Management of post-hyperventilation apnea during dental treatment under monitored anesthesia care with propofol

Similar documents
Prolonged post-hyperventilation apnea in two young adults with hyperventilation syndrome

POST TEST: PROCEDURAL SEDATION

Sleep Apnea and ifficulty in Extubation. Jean Louis BOURGAIN May 15, 2016

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

Relationship between incident types and impact on patients in drug name errors: a correlational study

Setting The study setting was hospital. The economic analysis appears to have been carried out in the USA.

GUIDELINES ON CONSCIOUS SEDATION FOR DENTAL PROCEDURES

1.3. A Registration standard for conscious sedation has been adopted by the Dental Board of Australia.

Respiratory Depression and Considerations for Monitoring Following Ophthalmologic Surgery

Agency 71. Kansas Dental Board (Authorized by K.S.A and (Authorized by K.S.A and

Emergency Department Guideline. Procedural Sedation and Analgesia Policy for the Registered Nurse

PHYSICIAN COMPETENCY FOR ADULT DEEP SEDATION (Ages 14 and older)

RESPIRATION AND SLEEP AT HIGH ALTITUDE

ASPIRUS WAUSAU HOSPITAL, INC. Passion for excellence. Compassion for people. SUBJECT: END TIDAL CARBON DIOXIDE MONITORING (CAPNOGRAPHY)

I. Subject. Moderate Sedation

Study Of Effects Of Varying Durations Of Pre-Oxygenation. J Khandrani, A Modak, B Pachpande, G Walsinge, A Ghosh

Lecture Notes. Chapter 2: Introduction to Respiratory Failure

Respiratory Anesthetic Emergencies in Oral and Maxillofacial Surgery. By: Lillian Han

Optimal sedation and management of anxiety in patients undergoing endobronchial ultrasound (EBUS)

Pediatric Dental Sedation

It costs you nothing, but gains everything for your patient!

POLICY All patients will be assessed for risk factors associated with OSA prior to any surgical procedures.

Addendum D. Procedural Sedation Test MERCY MEDICAL CENTER- SIOUX CITY. Procedural Sedation Questions

Dehiscence of detached internal limiting membrane in eyes with myopic traction maculopathy with spontaneous resolution

Sedation is a dynamic process.

The following criteria must be met in order to obtain pediatric clinical privileges for pediatric sedation.

Attestation for Completion of Procedural Sedation Course for Level I Moderate Procedural Sedation Privileges

Article XIII ANALGESIA, CONSCIOUS SEDATION, DEEP SEDATION, AND GENERAL ANESTHESIA RULES FOR A DENTIST IN AN AMBULATORY FACILITY

Medical Coverage Policy Monitored Anesthesia care (MAC) EFFECTIVE DATE: POLICY LAST UPDATED:

Oral Midazolam for Premedication in Children Undergoing Various Elective Surgical procedures

By Mark Bachand, RRT-NPS, RPFT. I have no actual or potential conflict of interest in relation to this presentation.

Sedation-Analgesia Patient Evaluation

Novel pathophysiological concepts for the development and impact of sleep apnea in CHF.

5 Respiratory sites of action of propofol: absence of depression of peripheral chemoreflex loop by low dose propofol

Non-invasive Ventilation protocol For COPD

Regulations: Minimal Sedation. Jason H. Goodchild, DMD

The Commonwealth of Virginia REGULATIONS GOVERNING THE PRACTICE OF DENTISTRY VIRGINIA BOARD OF DENTISTRY Title of Regulations: 18 VAC et seq.

Takashi Yagisawa 1,2*, Makiko Mieno 1,3, Norio Yoshimura 1,4, Kenji Yuzawa 1,5 and Shiro Takahara 1,6

Re-growth of an incomplete discoid lateral meniscus after arthroscopic partial resection in an 11 year-old boy: a case report

Causes and Consequences of Respiratory Centre Depression and Hypoventilation

Control of Ventilation [2]

Acute Neurosurgical Emergency Transfer [see also CATS SOP neurosurgical]

DEEP SEDATION TEST QUESTIONS

The validity of the diagnosis of inflammatory arthritis in a large population-based primary care database

Appendix (i) The ABCDE approach to the sick patient

Impact of a new medical network system on the efficiency of treatment for eating disorders in Japan: a retrospective observational study

Administrative Policies and Procedures. Originating Venue: Provision of Care, Treatment and Services Policy No.: PC 2916

Pharmacological methods of behaviour management

Conflict of Interest Disclosure Authors Conflicts of Interest:

PHYSICIAN PROCEDURAL SEDATION AND ANALGESIA QUIZ

1/27/2017 RECOGNITION AND MANAGEMENT OF OBSTRUCTIVE SLEEP APNEA: STRATEGIES TO PREVENT POST-OPERATIVE RESPIRATORY FAILURE DEFINITION PATHOPHYSIOLOGY

