Rao and Gowrisankar: Stability-indicating RP-HPLC Method for Pseudoephedrine, Ambroxol and Desloratadine

Similar documents
CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

Pelagia Research Library

Stability indicating RP-HPLC method development and validation of Etizolam and Propranolol hydrochloride in pharmaceutical dosage form

J Pharm Sci Bioscientific Res (4): ISSN NO

Journal of Chemical and Pharmaceutical Research, 2017, 9(9): Research Article

Development and validation of stability indicating RP-LC method for estimation of calcium dobesilate in pharmaceutical formulations

RP-HPLC Analysis of Temozolomide in Pharmaceutical Dosage Forms

A stability indicating RP-HPLC method for simultaneous estimation of darunavir and cobicistat in bulk and tablet dosage form

CHAPTER INTRODUCTION OF DOSAGE FORM AND LITERATURE REVIEW

Simultaneous estimation of Metformin HCl and Sitagliptin in drug substance and drug products by RP-HPLC method

Available online at Scholars Research Library

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

Isocratic Reversed Phase Liquid Chromatographic Method Validation for the Determination of Cilostazol in Pure and Formulations

A Validated Stability Indicating RP-HPLC Method for Simultaneous Estimation of Valsartan and Clinidipine Combined Tablet dosage forms

Development and validation of related substances method for Varenicline and its impurities

Development and Validation for Simultaneous Estimation of Sitagliptin and Metformin in Pharmaceutical Dosage Form using RP-HPLC Method

Hyderabad, India. Department of Pharmaceutical Chemistry, Glocal University, Saharanpur, India.

VALIDATED RP-HPLC METHOD FOR SIMULTANEOUS ESTIMATION OF DEXAMETHASONE AND GRANISETRON IN COMBINED DOSAGE FORMS

Available online Research Article

Development and Validation of Stability Indicating HPLC method for Determination of Eperisone HCL in Bulk and in Formulation

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR ESTIMATION OF LACOSAMIDE IN BULK AND ITS PHARMACEUTICAL FORMULATION

Method Development and Validation for the Estimation of Saroglitazar in Bulk and Pharmaceutical Dosage Form by RP-HPLC

World Journal of Pharmaceutical Research

Scholars Research Library. Der Pharmacia Lettre, 2015, 7 (5):44-49 (

Research Article Simultaneous Estimation of DL-Methionine and Pyridoxine Hydrochloride in Tablet Dosage Form by RP-HPLC

International Journal of Pharma and Bio Sciences DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR THE ESTIMATION OF STRONTIUM RANELATE IN SACHET

Journal of Chemical and Pharmaceutical Research

Pelagia Research Library

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

A New Stability-Indicating and Validated RP-HPLC Method for the Estimation of Liraglutide in Bulk and Pharmaceutical Dosage Forms

International Journal of Medicine and Pharmaceutical Research. International Journal of Medicine and Pharmaceutical Research

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD ESTIMATION OF TOLVAPTAN IN BULK PHARMACEUTICAL FORMULATION

IJPAR Vol.3 Issue 4 Oct-Dec-2014 Journal Home page:

Reverse Phase HPLC Analysis of Atomoxetine in Pharmaceutical Dosage Forms

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Scholars Research Library. Der Pharmacia Lettre, 2016, 8 (6): (

RP-HPLC Method Development and Validation of Abacavir Sulphate in Bulk and Tablet Dosage Form

ISSN (Print)

A simple validated RP-HPLC method for quantification of sumatriptan succinate in bulk and pharmaceutical dosage form

Development and validation of RP-HPLC method for simultaneous estimation of gliclazide and metformin in pure and tablet dosage form

International Journal of Pharma and Bio Sciences

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS TOLBUTAMIDE IN PURE AND PHARMACEUTICAL FORMULATIONS

Simultaneous Estimation of Gemcitabine Hydrochloride and Capecitabine Hydrochloride in Combined Tablet Dosage Form by RP-HPLC Method

