Chapter 13. Viruses, Viroides and Prions

Similar documents
Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 6- An Introduction to Viruses*

The Zombies of the Scientific Community Viruses and Other Acellular Infectious Agents. Acellular Agents

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Introduction to viruses. BIO 370 Ramos

Viral structure م.م رنا مشعل

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes

Chapter 18. Viral Genetics. AP Biology

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

Characterizing and Classifying Viruses, Viroids, and Prions

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

History of Virology. Russian Bacteriologist Dimitri Iwanowski TMD tobacco mosaic disease TMV isolated and purified

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Lecture 2: Virology. I. Background

Characterizing and Classifying Viruses, Viroids, and Prions

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range

Size nm m m

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

Chapter 13B: Animal Viruses

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

Viral reproductive cycle

Viruses and Prions (Chapter 13) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Microbiology Chapter 7 Viruses

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment.

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus.

Characterizing and Classifying Viruses, Viroids, and Prions

Overview: Chapter 19 Viruses: A Borrowed Life

Viruses, Viroids, and Prions

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes.

Ch. 19 Viruses & Bacteria: What Is a Virus?

Chapter 19: The Genetics of Viruses and Bacteria

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

1. Virus 2. Capsid 3. Envelope

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

Chapter 12: Acellular Agents: Viruses, Viroids and Prions

General Virology I. Dr Esam Ibraheem Azhar (BSc, MSc, Ph.D Molecular Medical Virology) Asst. Prof. Medical Laboratory Technology Department

LEC 2, Medical biology, Theory, prepared by Dr. AYAT ALI

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion

Lecture Guide Viruses (CH13)

VIRUSES. 1. Describe the structure of a virus by completing the following chart.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Dr. Gary Mumaugh. Viruses

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat

How could the small size of viruses have helped researchers detect viruses before the invention of the electron microscope? 13-1

PHARMACEUTICAL MICROBIOLOGY JIGAR SHAH INSTITUTE OF PHARMACY NIRMA UNIVERSITY

History electron microscopes

Viruses. An Illustrated Guide to Viral Life Cycles to Accompany Lecture. By Noel Ways

Viruses. CLS 212: Medical Microbiology Miss Zeina Alkudmani

Viruses Tomasz Kordula, Ph.D.

Virology. What is a virus? How do viruses differ from cellular microorganisms?

LESSON 1.4 WORKBOOK. Viral sizes and structures. Workbook Lesson 1.4

Warts are a skin virus!

Viruses. Non-cellular organisms. Premedical - Biology

VIROIDS, PRIONS. Infectious Stage When virus infects a cell, nucleic acid must be uncoated and gain access to metabolic machinery of cell.

Bacteriophage Reproduction

Introductory Virology. Ibrahim Jamfaru School of Medicine UHAS

Virus and Prokaryotic Gene Regulation - 1

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION

MONTGOMERY COUNTY COMMUNITY COLLEGE CHAPTER 13: VIRUSES. 1. Obligate intracellular parasites that multiply in living host cells

18.2 Viruses and Prions

number Done by Corrected by Doctor Ashraf

2.1 VIRUSES. 2.1 Learning Goals

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1

Notes: Virology. Read & Answer Questions from the following notes into your ISN to study

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

18.2. Viral Structure and Reproduction. Viruses differ in shape and in ways of entering

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts)

CONTENTS. 1. Introduction. 4. Virology. 2. Virus Structure. 5. Virus and Medicine. 3. Virus Replication. 6. Review

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Unit 4 Student Guided Notes

19 2 Viruses Slide 1 of 34

Section A: The Genetics of Viruses

Viruses. Objectives At the end of this sub section students should be able to:

Viruses. Picture from:

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Date. Student Name. Prompt: This passage is called Characteristics of Viruses. It is about viruses.