A 42-year-old patient presenting with femoral

Subspecialty Rotation: Anesthesia

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see:

How it Works. CO 2 is the smoke from the flames of metabolism 10/21/18. -Ray Fowler, MD. Metabolism creates ETC0 2 for excretion

Conflict of Interest Disclosure

Recognition and Management of High Loop Gain Sleep Apnea

Abstract. Introduction

Non-Invasive Monitoring

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

BiPAPS/TVAPSCPAPASV???? Lori Davis, B.Sc., R.C.P.T.(P), RPSGT

Oxygen prescription and administration at the Emergency Department and medical wards in Mater Dei Hospital

Sleep Disordered Breathing: Beware Snoring! Dr T A McDonagh Consultant Cardiologist Royal Brompton Hospital London. UK

The prognostic value of blood ph and lactate and metformin concentrations in severe metformin-associated lactic acidosis

Respiratory Depression in the Early Postoperative Period. Toby N Weingarten, MD Mayo Clinic Professor Anesthesiology

(To be filled by the treating physician)

Effectiveness of inhaled furosemide for acute asthma exacerbation: a meta-analysis

A new score predicting the survival of patients with spinal cord compression from myeloma

For more information about how to cite these materials visit

May 2013 Anesthetics SLOs Page 1 of 5

Sedation in children and young people. Appendix J. Sedation for diagnostic and therapeutic procedures in children and young people

The Use of Midazolam to Modify Children s Behavior in the Dental Setting. by Fred S. Margolis, D.D.S.

Critical Review Form Therapy

The updated incidences and mortalities of major cancers in China, 2011

Date 8/95; Rev.12/97; 7/98; 2/99; 5/01, 3/03, 9/03; 5/04; 8/05; 3/07; 10/08; 10/09; 10/10 Manual of Administrative Policy Source Sedation Committee

Tracheal Intubation in ICU: Life saving or life threatening?

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

Last lecture of the day!! WASHINGTON ADMINISTRATIVE CODE ADMINISTRATION OF ANESTHETIC AGENTS FOR DENTAL PROCEDURES

SEDATION IN CHILDREN

The goal of deep sedation is to achieve a medically controlled state of depressed consciousness from which the patient is not easily aroused.

Airway and Ventilation. Emergency Medical Response

AMENDMENT TO THE REGULATIONS OF THE COMMISSIONER OF EDUCATION. Pursuant to sections 207, 6504, 6506, 6507, 6601, and 6605-a of the Education

NITROUS OXIDE-CURARE ANESTHESIA UNSUPPLEMENTED WITH CENTRAL DEPRESSANTS

Maria Tracey, Director-Perioperative and Elaine Warren, Directory-Surgery Level. III (Three)

Sedation in Children

Clinical audit for occupational therapy intervention for children with autism spectrum disorder: sampling steps and sample size calculation

Hypotension After Local Anesthetic Infiltration Into The Oral Submucosa During Oral And Maxillofacial Surgery

Anaesthetic considerations for laparoscopic surgery in canines

Ali Mohammadshahi 1, Ali Omraninava 1 *, Amir Masoud Hashemian 2 and Mohammad Mehdi Forouzanfar 3

Reducing Adverse Drug Events Related to Opioids: An Interview with Thomas W. Frederickson MD, FACP, SFHM, MBA

Pain Module. Opioid-RelatedRespiratory Depression (ORRD)

A Business & Clinical Case for Continuous Surveillance

Increasing bystander CPR: potential of a one question telecommunicator identification algorithm

Diazepam and Meperidine on Arterial Blood Gases in Healthy Volunteers

SARASOTA MEMORIAL HOSPITAL NURSING PROCEDURE

Capnography Connections Guide

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE

ARTERIAL BLOOD GASES PART 1 BACK TO BASICS SSR OLIVIA ELSWORTH SEPT 2017

MORPHINE ADMINISTRATION

Cluster headache associated with acute maxillary sinusitis.