ANALYTICAL TECHNIQUES FOR THE QUALITY OF ANTI- AIDS DRUGS

SIMULTANEOUS ESTIMATION OF VALSARTAN AND HYDROCHLOROTHIAZIDE IN TABLETS BY RP-HPLC METHOD

Tentu Nageswara Rao et al. / Int. Res J Pharm. App Sci., 2012; 2(4): 35-40

DEVELOPMENT AND STABILITY INDICATING HPLC METHOD FOR DAPAGLIFLOZIN IN API AND PHARMACEUTICAL DOSAGE FORM

Research Article Derivative Spectrophotometric Method for Estimation of Metformin Hydrochloride in Bulk Drug and Dosage Form

Development, Estimation and Validation of Lisinopril in Bulk and its Pharmaceutical Formulation by HPLC Method

36 J App Pharm Vol. 6; Issue 1: 36-42; January, 2014 Rao et al., 2014

Journal of Chemical and Pharmaceutical Research, 2013, 5(1): Research Article

Stress Degradation Studies And Validation Method For Quantification Of Aprepitent In Formulations By Using RP-HPLC

Scholars Research Library

Stability Indicating Method Development and Validation for the Estimation of Rotigotine by RP-HPLC in Bulk and Pharmaceutical Dosage Form

Method Development and Validation for Simultaneous Estimation of Atorvastatin and Ezetimibe in Pharmaceutical Dosage Form by HPLC

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Volume 2 (6), 2014, Page CODEN (USA)-IJPRUR, e-issn: International Journal of Pharma Research and Health Sciences

Simple and stability indicating RP-HPLC assay method development and validation lisinopril dihydrate by RP-HPLC in bulk and dosage form

Int. J. Pharm. Sci. Rev. Res., 30(1), January February 2015; Article No. 32, Pages:

Sujatha and Pavani et.al. Indian Journal of Research in Pharmacy and Biotechnology ISSN: (Print) ISSN: (Online)

DEVELOPMENT AND VALIDATION OF NEW HPLC METHOD FOR THE ESTIMATION OF PALIPERIDONE IN PHARMACEUTICAL DOSAGE FORMS

Available online Research Article

Dhull Rohit, Kumar Sanjay, Jalwal Pawan Department of Chemistry, OPJS Churu, Rajasthan, India

NOVEL RP-HPLC METHOD. B.Lakshmi et a. concentration range KEY INTRODUCTION. Diltiazem is used to. . It works by of contractionn of the. (dilate).

Uttam Prasad Panigrahy 1, A. Sunil Kumar Reddy 2, 3 1 Department of Pharmaceutical Analysis and Quality Assurance, Malla Reddy College of Pharmacy,

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

DEVELOPMENT OF RP-HPLC METHOD FOR ESTIMATION OF DROTAVERINE HYDROCHLORIDE IN PHARMACEUTICAL FORMULATIONS

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR QUANTITATIVE ANALYSIS OF TRAMADOL IN PURE AND PHARMACEUTICAL FORMULATIONS

Available online at Scholars Research Library

(ACE) inhibitor class that is primarily used in cardiovascular. conditions. Lisinopril was introduced into therapy in the early

Journal of Chemical and Pharmaceutical Research, 2018, 10(3): Research Article

REVERSE PHASE HPLC METHOD FOR THE ANALYSIS OF ALFUZOSIN HYDROCHLORIDE IN PHARMACEUTICAL DOSAGE FORMS

RP-HPLC METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF BACLOFEN IN BULK AND PHARMACEUTICAL DOSAGE FORMS

AMERICAN JOURNAL OF BIOLOGICAL AND PHARMACEUTICAL RESEARCH

Volume 6, Issue 1, January February 2011; Article-021

Development and Validation of Stability Indicating HPTLC Method for Estimation of Seratrodast

International Journal of Pharmacy and Pharmaceutical Sciences. Research Article

CHAPTER 2 SIMULTANEOUS DETRMINATION OF ANASTROZOLE AND TEMOZOLOMIDE TEMOZOLOMIDE CAPSULES 20 MG AND ANASTROZOLE TABLETS 1 MG

ESTIMATION OF RELATED SUBSTANCES OF FEBUXOSTAT IN BULK & 40/80/120mg TABLETS BY RP-HPLC

Pelagia Research Library

New RP-HPLC Method for the Determination of Fludarabine in Pharmaceutical Dosage Forms