علم األحياء الدقيقة Microbiology Introduction to Virology & Immunology

Virus Infections and Hosts

A virus consists of a nucleic acid surrounded by a protein coat. [2]

number Done by Corrected by Doctor Ashraf Khasawneh

VIRUS TAXONOMY AND REPLICATION

Chapter 25. 바이러스 (The Viruses)

Chapter 08 Lecture Outline

Viruses. Properties. Some viruses contain other ingredients (e.g., lipids, carbohydrates), but these are derived from their host cells.

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

One of the classifications was if the virus is enveloped or naked.

General Properties of Viruses

Viruses 101., and concluded that living organisms do not crystallize. In other words,.

Viral Genetics. BIT 220 Chapter 16

Chair of Medical Biology, Microbiology, Virology, and Immunology STRUCTURE, CLASSIFICATION AND PHYSIOLOGY OF VIRUSES

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Starting with MICROBIOLOGY

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

Human Immunodeficiency Virus (HIV)

Overview of virus life cycle

Transcription:

Chapter 13 Viruses, Viroides and Prions 1

A GLIMPSE OF HISTORY Tobacco mosaic disease (1890s) D. M. Iwanowsky, Martinus Beijerinck determined caused by filterable virus too small to be seen with light microscope, passed through filters for bacteria Decade later, F. W. Twort and F. d Herelle discovered filterable virus that destroyed bacteria Previously, many bacteria, fungi, protozoa identified as infectious diseases Virus means poison Viruses have many features more characteristic of complex chemicals (e.g., still infective following precipitation from ethyl alcohol suspension or crystallization)

VIRUSES: OBLIGATE INTRACELLULAR PARASITES Viruses simply genetic information: DNA or RNA contained within protective coat Inert particles: no metabolism, replication, motility Genome hijacks host cell s replication machinery Inert outside cells; inside, direct activities of cell Infectious agents, but not alive Can classify generally based on type of cell they infect: eukaryotic or prokaryotic Bacteriophages (phages) infect prokaryotes May provide alternative to antibiotics

13.1. GENERAL CHARACTERISTICS OF VIRUSES Most viruses notable for small size Smallest: ~10 nm ~10 genes Largest: ~500 nm Hepadnavirus (42 nm) Poliovirus (30 nm) Adenovirus (90 nm) Tobacco mosaic virus (250 nm) T4 bacteriophage (225 nm) Mimivirus (800 nm) Human red blood cell (10,000 nm diameter) E. coli (3,000 1,000 nm)

13.1. GENERAL CHARACTERISTICS OF VIRUSES Virion (viral particle) is nucleic acid, protein coat Protein coat is capsid: protects nucleic acids Carries required enzymes Composed of identical subunits called capsomers Capsid plus nucleic acids called nucleocapsid Enveloped viruses have lipid bilayer envelope Matrix protein between nucleocapsid and envelope Naked viruses lack envelope; more resistant to disinfectants Nucleocapsid (a) Naked virus Nucleocapsid (b) Enveloped virus Capsomere subunits Nucleic acid Capsid (entire protein coat) Matrix protein Nucleic acid Capsid (entire protein coat) Envelope Spikes Spikes

13.1. GENERAL CHARACTERISTICS OF VIRUSES Viral genome either DNA or RNA, never both Useful for classification (i.e., DNA or RNA viruses) Genome linear or circular Double- or single-stranded Affects replication strategy Viruses have protein components for attachment Phages have tail fibers Many animal viruses have spikes Allow virion to attach to specific receptor sites Generally three different shapes Icosahedral, helical, or complex

13.1. GENERAL CHARACTERISTICS OF VIRUSES Three shapes: Icosahedral Helical Complex (a) Nucleic acid Icosahedral Protein coat (capsid) Helical Adenovirus 75 nm Protein coat (capsid) Nucleic acid (b) Tobacco mosaic virus (TMV) 100 nm Complex Nucleocapsid Protein coat (capsid) Head with nucleic acid (DNA) Tail Base plate Tail spike Tail fibers T4 Bacteriophage 100 nm (c)

