depth jumping and other jumping methods) and 3. increasing loaded jump performance, in elite national team players. Total skin-fold thickness was reduced by a large magnitude (d=0.70, p<0.001) over the course of this investigation, supporting a moderate and significant (d=0.65, p<0.001) LMR increase from 1.7 to 1.9 (Table 1). In a comparison of athletes transitioning from junior to senior elite

9 competition over a similar time period to this study, LMR was observed to increase from 1.5 to 1.8 (10). Considered together, these results emphasize the importance of increasing lean mass in junior elite players to accommodate the large increases in strength observed (10), but also that further reductions in fat-mass and increases in LMR should be expected for elite volleyball players. It stands to reason that in a sport where jumping ability is of primary importance (4, 5, 6, 7, 9), training should be aimed at increased strength and maximal power whilst maintaining very low fat mass. During the course of this investigation, the participants improved their CMVJ and SPJ by 0.045 m and 0.090 m respectively, which are considered moderate-large, and practical, change magnitudes (d=0.52 & d=0.70, p<0.001). These improvements suggest that not only are increases in jumping ability required for developing volleyball players (10, 11), but also that further improvements can and should be made within elite populations. Our present results support previous findings that demonstrate the importance of depth jump ability in volleyball players, and the likely relationship between developing depth jump ability and improving both CMVJ and SPJ (4, 6, 9). In the current investigation, DJ scores improved by 0.041 m (d=0.51, p<0.001). Considering these results, as well as others that demonstrate strong association between improving depth jumping ability and increasing CMVJ and SPJ (1, 4, 6, 9), strength and conditioning coaches should consider improving stretch load tolerance in depth jumping and related activities, as an important training priority in elite volleyball players. The large increases in loaded jump squat height (d=0.70, p=0.001) demonstrate the importance of fast force production in elite volleyball players. This quality is highly trainable in developing volleyball players (10), and the results of the present study supports the trainability of this quality even in elite players. Furthermore, the results of this study highlight the potential association between increased power output under load and improved vertical jump ability in volleyball players. As recently highlighted by Cormie et al (2), increased force, impulse and

10 power output during jumping is in part a result of more effective utilization of the eccentric phase. Although not assessed in the current study, improvement in DJ performance indirectly lends support to this suggestion. Examinations of training-induced changes are rare in elite populations of athletes. The results of this study suggest that even in elite populations, several impactful gains can be made in anthropometry, stretch-shorten cycle function, and speed-strength, which may underpin vertical jump improvement in elite volleyball players. PRACTICAL APPLICATIONS Large changes in vertical jump ability, lower body power, and improvements in lean mass can be realized in already well trained volleyball players. These results provide the strength coach and sport scientist with the basis of a rationale to prioritize: 1. Reducing fat mass; 2. increasing stretch load tolerance (through depth jumping and other jumping methods) and 3. increasing loaded jump performance, in elite national team players. Volleyball players should be expected to increase their CMVJ and SPJ, even at the most elite level. This may be in part accomplished through reducing fat mass, improving force and power output during jumping, and development of high levels of stretch load tolerance in SSC activity. Strength and conditioning coaches should prioritize training for each individual volleyball player based on a testing profile, in order to highlight areas of relative weakness, and in turn, to best exploit trainable qualities in elite players.