Journal of Chemical and Pharmaceutical Research

Estimation of Emtricitabine in Tablet Dosage Form by RP-HPLC

RP-HPLC Method for the Simultaneous Estimation of Sitagliptin Phosphate and Metformin Hydrochloride in Combined Tablet Dosage Forms

S. G. Talele, D. V. Derle. Department of Pharmaceutics, N.D.M.V.P. College of Pharmacy, Nashik, Maharashtra, India

Introductionn Ilaprazole (ILA) is

vii LIST OF TABLES TABLE NO DESCRIPTION PAGE 1.1 System Suitability Parameters and Recommendations Acidic and Alkaline Hydrolysis 15


Development of a Validated RP-HPLC Method for the Analysis of Citicoline Sodium in Pharmaceutical Dosage Form using Internal Standard Method

A. Prameela Rani*, K.E.Pravallika, P.Ravi, O.Sasivardhan

Int. Res J Pharm. App Sci., 2012; 2(3):22-28

Available online at Scholars Research Library

Method development and validation for the simultaneous estimation of saxagliptin and metformin in tablet dosage form by RP-HPLC method

Corresponding Author:

DEVELOPMENT AND VALIDATION OF RP-HPLC METHOD FOR DETERMINATION OF ROSUVASTATIN CALCIUM IN BULK AND PHARMACEUTICAL DOSAGE FORM

ISSN: ; CODEN ECJHAO E-Journal of Chemistry 2011, 8(3),

A HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC ASSAY FOR LERCANIDIPINE HYDROCHLORIDE

Method Development And Validation Of Losartan Potassium And Hydrochlorothiazide In Comined Dosage Form By RP-HPLC

RP- HPLC and Visible Spectrophotometric methods for the Estimation of Meropenem in Pure and Pharmaceutical Formulations

Analytical Method Development and Validation for the Estimation of Imatinib Mesylate and its Impurity in Pharmaceutical Formulation by RP-HPLC

Transcription:

Research Paper Development and Validation of Stability-indicating RP- HPLC Method for the Estimation of Pseudoephedrine, Ambroxol and Desloratadine in Bulk and Tablet Dosage Forms N. MALLIKARJUNA RAO* AND D. GOWRI SANKAR 1 Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Kakinada, 1 Department of Pharmaceutical Analysis and Quality Assurance, Andhra University, Visakhapatnam, India Rao and Gowrisankar: Stability-indicating RP-HPLC Method for Pseudoephedrine, Ambroxol and Desloratadine A simple, accurate, selective and stability-indicating RP-HPLC method was developed for the simultaneous estimation of pseudoephedrine, ambroxol and desloratadine in bulk and their tablet formulations. Effective chromatographic separations were achieved on a Hypersil BDS C8, 250 4.6 mm, 5 µ column with reverse phase elution. The mobile phase composed of 0.01 M potassium dihydrogen phosphate and acetonitrile in the ratio of 50:50 v/v at a flow rate of 1.0 ml/min. The detection was carried out at 220 nm. The retention times were 2.2 min for pseudoephedrine, 3.4 min for ambroxol and 5.5 min for desloratadine. The linearity ranges for pseudoephedrine, ambroxol and desloratadine were 15 to 90 µg/ml, 30 to 180 µg/ml and 2.5 to 15 µg/ml, respectively with correlation coefficient 0.999. The developed method was validated statistically with respect to linearity, range, precision, accuracy, specificity, robustness, ruggedness, detection and quantification limits and also subjected to stress conditions like acidic and alkaline hydrolysis, oxidation, photolysis and thermal degradation. The method was accurate, precise, specific, rapid and found to be suitable for the analysis of commercial samples. Key words: Stability-indicating, pseudoephedrine, ambroxol, desloratadine, RP-HPLC Pseudoephedrine hydrochloride (PSD) is (1S,2S)- 2-methylamino-1-phenylpropan-1-ol hydrochloride and official in European Pharmacopoeia and U.S. Pharmacopoeia. Ambroxol hydrochloride (AMB) is trans-4-[(2-amino-3,5-dibromobenzyl)amino] cyclohexanol hydrochloride and official in British Pharmacopoeia. Desloratadine (DLT) is 8-chloro- 6,11-dihydro-11-(4-piperdinylidene)-5H-benzo[5,6] cyclohepta[1,2-b] pyridine is non pharmacopeial drug. Fig. 1 shows chemical structures of three analytes. The three drug combination in the ratio of 30:60:5 mg PSD, AMB and DLT, respectively in tablet dosage form is available under the brand name Nucope- AD. A few methods have been reported individually or in combination with other drugs including simultaneous estimation of AMB and loratadine by spectrophotometric method [1], high performance liquid chromatographic (HPLC) method [2-3], simultaneous estimation of AMB and DLT by spectrophotometric method [4-6], HPLC [7,8], HPTLC [9]. Since no methods were reported for the simultaneous estimation of PSD, *Address for correspondence E-mail: mallimpharmmba@gmail.com AMB and DLT in bulk and pharmaceutical dosage forms, an attempt was made to develop a simple, accurate, precise and rugged method was developed for the estimation of these drugs simultaneously in bulk and tablet formulations. MATERIALS AND METHODS HPLC grade acetonitrile, potassium dihydrogen phosphate AR Grade and potassium hydroxide AR grade were purchased from SD Fine-Chem, Mumbai, India were used in the study. Reference samples were obtained from M/s. Richer Pharmaceuticals, Hyderabad, India. Chromatographic conditions: This is an open access article distributed under terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows other the remix, tweak, and build up to the non-commercially, as long as the author is credited and the new creations are licensed under the identical terms. Accepted 18 August 2016 Revised 13 August 2016 Received 28 May 2016 Indian J Pharm Sci 2016;78(4):492-497 July-August 2016 Indian Journal of Pharmaceutical Sciences 492