13.1. GENERAL CHARACTERISTICS OF VIRUSES International Committee on Viral Taxonomy (ICVT) publishes classification of viruses 2009 report: >6,000 viruses 2,288 species 348 genera 87 families 6 orders

13.1. GENERAL CHARACTERISTICS OF VIRUSES Key characteristics include genome structure (nucleic acid and strandedness) and hosts infected Other characteristics (e.g., viral shape, disease symptoms) also considered

13.1. GENERAL CHARACTERISTICS OF VIRUSES Virus families end in suffix -viridae Names follow no consistent pattern Some indicate appearance (e.g., Coronaviridae from corona, meaning crown ) Others named for geographic area from which first isolated (e.g., Bunyaviridae from Bunyamwera in Uganda, Africa) Genus ends in -virus (e.g., Enterovirus) Species name often name of disease E.g., poliovirus causes poliomyelitis Viruses commonly referred to only by species name

13.1. GENERAL CHARACTERISTICS OF VIRUSES Viruses often referred to informally Groups of unrelated viruses sharing routes of infection Oral-fecal route: enteric viruses Respiratory route: respiratory viruses Zoonotic viruses cause zoonoses (animal to human) Arboviruses (from arthropod borne) are spread by arthropods; often can infect widely different species Important diseases: yellow fever, dengue fever, West Nile encephalitis, La Crosse encephalitis

13.2. BACTERIOPHAGES Three general types of bacteriophages based on relationship with host Lytic phages Temperate phages Filamentous phages Virion Infection Host cell Disease of host cell Genetic alteration of host cell Productive Infection more virus produced Latent State Virus nucleic acid integrates into host genome or replicates as a plasmid. Release of virions host cells lyse. Release of virions host cells do not lyse. Host cell dies. Host cell multiplies continuous release of virions. Host cell multiplies but phenotype often changed because of viral genes.

13.2. BACTERIOPHAGES Lytic Phage Infections 1 Attachment Lytic or virulent phages exit host Phage attaches to specific receptors on the E. coli cell wall. Cell is lysed Productive infection: new particles formed 2 Genome Entry The tail contracts and phage DNA is injected into the bacterial cell, leaving the phage coat outside. T4 phage (dsdna) as model; entire process takes ~30 minutes Five step process 3 4 Synthesis Assembly Phage genome is transcribed and phage proteins synthesized. Phage DNA is replicated, other virion components are made, and host DNA is degraded. Attachment Phage components are assembled into mature virions. Genome entry Synthesis Empty head + + DNA inside head + Assembly 5 Release Release The bacterial cell lyses and many new infectious virions are released.

13.2. BACTERIOPHAGES Lytic Phage Infections (cont...) 1 Attachment Attachment Phage attaches to specific receptors on the E. coli cell wall. Phage exploits bacterial receptors Genome entry T4 lysozyme degrades cell wall 2 Genome Entry The tail contracts and phage DNA is injected into the bacterial cell, leaving the phage coat outside. Tail contracts, injects genome through cell wall and membrane Synthesis of proteins and genome 3 4 Synthesis Assembly Phage genome is transcribed and phage proteins synthesized. Phage DNA is replicated, other virion components are made, and host DNA is degraded. Early proteins translated within minutes; nuclease degrades host DNA; protein modifies host s RNA polymerase to not recognize its own promoters Empty head + + DNA inside head Phage components are assembled into mature virions. + 5 Release The bacterial cell lyses and many new infectious virions are released.