Transcription:

Kobayashi et al. BioPsychoSocial Medicine 2014, 14:26 CASE REPORT Management of post-hyperventilation apnea during dental treatment under monitored anesthesia care with propofol Masato Kobayashi 1, Shinji Kurata 1, Takuro Sanuki 2, Ichiro Okayasu 2 and Takao Ayuse 1,2* Open Access Abstract Although hyperventilation syndrome generally carries a good prognosis, it is associated with the risk of developing severe symptoms, such as post-hyperventilation apnea with hypoxemia and loss of consciousness. We experienced a patient who suffered from post-hyperventilation apnea. A 17-year-old female who suffered from hyperventilation syndrome for several years developed post-hyperventilation apnea after treatment using the paper bag rebreathing method and sedative administration during a dental procedure. We subsequently successfully provided her with monitored anesthesia care with propofol. Monitored anesthesia care with propofol may be effective for the general management of patients who have severe hyperventilation attacks and post-hyperventilation apnea. This case demonstrates that appropriate emergency treatment should be available for patients with hyperventilation attacks who are at risk of developing post-hyperventilation apnea associated with hypoxemia and loss of consciousness. Keywords: Post-hyperventilation apnea, Propofol, Dental treatment Background Hyperventilation syndrome in patients with no underlying organic abnormality is frequently observed during medical and dental practice. Although the pathophysiological mechanisms of hyperventilation syndrome are still not fully understood, the relative roles of peripheral and central chemoreceptors in causing hyperventilation attacks have been suggested. Although it is believed that episodes of hyperventilation attacks resolve spontaneously and that the paper-bag rebreathing method or administration of anxiolytic agents may help mitigate an attack, sustained symptoms associated with hypocapnia have been reported to initiate complex clinical complications, such as the delayed occurrence of hypoxemia. Furthermore, several case reports have described the occurrence of post-hyperventilation apnea in association with sustained cyanosis, hypoxemia and loss of consciousness [1-4]. The pathogenesis of post-hyperventilation apnea has * Correspondence: ayuse@nagasaki-u.ac.jp 1 Department of Dental Anesthesiology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-shi 852-8588, Japan 2 Department of Translational Medical Sciences, Division of Clinical Physiology, Nagasaki University Graduate School of Biomedical Sciences, Course of Medical and Dental Sciences, 1-7-1 Sakamoto, Nagasaki-shi 852-8588, Japan been linked to the activity of peripheral chemoreceptors, which may contribute to the susceptibility to apnea during hypoxia or hyperoxia [5]. We provided monitored anesthesia care thrice to a patient who had a history of hyperventilation attacks and post-hyperventilation apnea during dental treatment under sedation with regional anesthesia. The aim of this report is to describe the management of hyperventilation attacks and post-hyperventilation apnea during dental treatment. Case presentation First episode (Figure 1) A female 17-year-old (height 154 cm, weight 56.4 kg) was scheduled for dental treatment (root canal treatment for an infected lower second molar) under regional anesthesia at the dental office of a university hospital. Since she had previously experienced hyperventilation attacks, not only during dental treatment but also in other situations, such as during bus rides, she was prescribed benzodiazepines (alprazolam) and paroxetine hydrochloride hydrate by a psychiatrist for a diagnosis of hyperventilation syndrome. There was no other medical history other than the psychological aspects. During the root canal treatment, the patient had a hyperventilation 2014 Kobayashi et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Kobayashi et al. BioPsychoSocial Medicine 2014, 14:26 Page 2 of 5 Figure 1 Time course of the first episode. Midazolam was used for the treatment of hyperventilation syndrome. attack after experiencing pain. After fifteen minutes of therapeutic treatment using the rebreathing method with a paper bag did not alleviate her symptoms, our team dental anesthesiologist was asked to support her respiratory condition. As shown in Figure 1, after confirming sustained hyperventilation of respiratory rate 50 ~ 60 breaths/minute with desaturation to 92% associated with blood pressure 130/83 mmhg and pulse rate 115 beats/ minute, we decided to provide low dose 2 l/min of oxygen supplementation using a bag-valve-mask instead of using the paper bag. With this, although her oxygen saturation improved to 100%, hyperventilation continued for 20 minutes. Confirming sustained hyperventilation, we decided to administer midazolam intravenously, as generally recommended in the treatment algorithm for hyperventilation syndrome [6]. However, we decided to decrease the dose of intravenous administration of midazolam to 0.5 mg, to minimize the risk of unpredictable changes in respiratory function. Immediately after injection of midazolam the hyperventilation subsided, with her respiratory rate improving to 20 breaths/minute. However, she then lost consciousness and developed complete apnea, resulting in significant desaturation to 88 ~ 76%. We tried to treat her with artificial ventilation using a bag-valve-mask with supplementation of a higher dose of 5 ~ 7 l/min oxygen. Two minutes after continuous mask ventilation of 8 ~ 10 counts/min to treat the complete apnea associated with unconsciousness and cyanosis, she regained consciousness and began to breathe at a respiratory rate of 15 breaths/minute. Her blood pressure was 120/80 mmhg and pulse rate was 72 beats/minute. We continuously monitored her respiratory condition for ne hour until full recovery from the symptoms. Thereafter, we informed the patient and her mother about the episode of severe hyperventilation attack and posthyperventilation apnea during the dental treatment and recommended that she undergo further such treatments under monitored anesthesia, care with spontaneous breathing. Second episode (Figure 2) Several weeks later, the same patient was scheduled for dental treatment under monitored anesthesia care with spontaneous breathing plus regional anesthesia. We induced and maintained anesthesia for one hour with a target controlled infusion of propofol (TCI level = 1.1 ~ 1.2 μg/ml) after intravenous administration of 1 mg midazolam. At the end of treatment, propofol was discontinued and the patient was carefully observed by the anesthesiologist until return of consciousness. Although she regained consciousness 20 minutes after stopping the propofol infusion, hyperventilation with a respiratory rate of 40 breaths/minute occurred and continued for several minutes. Immediately after the hyperventilation subsided spontaneously, post-hyperventilation apnea with desaturation to 86% occurred in association with loss of consciousness. However, the patient regained consciousness within one minute without any therapeutic intervention. She was discharged after confirming full recovery from the unstable respiratory condition.