A B C Fig. 1: Chemical structures of analytes. Chemical structures of A. pseudoephedrine HCl, B. ambroxol HCl and C. desloratadine. A HPLC system equipped with Waters e2695 separation module with HPLC instrument provided with photo diode array (PDA) detector, autosampler with Empower 2 software from Waters corporation, Milford, USA was employed in the study. The chromatographic separations were achieved on a Hypersil BDS C8, 250 4.6 mm, 5 µ column. Preparation of mobile phase: Weighed and dissolved 1.36 g of potassium dihydrogen phosphate in 1000 ml of water (adjusted ph to 6.5±0.05 with dilute potassium hydroxide) and acetonitrile in the ratio of 50:50 v/v was filtered through 0.22 µ membrane filter and degassed. Mobile phase was used as diluent. The mobile phase was filtered and sonicated before use. The flow rate of the mobile phase was maintained at 1.0 ml/min. The column temperature was maintained at 30 and the detection of the drug was carried out at 220 nm. Preparation of standard solution: Weighed accurately 30.0 mg of PSD, 60.0 mg of AMB and 5.0 mg of DLT on a Sartorius semi-micro balance model-cpa225d and transferred in to a 50 ml volumetric flask. The solution was sonicated and the resulting solution was diluted with the mobile phase to get a working standard solution containing 600 µg/ml PSD, 1200 µg/ml AMB and 100 µg/ml DLT. Working solutions were prepared by diluting the working standard solution in the concentration ranges 15-90 µg/ml, 30-180 µg/ml, and 2.5-15.0 µg/ml for PSD, AMB and DLT, respectively. Each concentration was injected thrice under described chromatographic conditions. The calibration curve constructed peak area against concentration. Sample preparation: Weighed accurately previously weighed and crushed 20 tablet powder equivalent to one tablet weight containing 30 mg of PSD, 60 mg of AMB and 5 mg of DLT. This powder was transferred to a 50 ml volumetric flask, and volume is made up to the mark in mobile phase, sonicated to dissolve and filtered through Whatman filter paper. It was further diluted 10 ml of the stock solution to 100 ml with mobile phase. Forced degradation and stability-indicating tests [10] : Weighed accurately 30.0 mg of PSD, 60.0 mg of AMB and 5.0 mg of DLT, and transferred to 50 ml volumetric flask and dissolved in mobile phase with sonication and the resulting solution was diluted with the mobile phase to get a working standard solution containing 600 µg/ml PSD, 1200 µg/ml AMB and 100 µg/ml DLT. To determine acid degradation, 10 ml of 1 N HCl was added to 10 ml of stock solution, kept at 80 for about 6 h in a water bath, cooled volume was made up to 100 ml with the mobile phase and filtered through 0.22 μ membrane filter. To determine alkali-induced degradation, 10 ml of 1 N NaOH was added to 10 ml of stock solution, heated at 80 at 6 h in a water bath, allowed to cool, volume made up to 100 ml with mobile phase and filtered through a 0.22 μ membrane filter. To determine oxidative degradation 5 ml of 3% H 2 O 2 was added to 10 ml of stock solution, heated at 80 for 3 h in a water bath, allowed to cool, volume made up to 100 ml with mobile phase and filtered through a 0.22 μ membrane filter. Thermal degradation was determined by keeping 10 ml of stock solution at 80 for 10 days, allowed to cool, volume made up to 100 ml with mobile phase and filtered through a 0.22 μ membrane filter. RESULTS AND DISCUSSION 493 Indian Journal of Pharmaceutical Sciences July-August 2016