13.2. BACTERIOPHAGES Lytic Phage Infections (cont...) 1 Attachment Late proteins are structural proteins (capsid, tail); produced toward end of cycle Assembly (maturation) 2 Genome Entry Phage attaches to specific receptors on the E. coli cell wall. The tail contracts and phage DNA is injected into the bacterial cell, leaving the phage coat outside. Some components spontaneously assemble, others require protein scaffolds 3 Synthesis Phage genome is transcribed and phage proteins synthesized. Phage DNA is replicated, other virion components are made, and host DNA is degraded. Release Lysozyme produced late in infection; digests cell wall 4 Assembly Empty head DNA inside head Phage components are assembled into mature virions. + Cell lyses, releases phage + + Burst size of T4 is ~200 5 Release The bacterial cell lyses and many new infectious virions are released.

13.4. BACTERIAL DEFENSES AGAINST PHAGES Several approaches bacteria can take Preventing Phage Attachment Alter or cover specific receptors on cell surface May have other benefits to bacteria E.g., Staphylococcus aureus produces protein A, which masks phage receptors; also protects against certain human host defenses Surface polymers (e.g., biofilms) also mask receptor

13.5. METHODS USED TO STUDY BACTERIOPHAGES Viruses multiply only inside living cells Must cultivate suitable host cells to grow viruses Bacterial cells easier than animal cells Plaque assays used to quantitate phage particles in samples: sewage, seawater, soil Soft agar inoculated with bacterial host and specimen, poured over surface of agar in Petri dish Bacterial lawn forms Zones of clearing from bacterial lysis are plaques Counting plaque forming units (PFU) yields titer Bacteriophage plaques in lawn of bacterial cells

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle Attachment Viruses bind to receptors Usually glycoproteins on plasma membrane Often more than one required (e.g., HIV binds to two) Normal function unrelated to viral infection Specific receptors required; limits range of virus E.g., dogs do not contract measles from humans

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle (continued...) Penetration and uncoating: fusion or endocytosis Naked viruses cannot fuse Protein spikes Adsorption Spikes of virion attach to specific host cell receptors. Envelope Receptors Host cell plasma membrane Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Membrane fusion Envelope of virion fuses with plasma membrane. Nucleocapsid Nucleocapsid released into cytoplasm Viral envelope remains part of plasma membrane. Uncoating Nucleic acid separates from capsid. Capsid Nucleic acid Fusion of virion and host cell membrane (a) Entry by membrane fusion Adsorption Attachment to receptors triggers endocytosis. Endocytosis Plasma membrane surrounds the virion, forming an endocytic vesicle. Release from vesicle Envelope of virion fuses with the endosomal membrane. Uncoating Nucleic acid separates from capsid. (b) Entry by endocytosis

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle (continued...) Synthesis Expression of viral genes to produce viral structural and catalytic genes (e.g., capsid proteins, enzymes required for replication) Synthesis of multiple copies of genome Most DNA viruses multiply in nucleus Enter through nuclear pores following penetration Three general replication strategies depending on type of genome of virus DNA viruses RNA viruses Reverse transcribing viruses

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle (continued...) Replication of DNA viruses Usually in nucleus Poxviruses are exception: replicate in cytoplasm, encode all enzymes for DNA, RNA synthesis dsdna replication straightforward ssdna similar except complement first synthesized Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. DNA viruses ss ( ) DNA ss (+) DNA ds (±) DNA ds (±) DNA ds (±) DNA ss (+) RNA (mrna) ss (+) RNA (mrna) ss (+) RNA (mrna) protein protein protein (a)

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle (continued...) Replication of RNA viruses Majority single-stranded; replicate in cytoplasm Require virally encoded RNA polymerase (replicase), which lacks proofreading, allows antigenic drift E.g., influenza viruses ss (+) RNA used as mrna ss ( ) RNA, dsrna viruses carry replicase to synthesize (+) strand Some RNA viruses segmented; reassortment results in antigenic shift Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. ss (+) RNA (mrna) protein RNA viruses ss ( ) RNA ss( )RNA ds (±) RNA ss (+) RNA (mrna) protein ss (+) RNA (mrna) protein (b)

