The Genetic Mysteries of the Corneal Dystrophies

Similar documents
Dystrophies. Molecular Causes. Anterior Membrane Dystrophies (epithelium, basement membrane and Bowman s layer)

Fleck. Pre-Descemet Dystrophies (generally good vision and comfort) Primary Pre-Descemet Dystrophy

Degenerations. Conditions with cloudy cornea at birth or in infancy

Senile: flattening of vertical meridian, thinning of periphery, lack of luster

FUCH S DYSTROPHY & CATARACT SURGERY TREATMENT ALGORITHM

Meet Libby. Corneal Dysgenesis, Degeneration, and Dystrophies Definitions. Dr. Victor Malinovsky

What are some common conditions that affect the cornea?

Corneal Disorders Epi to Endo

PATIENT INFORMATION ON CORNEAL GRAFT

The Latest In Corneal Degenerations and Dystrophies CORNEAL DEGENERATION. Corneal Dystrophies 2/1/2018 CORNEAL DYSTROPHIES

Strategies for Anterior Segment Disease Management Mile Brujic, OD, FAAO 1409 Kensington Blvd Bowling Green, OH

Journal of Ophthalmic Medical Technology. Fuchs Dystrophy Amy Hischier

The Latest In Corneal Degenerations and Dystrophies: An OD and MD Perspective.

History- RCES. Recurrent Corneal Erosion Syndrome -update. Epidemiology. Etiology/Pathogenesis 12/3/2011

Course # Cutting Edge Cornea

Codes for Medically Necessary Contact Lenses

Medical Affairs Policy

Corneal Transplants. Corneal transplants. What causes cornea problems? Full thickness corneal transplant

surface moist and filling in any irregularities in the epithelium. It is avascular and receives its nutrients from the

Surgeon Preference Form

Corneal Transplants. Corneal transplants. What causes cornea problems? Full thickness corneal transplant

CORNEAL CONDITIONS CORNEAL TRANSPLANTATION

Therapeutical bandage contact lenses for corneal protection

Financial Disclosures. Corneal Problems for the Cataract Surgeon. Four Common Problems. Dry Eye syndrome. Rose-Bengal 3/27/16

Corneal Pathologies PERIPHERAL CORNEAL THINNING AND ULCERATION. Dellen. Peripheral corneal involvement in rheumatoid arthritis.

Covering the Cornea from A(BMD) to Z(oster) Justin Schweitzer OD, FAAO Vance Thompson Vision Sioux Falls, South Dakota

Eye Care for Animals Micki Armour VMD DACVO THE CORNEA

Deep Anterior Lamellar Keratoplasty - Techniques

Fitting Keratoconus and Other Complicated Corneas

ICD-10-CM Cornea. Type RT LT OU SINGLE CODE UNSPECIFIED. Acute atopic conjunctivitis H10.11 H10.12 H10.13 X H10.10

Corneal specimens that influence clinical decisions

Corporate Medical Policy

History. Examination. Diagnosis/Course

Failed Deep Anterior Lamellar Keratoplasty in Avellino Stromal Dystrophy: A Case Report and Review of Literature

Subject Index. Atopic keratoconjunctivitis (AKC) management 16 overview 15

COMPANION MEETING OPHTHALMIC. Meeting Room: Bayside Room 106 Time: 5:15 7:00

Protocol. Endothelial Keratoplasty

Clinical Policy: Refractive Surgery Reference Number: CP.MP. 391

Role of BIGH3 R124H mutation in the diagnosis of Avellino corneal dystrophy

SAMPLE CASE REPORT. Title: Cornea Case Report. Map-Dot-Fingerprint Dystrophy/Recurrent Corneal Erosions. Candidate s Name: Word Count: Practitioner:

Corneal Transplants. Corneal transplants. What causes cornea problems? Full thickness corneal transplant

Visual and symptomatic outcome of excimer phototherapeutic keratectomy (PTK) for corneal dystrophies

Windows2016 Update What s New in My Specialty? cornea. May 20, 2016 OGDEN SURGICAL-MEDICAL SOCIETY CONFERENCE

Differential Diagnosis of Conjunctivitis and Keratoconjunctivitis

PROSE Treatment Information for Patients and Doctors

Note: This is an outcome measure and can be calculated solely using registry data.