Method validation was performed following ICH Q2 guideline specifications [11]. System suitability is an integral part of the method validation and performed to evaluate the parameters like tailing factor, theoretical plates, resolution and %RSD for replicate injections. The results were within the limits and were presented in Table 1 while the fig. 2 displayed the system suitability chromatogram. In the blank chromatogram, there were no peaks observed at the retention times of PSD, AMB and DLT, and also the degradation studies showed that there TABLE 1: SYSTEM SUITABILITY RESULTS was no interference with degradants, purity angle was less than the purity threshold for the sample solution indicating that the method is specific. To determine the accuracy of the proposed method, recovery experiments were conducted; known concentration of pure drug was spiked at three different levels, 50, 100 and 150% and was calculated. Accuracy was calculated as the percentage of recovery and the results were tabulated in Table 2. The precision was evaluated at three levels, repeatability, reproducibility and intermediate precision each level Parameter Results Pseudoephedrine Ambroxol Desloratadine % RSD of peak area 0.17 0.32 049 % RSD of retention time 0.19 0.19 0.13 Tailing factor (T) 1.15 1.16 1.38 Theoretical plate (N) 3239 3278 3116 Resolution (R) - 5.35 6.48 Fig. 2: Typical HPLC chromatogram of mixture containing three components. TABLE 2: ACCURACY DATA Parameter Amount added (µg) Amount recovered (µg) % recovery Mean % recovery Pseudoephedrine 50% level 30.0 29.79 99.31 99.54 100%level 60.0 59.89 99.81 150%level 90.0 89.54 99.49 Ambroxol 50% level 60.0 59.5 99.17 99.85 100%level 120.0 120.42 100.35 150%level 180.0 180.18 100.1 Desloratadine 50% level 5.0 4.94 98.71 99.68 100% level 10.0 10.005 100.05 150% level 15.0 15.04 100.27 Values are mean of triplicate analysis at 50,100 and 150% levels July-August 2016 Indian Journal of Pharmaceutical Sciences 494