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle (continued...) Replication of reverse-transcribing viruses Encode reverse transcriptase: makes DNA from RNA Retroviruses have ss (+) RNA genome (e.g., HIV) Reverse transcriptase synthesizes single DNA strand Complementary strand synthesized; dsdna integrated into host cell chromosome Can direct productive infection or remain latent Cannot be eliminated Reverse transcribing viruses ss ( ) DNA ds (±) DNA ss (+) RNA (mrna) protein (c)

13.6. ANIMAL VIRUS REPLICATION Five-step infection cycle (continued...) Assembly Protein capsid forms; genome, enzymes packaged Takes place in nucleus or in organelles of cytoplasm Release Most via budding Viral protein spikes insert into host cell membrane; matrix proteins accumulate; nucleocapsids extruded Covered with matrix protein and lipid envelope Some obtain envelope from organelles Naked viruses released when host cell dies, often by apoptosis initiated by virus or host

13.6. ANIMAL VIRUS REPLICATION Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Viral proteins that will become envelope spikes insert into host plasma membrane. Viral proteins 2 Viral matrix protein coats inside of plasma membrane. 3 Nucleocapsid extrudes from the host cell, becoming coated with matrix proteins and envelope with protein spikes. 4 New virus is released. Enveloped virus Host plasma membrane Matrix protein Capsid Nucleic acid Intact host membrane (a) (b) b: Dr. Dennis Kunkel/Visuals Unlimited

Appearance of symptoms and infectious virions Appearance of symptoms and infectious virions Appearance of symptoms and infectious virions 13.7. CATEGORIES OF ANIMAL VIRUS INFECTIONS Acute and Persistent Infections Acute: Rapid onset Short duration Influenza Acute infection (influenza) Infectious virions Disease State of Virus Virus disappears after disease ends. Persistent: Time (days) Continue for (a) Chronic infection (hepatitis B) years or lifetime May or may not Hepatitis B Release of virus State of Virus After initial infection with or without disease symptoms, infectious virus is released from host with no symptoms. have symptoms Days Time Years Some viruses (b) Latent infection (cold sores) exhibit both (e.g., HIV) Cold sores Non-infectious Virus activation Cold sores State of Virus After initial infection, virus is maintained in neurons in non-infectious state. Virus activated to produce new disease symptoms. Days Time Years (c)

13.7. CATEGORIES OF ANIMAL VIRUS INFECTIONS Acute and Persistent Infections (continued ) Persistent infections chronic or latent Chronic infections: continuous production of low levels of virus particles Latent infections: viral genome (provirus) remains silent in host cell; can reactivate

13.7. CATEGORIES OF ANIMAL VIRUS INFECTIONS Acute and Persistent Infections (continued ) Latent infections: (cont...) Provirus integrated into host chromosome or replicates separately, much like plasmid Cannot be eliminated Can later be reactivated Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Latent viral DNA Virus moves up cranial nerve. The initial infection in children causes cold sores and sometimes sore throat. The virus then moves along a sensory cranial nerve to the cell body near the brain, where it becomes latent. (a) Virus becomes latent after initial infection Cranial nerve Pons Brain stem Activation of virus in neuron Virions move down cranial nerve. The latent virus is activated, moves back along the sensory nerve to the face and causes cold sores again. (b) Activation of latent virus

13.8. VIRUSES AND HUMAN TUMORS Tumor is abnormal growth Cancerous or malignant can metastasize; benign do not Proto-oncogenes and tumor suppressor genes work together to stimulate, inhibit growth and cell division Mutations cause abnormal and/or uncontrolled growth Usually multiple changes at different sites required Viral oncogenes similar to host proto-oncogenes; can interfere with host control mechanisms, induce tumors

13.8. VIRUSES AND HUMAN TUMORS Productive infections, latent infections, tumors Virus-induced tumors rare; most result from mutations Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Viral DNA integrates into host DNA Viral DNA forms plasmid. Virus replicates in host. Viral DNA as a plasmid or or or Tumor Normal cells are transformed into tumor cells. Latent infection Viral DNA replicates as part of the chromosome without harming the host. Tumor Normal cells are transformed into tumor cells. Latent infection Viral DNA replicates as a plasmid without harming the host. Productive infection New virions released when host cell lyses. Productive infection New virions released by budding.