11 REFERENCES 1. Bobbert, MF. Drop jumping as a training method for jumping ability. Sports Med. 9: 7-22. 1990. 2. Cormie, P, Mcguigan, MR and Newton, RU. Changes in the eccentric phase contribute to improved stretch-shorten cycle performance after training. Med Sci Sports Exerc. 42: 1731-1744. 2010. 3. Polgaze, T and Dawson, B. The physiological requirements of the positions in state league volleyball. Sports Coach. 15: 32-37. 1992. 4. Sheppard, JM, Chapman, D, Gough, C, McGuigan, MR and Newton, RU. Twelve month training induced changes in elite international volleyball players. J Strength Cond Res. 23: 2096-2101. 2009. 5. Sheppard, JM, Cormack, S, Taylor, KL, McGuigan, MR and Newton, RU. Assessing the force-velocity characteristics of well trained athletes: the incremental load power profile. J Strength Cond Res. 22: 1320-1326. 2008. 6. Sheppard, JM, Cronin, J, Gabbett, TJ, McGuigan, MR, Extebarria, N and Newton, RU. Relative importance of strength and power qualities to jump performance in elite male volleyball players. J Strength Cond Res. 22: 758-765. 2007. 7. Sheppard, JM, Gabbett, T and Stanganelli, LC. An analysis of playing positions in elite mens' volleyball: considerations for competition demands and physiological characteristics. J Strength Cond Res. 23: 1858-1866. 2009. 8. Sheppard, JM, Gabbett, TJ, Taylor, KL, Dorman, J, Lebedew, AJ and Borgeaud, R. Development of a repeated-effort test for elite men's volleyball. International Journal of Sports Physiology and Performance. 2: 292-304. 2007. 9. Sheppard, JM, McGuigan, MR and Newton, RU. The effects of depth-jumping on vertical jump performance of elite volleyball players: an examination of the transfer of increased stretch-load tolerance to spike jump performance. Journal of Australian Strength and Conditioning. 16: 3-10. 2008. 10. Sheppard, JM, Nolan, E and Newton, RU Two year changes in strength and power qualities in volleyball players successfully progressing from junior to senior national team, in Australian Strength and Conditioning Association-International Conference on Applied Strength and Conditioning. 2010: Gold Coast, Australia. 11. Stanganelli, LC, Dourado, AC, Oncken, P, Mancan, S and Cesar da Costa, S. Adaptations on jump capacity of Brazilian volleyball players prior to the under 19 World championships. J Strength Cond Res. 22: 741-749. 2008. 12. Viitasalo, JT. Evaluation of physical performance characteristics in volleyball. International Volleyball Technique. 3: 4-8. 1991.

12 FIGURE LEGENDS Figure 1: Mean (±SD) of two year changes in counter-movement vertical jump (CMVJ), depthjump, and spike jump of elite male volleyball players (n: 14). All changes statistically significant (p<0.01) Figure 2: Mean (±SD) of two year changes in unloaded (JSBW) and loaded jump squat (bodyweight + 50% body-weight, JS50) performance of elite male volleyball players (n: 14). * Indicates change is statistically significant (p<0.001)

13 Table 1: Changes (mean ±SD) in anthropometric variables over 2 years in elite male volleyball players (n=14) Pre-Test Post-Test ES (d) Magnitude Alpha (p) Height (cm) 198.1 ±7.0 187.8 ±7.1 0.04 No change 0.415 Mass (kg) 91.7 ±7.9 92.7 ±6.9 0.14 No change 0.225 Skinfolds (mm) 56.7 ±9.0 50.8 ±8.5 0.7 Large <0.001 Alpha <0.05 considered significant LMR 1.7 ±0.3 1.9 ±0.3 0.65 Moderate <0.001

14 Table 2: Changes (mean ±SD) in speed-strength variables over 2 years in elite male volleyball players (n=14) Pre-Test Post-Test ES (d) Magnitude Alpha (p) Unloaded Jump Squat Peak Power (W) 6978 ±1256 7440 ±890 0.51 Moderate 0.043 Relative Peak Power (W/kg) 76.2 ±12.3 80.4 ±9.1 0.47 No change 0.069 Force (N) 2140 ±243 2228 ±209 0.42 No change 0.104 Jump Height (m) 0.502 ± 0.065 0.512 ± 0.066 0.15 No change 0.365 Loaded Jump Squat (+50% BM) Peak Power (W) 5793 ±771 5957 ±742 0.22 No change 0.287 Relative Peak Power (W/kg) 63.2 ±6.3 64.4 ±7.7 0.16 No change 0.393 Force (N) 2579 ±283 2640 ±232 0.26 No change 0.246 Jump Height (m) 0.340 ±0.038 0.376 ±0.052 0.7 Large <0.001 Alpha <0.05 considered significant

15