Distinction layer by layer. HRT II Rostock Cornea Module

MEDICAL POLICY No R3 REFRACTIVE KERATOPLASTY / LASIK

PAINFUL PAINLESS Contact lens user BOV

GENERAL INFORMATION CORNEAL TRANSPLANTATION

Gas Permeable Scleral Contact Lens. Description

Cataract and cornea. Miltos O. Balidis PhD, FEBOphth,ICOphth ATHENS

Glaucoma Glaucoma is a complication which has only recently been confirmed as a feature of

n Corneal epithelium is derived from surface ectoderm n Composed of stratified squamous epith. n 5% of total corneal thickness (50-90micro m thick)

West Los Angeles VA Health Care Center

Recurrent Erosion Syndrome and Epithelial Edema

Dtiring the first year of life, diffuse

Revitalization of the Anterior Segment: Corneal Transplantation and Secondary Lens Repair

Arg124Cys Mutation of the ig-h3 Gene in a Japanese Family With Lattice Corneal Dystrophy Type I

Aging & Ophthalmology

Ulcerative Keratitis (Type of Inflammation of the Cornea) Basics

Doctors of Optometry Course Notes

Morning Report. copyright The University of Colorado. 11/25/09 Emily McCourt MD

Dr Jo-Anne Pon. Dr Sean Every. 8:30-9:25 WS #70: Eye Essentials for GPs 9:35-10:30 WS #80: Eye Essentials for GPs (Repeated)

When It s Time For A New Cornea

Cornea & External Disease research at Moorfields

Indications for keratoplasty in Nepal:

efocus Issue 041 August 2011 Excellence in Co-Managed Care

WHAT IS YOUR DIAGNOSIS? By ADREA R. BENKOFF M.D.

arthritis "Contact lens" cornea in rheumatoid (opposite). Brit. J. Ophthal. (I970) 54, 410 Peterborough District Hospital

Non-Descemet Stripping Automated Endothelial Keratoplasty for Bullous Keratopathy in Buphthalmic Eye

Corneal Decompensation in Recessive Cornea Plana

LIMBAL TRANSPLANTATION IN THE MANAGEMENT OF CHRONIC CONTACT-LENS-ASSOCIATED EPITHELIOPATHY

INFORMED CONSENT FOR CORNEAL COLLAGEN CROSS-LINKING WITH RIBOFLAVIN (C3-R) FOR PATIENTS WITH KERATOCONUS OR CORNEAL ECTASIA

Measure #191: Cataracts: 20/40 or Better Visual Acuity within 90 Days Following Cataract Surgery

DAMAGE TO CORNEA AND LENS*

Acute Hydrops following Penetrating Keratoplasty in a Keratoconic Patient

Cataract. What is a Cataract?

EOM Issues. Treatment Options. Surgical Intervention. Surgical Intervention. Surgical Techniques

Arg555Gln Mutation of TGFBI Gene in Geographical-type Reis Bücklers Corneal Dystrophy in a Chinese Family

2009 Eye Banking Statistical Report Eye Bank Association of America th Street, N.W. Suite 1010 Washington, DC Phone (202) Fax

The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy

CLINICAL SCIENCES. usually bilateral and typically asymmetrical progressive

QUT Digital Repository: This is the author version published as:

Clinical Policy Title: Corneal transplants (keratoplasty)

Corneal Graft or Transplant Patient information leaflet

Planning Ahead for Corneal Epithelial Dystrophy: A Teaching Case Report 1

IntraLASIK Correction Of Nearsightedness, Farsightedness and Astigmatism Using IntraLase TM Technology

This is My Patient s Condition: Can Scleral Lenses Help? Alan Kwok, OD, FAAO, FSLS Karen G. Carrasquillo, OD, PhD, FAAO, FSLS

Individual phenotypic variances in a family with Avellino corneal dystrophy

Lattice Corneal Dystrophy Type II Meretoja's Syndrome

Information for patients, carers and families

In Practice. Surgical Procedures Diagnosis New Drugs

HYALINE RIDGES ON THE POSTERIOR CORNEA*t

John Rawstron Christchurch 2015

ASSESSING THE EYES. Structures. Eyelids Extraocularmuscles Eyelashes Lacrimal glands: Lacrimal ducts Cornea Conjunctiva Sclera Pupils Iris.