13.9. CULTIVATING AND QUANTITATING ANIMAL VIRUSES Viruses must be grown in appropriate host Historically done by inoculating live animals Embryonated (fertilized) chicken eggs later used Cell culture or tissue culture now commonly used Can process animal tissues to obtain primary cultures Drawback is cells divide only limited number of times Tumor cells often used, multiply indefinitely 1 Cut tissue into small pieces and incubate with a protease (trypsin) to separate cells. 2 Place cells into flask with growth medium. Tissue Single cells 3 Allow cells to settle on bottom of flask and grow into a single layer (a monolayer). Monolayer Stained cells in monolayer 100 µm

13.9. CULTIVATING AND QUANTITATING ANIMAL VIRUSES Effects of Viral Replication of Cell Cultures Many viruses cause distinct morphological alterations called cytopathic effect Cells may change shape, fuse, detach from surface, lyse, fuse into giant multinuclear cell (syncytium), or form inclusion body (site of viral replication) (a) 0.5 μm Dead cells 100 µm Stained cells in monolayer (b) 0.5 μm

13.9. CULTIVATING AND QUANTITATING ANIMAL VIRUSES Quantitating Animal Viruses Plaque assays using monolayer of tissue culture cells Direct counts via EM Quantal assay: dilution yielding ID 50 or LD 50 Hemagglutination: relative concentration (a) Red blood cells Virions Hemagglutination Controls Dilution Empty capsid Patient Titer A 256 B 32 C 512 D 8 E 32 F 128 G 64 H >2 100 nm (b) Hemagglutination No hemagglutination

13.10. PLANT VIRUSES Plant viruses very common Do not attach to cell receptors; enter via wounds in cell wall, spread through cell openings (plasmodesmata) Plants rarely recover, lack specific immunity Many viruses extremely hardy Transmitted by soil; humans; insects; contaminated seeds, tubers, pollen; grafting (a) (b) (c)

13.11. OTHER INFECTIOUS AGENTS: VIROIDS AND PRIONS Viroids are small single-stranded RNA molecules 246 375 nucleotides, about 1/10 th smallest RNA virus Forms closed ring; hydrogen bonding gives ds look Thus far only found in plants; enter through wound sites Many questions remain: How do they replicate? How do they cause disease? How did they originate? Do they have counterparts in animals?

13.11. OTHER INFECTIOUS AGENTS: VIROIDS AND PRIONS Prions are proteinaceous infectious agents Composed solely of protein; no nucleic acids Linked to slow, fatal human diseases; animal diseases Usually transmissible only within species Mad cow disease in England killed >170 people

13.11. OTHER INFECTIOUS AGENTS: VIROIDS AND PRIONS Prions (continued...) Prion proteins accumulate in neural tissue Neurons die Tissues develop holes Brain function deteriorates Characteristic appearance gives rise to general term for all prion diseases: transmissible spongiform encephalopathies (a) Spongiform lesions Brain tissue Brain tissue (b)

13.11. OTHER INFECTIOUS AGENTS: VIROIDS AND PRIONS Prions (continued...) Cells produce normal form PrP C (prion protein, cellular) Proteases readily destroy Infectious prion proteins PrP SC (prion protein, scrapie) Resistant to proteases; become insoluble, aggregate Unusually resistant to heat, chemical treatments Hypothesized that PrP SC converts PrP C folding to PrP SC Neuron PrP SC PrP C 1 Both normal (PrP C ) and abnormal (PrP SC ) proteins are present. 2 3 4 PrP SC interacts with PrP C. PrP c is converted into PrP SC. Conversion continues and PrP SC accumulates.