of precision was investigated by six replicate injections of concentrations 120, 100 and 10 µg/ml PSD, AMB and DLT, respectively. The result of precision was expressed as percentage relative standard deviation (% RSD) and was tabulated in Table 3. The linearity of the measurement was evaluated by analyzing different concentrations (25% to 150%) of the standard solutions of PSD, AMB and DLT. Calibration curve was constructed by plotting concentration against mean peak area and the regression equation was computed. The summary of the parameters is shown in Table 4. Estimation of limit of detection (LOD) and limit of quantification (LOQ) considered the acceptable signal-to-noise ratios 3:1 and 10:1, respectively. LOD and LOQ determined were 0.3235 µg/ml and 0.98 µg/ ml for PSD, 1.2344 and 3.741 µg/ml for AMB and 0.1575 µg/ml and 0.4772 µg/ml for DLT, respectively. The robustness of the method was evaluated by subjecting the 100% test concentration to small but deliberate changes in the chromatographic conditions like, flow rate, mobile phase composition and column temperature and the results were shown in Table 5. The ruggedness of the proposed method was determined TABLE 3: PRECISION STUDIES Parameter Pseudoephedrine Ambroxol Desloratadine Repeatability RSD of Retention time 0.19 0.19 0.13 RSD of Peak Area 0.17 0.32 0.49 Reproducibility RSD of Retention time 0.13 0.11 0.11 RSD of Peak Area 0.59 0.56 0.49 Intermediate Precision RSD of Retention time 0.20 0.13 0.09 RSD of Peak Area 0.17 0.29 0.49 TABLE 4: REGRESSION EQUATION PARAMETERS Parameter Pseudoephedrine Ambroxol Desloratadine Linearity range(µg/ml) 15 to 90 30 to 180 2.5 to 15 Correlation co-efficient 0.999 0.999 0.999 Slope 19380 13786 28705 Y-intercept -12178-16085 -3795 TABLE 5: ROBUSTNESS STUDY Parameter Variation Chromatographic Conditions Retention time Area Theoretical Plates Tailing Factor PSD AMB DLT PSD AMB DLT PSD AMB DLT PSD AMB DLT Flow change 0.9 ml/min 2.553 3.868 6.274 1327568 1891871 324566 3474 3601 3230 1.18 1.17 1.39 1 ml/min 2.241 3.402 5.511 1140569 1621587 281024 3239 3278 3116 1.15 1.16 1.38 1.1 ml/min 2.005 3.038 4.908 1035509 1474678 254981 3982 2991 2897 1.14 1.15 1.38 Temperature 25 2.257 3.512 6.450 1158053 1647565 284220 2212 3102 2527 1.17 1.16 1.41 30 2.241 3.402 5.511 1140569 1621587 281024 3239 3278 3116 1.15 1.16 1.38 35 2.029 3.299 4.792 1161505 1654521 283817 2239 3525 4172 1.16 1.15 1.29 Wavelength 218 nm 2.227 3.496 5.55 1163102 1659076 283013 2223 3554 4154 1.16 1.15 1.28 220 nm 2.241 3.402 5.511 1140569 1621587 281024 3239 3278 3116 1.15 1.16 1.38 222 nm 2.223 3.495 5.448 1161021 1654354 284565 2246 3564 4176 1.15 1.15 1.28 TABLE 6: ASSAY RESULTS Drug Labeled amount (mg/tab) Amount found (mg/tab) % of Assay Pseudoephedrine 30 29.76 99.21 Ambroxol 60 59.522 99.20 Desloratadine 5 4.969 99.37 495 Indian Journal of Pharmaceutical Sciences July-August 2016

by analysing the same sample using different columns, different analysts, and on different instruments. The stability studies of the standard solution were conducted at intervals of 24 h and 48 h at room temperature. There were no significant changes observed TABLE 7: DEGRADATION STUDIES in system suitability parameters like theoretical plates, tailing factor, retention time and resolution. Hence the standard solution was found to be stable up to 48 h on the bench top. The stability study of the mobile phase was conducted at intervals of 24 h and 48 h at room temperature. There were no significant changes Stress condition % Assay of active ingredient Purity angle Purity threshold PSD AMB DLT Acid degradation (1N HCl for 6 h) 88.1 84.7 89.4 0.829 1.071 Alkali degradation (1M NaoH for 6 h) 89.3 89.0 87.1 0.757 0.989 Thermal degradation (80 for 10 days) 90.9 85.2 88.8 0.981 1.082 Photolytic (UV 200 Watt hours) 90.0 89.1 88.8 0.763 0.921 A B C D Fig. 3: Chromatograms of test sample subjected to different forced degradation conditions. A. acid stress degradation; B. alkali stress degradation; C. oxidative stress degradation; D. thermal stress degradation. July-August 2016 Indian Journal of Pharmaceutical Sciences 496