Intrastromal corneal ring

INDOLENT ULCER IN BOXER. Dr n. wet. Przemysław K. Bryla Przychodnia weterynaryjna w Warszawie INTRODUCTION

Corneal Problems - Acute and Non-acute

Glomerular diseases mostly presenting with Nephritic syndrome

Transcription:

1 The Genetic Mysteries of the Corneal Dystrophies Sherry J. Bass, OD, FAAO SUNY State College of Optometry New York, N.Y. Sherry Bass has no Financial Interests to Disclose. Detection: Biomicroscopic Examination Techniques Diffuse Illumination How many and what type of opacities Parallelpiped/Optic Section What layer(s) of the cornea are involved Indirect illumination/retroillumination Are more opacities visible Features of Corneal Dystrophies and Degenerations Corneal Degenerations A deposition of abnormal elements due to corneal cellular changes Signifies a degradation, deterioration, change in structure, secondary inflammation, metabolic change, aging Corneal Degenerations (Examples) Arcus senilis Vogt s limbal girdle Salzmann s nodular degeneration Marginal furrow degeneration Terrien s degeneration White ring of Coats Pterygium Band keratopathy Corneal ectasias: Dystrophy or Degeneration? Keratoconus a. Multifactorial etiology b. Genetic predisposition 1. VSX1 (visual system homeobox 1) mutations in autosomal dominant pedigrees 2. SOD1

2 Pellucid Marginal Degeneration Corneal Dystrophies Mostly autosomal dominant inheritance Bilateral and usually symmetric Affects the central cornea early on No associated vascularity No associated inflammation Rarely associated with systemic disease Classification of the Corneal Dystrophies Traditionally, classified by the affected corneal layer Molecular genetics are changing this classification Chromosome 1 Chromosome 4 Chromosome 5 Chromosome 9 Chromosome 12 Chromosome 16 Chromosome 17 Chromosome 20 Chromosome 21 X-chromosome Epithelial Dystrophies Epithelial Basement Membrane Dystrophy Meesman s Dystrophy Band-shaped/Whorled Microcystic Dystrophy (Lisch dystrophy) Epithelial Basement Membrane Dystrophy (MAP-DOT) Most common anterior dystrophy Not always a true dystrophy (may be aquired as opposed to inherited) Maplike, dot-like (microcysts), fingerprint and bleb (putty) opacities Painful recurrent epithelial erosions (RCEs) after 3rd decade-50% of pts with RCEs have EBMD Meesman s Dystrophy (Juvenile Epithelial Dystrophy) Opacities consist of epithelial uniform grey-white intraepithelial microcysts seen early in life; increase in number over time causing an irregular surface; relatively rare dystrophy Microcysts contain intracellular keratin ; thickened basement membrane RCEs can occur causing further visual deterioration Linkage studies identify mutations in two cornea-specific genes: KRT3 on chromosome 12q13 and KRT12 on chromosome 17q12)

3 Band-Shaped/Whorled Microcystic Dystrophy (Lisch) Grey band-shaped, feathery opacities Intraepithelial, densely crowded clear microcysts Diffuse vacuolization of the cellular cytoplasm Reduced visual acuity but no RCEs have been reported Opacities may diminish with gas permeable contact lens wear Linkage of the gene (as yet unidentified) maps to the X chromosome Autosomal Dominant Recurrent Corneal Erosion Dystrophy Autosomal dominant; genetic locus unknown Attacks of RCEs usually by age 5 Subside by 30-40 years Attacks last for a few days to months Can be triggered by URI, dry air, lack of sleep, trauma, smoke Subepithelial fibrotic opacities (keloids) Thickened subepithelium with chondroitin and dermatan sulfate Hudson-Stahli line Treatment: Problematic- ointments and PTK=marginally successful; rest in dark rooms during attacks Bowman s Layer Dystrophies TGFB1 Dystrophies -TGFB1 plays a role in corneal development and healing; it also interacts with collagen and other structural elements; it is expressed in the cornea and in other parts of the body. 5q31 -The majority of mutations are: Arg 124 and Arg 555 on chromosome Reis-Buckler s Dystrophy (Bowman s Type I) Ring-shaped opacities confined to Bowman s membrane=honey-comb or fish-net appearance Made up of collagen fibrils Thickened epithelium Irregular astigmatism, less corneal sensation, RCEs Vision good until later decades-ptk beneficial