observed in system suitability parameters like peak area, theoretical plates, tailing factor, retention time and resolution. Hence the mobile phase is stable up to 48 h at room temperature. The proposed method was applied successfully for the analysis of PSD, AMB and DLT in tablet dosage forms, satisfactory results were obtained and the results were summarized in Table 6. Since no interference of blank and degradants, the HPLC results showed that the three active ingredients PSD, AMB and DLT. Purity angle was less than the purity threshold and hence the proposed method was the specific and revealed its stability-indicating power. The results were summarized in Table 7. Fig. 3 displays chromatograms of samples subjected to different stress degradations. A simple, specific and reliable reverse phase HPLC- DAD method was developed for the estimation of PSD, AMB and DLT in their pharmaceutical formulation. The three compounds were subjected to forced degradation applying several stress conditions. The proposed method successfully separated all the three compounds with degradants, the active contents were estimated. The proposed method is specific and stability-indicating. Hence the developed method can be adapted to regular quality control analysis. Acknowledgements: The authors thank M/s Richer Pharmaceuticals, Hyderabad for providing standards and lab facilities. The authors also thank Department of Pharmaceutical Analysis, Jawaharlal Nehru Technological University, Kakinada, Department of Pharmaceutical Analysis and Quality Assurance, Andhra University, Vishakhapatnam, India for their encouragement. Financial support and sponsorship: Nil. Conflicts of interest: There are no conflicts of interest. REFERENCES 1. Ilangovan P, Chebrolu SNK, Asha P. Simultaneous estimation of ambroxol hydrochloride and loratadine in tablet dosage form by using UV spectrophotometric method. Int J Pharma Bio Sci 2011;2:338-44. 2. Krishnaveni N, Meyyanathan SN, Rajinikanth BR, Suresh R, Jeyaprakash MR, Arunadevi SB, et al. A RP-HPLC method for simultaneous estimation of ambroxol hydrochloride and loratadine in pharmaceutical formulation. Res J Pharm Tech 2008;1:366-9. 3. Sateesh PL, Pavithra V, Bishupada B, Nagarjun Reddy G. Method development and validation of ambroxol hydrochloride and loratadine by RP-HPLC in tablet dosage form. Int J Pharm Sci 2013;3:370-4. 4. Sharma E, Nehal JS. Development and validation of first order derivative spectrophotometric method for simultaneous estimation of ambroxol hydrochloride and desloratadine hydrochloride in combined tablet dosage form. Int J Pharm Res Bio Sci 2012;1:155-66. 5. Sharma EA, Shah NJ. Development and validation of dual wavelength UV spectrophotometric method for simultaneous estimation of ambroxol and hydrochloride and desloratadine hydrochloride in their combined tablet dosage form. Int J Pharm Sci Res 2012;3:2584-9. 6. Sharma EA, Shah NJ. Development and validation of Q-absorbance ratio method for simultaneous estimation of ambroxol and desloratadine in combined tablet dosage form. Int J Pharm Chem Sci 2012;1:773-8. 7. Moses PF, Prathap S, Raja A, Banji D. Analytical method development and validation for simultaneous estimation of ambroxol and desloratadine in its pharmaceutical dosage forms by RP-HPLC. World J Pharm Pharm Sci 2013;2:6246-62. 8. Babu G, Shirin K, Rajapandi R. RP-HPLC Method for the simultaneous estimation of ambroxol hydrochloride and desloratadine in pure and dosage form. Der Pharmacia Lett 2013;5:391-6. 9. Sharma EA, Shah NJ. Development and validation of HPTLC method for simultaneous estimation of ambroxol hydrochloride and desloratadine hydrochloride in their combined tablet dosage form. Int Res J Pharm 2012;3:305-8. 10. Mallikarjuna Rao N, Gowri Sankar D. Development and validation of stability-indicating HPLC-DAD method for simultaneous determination of emtricitabine, elvetegravir, cobicistat and tenofovir in their tablet dosage forms. Indian J Pharm Ed Res 2016;50:205-11. 11. ICH, Q2(R1), Harmonised Tripartite Guidelines, Validation of Analytical Procedures, Text and Methodology, London; 2009. 497 Indian Journal of Pharmaceutical Sciences July-August 2016