4 Mutation maps to the transforming growth factor beta induced TGFBI (BIGH3) gene on chromosome 5 (5q31-same site as some stromal dystrophies) Some refer to this dystrophy as Granular dystrophy III ) Thiel Behnke Dystrophy (Bowman s type II) - More prevalent than RBD;Develops later in like than RBD - Similar findings and links to the TGFB1 gene and to the mutations on chromosome 10q23-24 (Arg555Gln) Stromal Corneal Dystrophies TGFB1 Dystrophies 1-Granular Dystrophy Common stromal dystrophy Opacities consist of white, round, crumb-like spots and/or rings Stroma in between opacities is clear early on Good visual acuity until 7th or 8th decade when spots coalesce and stroma between the spots is affected Most common mutation on TGFB1: Arg555Trp. Arg124Ser identified in pts with later onset 2- Granular Dystrophy Type II (Formerly Avellino Corneal Dystrophy) Granular and lattice type changes in the same eye Hyaline and amyloid deposits in stroma Granular changes early onset; lattice changes occur later Good vision in early stages; VA rarely worse than 20/70; RCEs infrequent Associated with the Arg124His mutation, with genotypic and phenotypic variations Opacities consist of an eosiniphilic hyaline type deposition in the anterior stroma Pts do well with PTK when VA deteriorates 3-Lattice Dystrophy Type I Opacities consist of thin, translucent lines composed of amyloid; deposits in mid-

5 stroma Good vision until later in life-may need PK Changes are central but extend to the periphery over time Is bilateral, but can be asymmetric and unilateral Epithelial erosions can occur Mutation localized to the TGFBI gene (5q31) Lattice Dystrophy Type III and IIIA Type III Thick lattice lines extending to the periphery Occurs later in life Inheritance pattern is autosomal recessive No recurrent epithelial erosions Mutation is on the TGFBI (BIGH3) gene on chromosome 5-same site (5q3) Type IIIA Autosomal dominant Recurrent epithelial erosions Same phenotypic presentation as Type III but different mode of inheritance and corneal erosions Lattice Dystrophy Type IV Another late-onset lattice dystrophy Deep stromal opacities made of amyloid Mutation localized to the TGFBI gene on chromosome 5 (5q3) Other atypical forms of LCD have been described that combine characteristics of the other types. Other Stromal Dystrophies (Not TGFB1) Lattice Dystrophy Type II Associated with systemic amyloidosis Deposition of amyloid in many tissues of the body including skin, arteries, sclera and peripheral nerves Corneal changes occur later in life Mutation localized to the gelsolin (GSN) gene on chromosome 9 (9q34)

6 -Gelsolin modulates removal of actin in inflammation and injury; mutations result in the build-up of amyloid Macular Dystrophy Autosomal recessive; least common and most severe; early onset Three types have been described based upon the presence of antigenic keratan sulfate Vision more severely affected than in other stromal dystrophies Characterized by stromal haze, and milky white opacities (glucosamineglycans; descemet s membrane and the endothelium can be involved with gutatta) Progresses to corneal periphery by ages 20-30 By age 40, PK may be required Mutation localized to the carbohydrate sulfotransferase (CHST6) gene on chromosome 16 (16q22) resulting in an impairment in a major step in the production of keratin sulfate Gelatinous Drop-Like Dystrophy Rare, autosomal recessive dystrophy that resembles band keratopathy initially and then progresses into mulberry-like gelatinous deposits made up of amyloid below the epithelium and stroma Symptoms include photophobia, foreign body sensation and decreased vision. Mutations in the M1S1 gene on chromosome 1p31 that encodes for protein kinase C substrate Central Crystalline Dystrophy of Schnyder Characterized by central crystalline stromal cholesterol deposits, sometimes with an arcus Visual acuity only reduced if opacities are dense Only dystrophy associated with a systemic disorder Rule out hyperlipidemia Mutation localized to chromosome 1 (1p34-36) Fleck Dystrophy (Francois-Neetans) Subtle grey opacities consist of small, wreath-like opacities in the stroma Represent engorged keratocytes Usually asymptomatic Cases with photophobia, ocular surface irritation and blepharospasm have been recently reported Opacities extend to the periphery Visual acuity good throughout life since stroma between flecks remains clear Maps to chromosome 2q35 and associated with mutations in the PIP5K3 gene, which encodes for an enzyme that has protein and lipid kinase activity.

7 Central Cloudy Dystrophy Central opacity in stroma looks like cracked-ice or crocodile skin Visual acuity is usually normal Appearance similar to crocodile shagreen, an age-related corneal change resulting in posterior stromal deposition Difficult to differentiate from crocodile shagreen in the late course of disease, especially if bilateral Endothelial Dystrophies Fuch s Endothelial Dystrophy Characterized by three stages guttata- localized excresences or thickenings in Descemet s membrane stromal and epithelial edema corneal fibrosis or scarring Results in corneal edema, usually greatest upon awakening Women affected more frequently than men Affects older individuals, greater than 40 years Treatment of Fuch s Dystrophy Monitor If edema is present, treat with hyperosmotic agents, such as Muro 128 Watch the ocular hypertensive: Higher IOP=More corneal edema In later stages,penetrating keratoplasty or DSAEK may be required -DSAEK: Descemet s Stripping and Automated Endothelial Keratoplasty: New corneal endothelial cells attached to a thin layer of donor corneal tissue is transplanted through a single incision, rapid recovery; no associated astigmatism What about Fuch s dystrophy and cataract? Complicated procedure: cataract extraction and DSAEK/PK at the same time Posterior Polymorphous Dystrophy Characterized by isolated and coalesced posterior vesicles wide areas of thickening of Descemet s membrane bandlike figures and lines diffuse stromal and epithelial edema peripheral anterior synechiae Treatment similar to Fuch s dystrophy An unidentified gene has been mapped to the 20q11 locus of chromosome 20

8 Congenital Hereditary Endothelial Dystrophy (CHED) CHED 1 Autosomal dominant Manifests as diffuse corneal edema a few years after birth May be associated with hearing loss Photophobia, tearing Is progressive Mutation for CHED1 has also been mapped to 20p11-20q11 on chromosome 20- overlaps the location of the mutation causing PPD! CHED 2 Autosomal recessive Central corneal edema from birth Nystagmus Non-progressive but more severe edema than CHED1 Summary of the Molecular Genetics of the Corneal Dystrophies Meesmann s KRT 3, KRT 12 genes on chromosomes 12, 17 Lisch (Whorled) Unidentified gene on X chromosome Reis-Buckler s (Granular Type III) TGFBI gene on chromosome 5 Granular Dystrophy TGFBI chromosome 5 Lattice I,III,IV TGFBI,chromosome 5 Lattice II GSN,chromosome 9 Macular Dystrophy CHST6 gene,chromosome 16 Crystalline Dystrophy Unidentified gene, chromosome 1 CHED1 and PPD Unidentified gene on chromosome 20

Consider Classification by Affected Chromosome Chromosome 1 Central crystalline dystrophy Early onset Fuch s dystrophy Posterior polymorphous dystrophy Chromosome 2 Fleck dystrophy Chromosome 5 Lattice dystrophy (Types 1, III and IV ) Granular dystrophy Type I Granular Dystrophy Type II (Avellino Dystrophy) Reis-Buckler s dystrophy (GCDIII) Chromosome 9 Lattice dystrophy Type II Chromosome 12 Meesman dystrophy (and 17) Chromosome 16 Macular corneal dystrophy Chromosome 20 Congenital Hereditary Endothelial Dystrophy Types I and II Posterior Polymorphous Dystrophy X-chromosome Lisch corneal dystrophy Implications of Molecular Genetics for the Future Knowledge of mutations enables researchers to identify the pathways that synthesize abnormal proteins which are deposited in the cornea This knowledge can lead to the development of new drugs designed to interfere with these pathways to decrease abnormal protein synthesis Less deposition = less affect on vision = less need for treatment 9