Kobayashi et al. BioPsychoSocial Medicine 2014, 14:26 Page 3 of 5 Figure 2 Time course of the second episode. Propofol anesthesia after midazolam premedication was used for general management. Third episode (Figure 3) The patient was scheduled for the third dental treatment session under monitored anesthesia care with spontaneous breathing plus regional anesthesia. As with the previous anesthetic management, we induced without any premedication and maintained anesthesia with a TCI of propofol (TCI level = 1.2 ~ 1.5 μg/ml) for the fifty minute treatment period. At the end of the treatment, propofol was discontinued and the anesthesiologist carefully observed the patient until recovery of consciousness. She did not develop any symptoms of hyperventilation, even 10 minutes after regaining consciousness and was later discharged after an uneventful recovery period. Discussion It is known that some patients with hyperventilation syndrome develop post-hyperventilation apnea or hypoxia with cyanosis and loss of consciousness, resulting in severe complications, including death [7,8]. The pathogenesis of post-hyperventilation apnea has only been partly understood as being due to the activity of peripheral chemoreceptors that may contribute to the susceptibility to apnea Figure 3 Time course of the third episode. Propofol was used for general management.

Kobayashi et al. BioPsychoSocial Medicine 2014, 14:26 Page 4 of 5 during both hypoxia and hyperoxia [2,5,9]. Ogawa et al. suggested that apnea secondary to hyperventilation occurs because following the wash out of carbon dioxide from the body during hyperventilation an extended period of time is required for it to accumulate adequately enough to reach the threshold required to stimulate breathing [10]. In our patient, because oxygen continued to be supplied during artificial respiration with bag-valve-mask, even after the hyperventilation diminished, the patient probably had a low PaCO 2 and high PaO 2. In such a situation, the imbalance in the levels of both PaO 2 and PaCO 2 would have resulted in the peripheral chemoreceptors initiating a compensatory apnea reaction until sufficient carbon dioxide accumulated to reach the threshold to stimulate adequate breathing. Although, usually, a vicarious arousal reaction to the apnea can occur, in this case this arousal reaction was probably inhibited by the sedative effect of the small dose of midazolam used in first episode and second episodes. It has also been suggested that administration of benzodiazepine drugs, such as diazepam or midazolam, may contribute to increasing the threshold for respiratory stimulation. In other words, reduction of respiratory control related to the sedative effects of drugs might decrease the respiratory stimulant effect of arterial carbon dioxide wash out [11]. They suggest that 5-hydroxytryptamine 1A agonists can provide adequate anxiolysis in patients who have frequent occurrence of post-hyperventilation apnea. These studies indicate that the drugs used to manage and treat patients with hyperventilation syndrome should be carefully chosen, due to the risk of occurrence of posthyperventilation apnea. In our case, we used midazolam followed by propofol, a short acting intravenous anesthetic agent, during the second episode. However, when we did not use midazolam in the third episode, there were no symptoms of post-hyperventilation apnea after propofol anesthesia. We cannot deny that the small dose of midazolam administered may have caused the posthyperventilation apnea due to its sedative effect. However, it is difficult to believe that the effects of 1 mg administration of midazolam would remain active for the 1 hour 20 minutes before the emergence of post-hyperventilation apnea. The exact influence of propofol on the occurrence of post-hyperventilation apnea is not known. Previously, Tomioka et al. reported that propofol was not effective in preventing hyperventilation syndrome [12]. However, based on the third episode in our patient, in which she regained consciousness from propofol anesthesia without any symptoms of hyperventilation and/or post-hyperventilation apnea, we believe that an adequate dose of propofol is useful in patients who frequently experience hyperventilation syndrome. The timing of drug usage for sustained hyperventilation in the case of drugs that influence the occurrence of apnea also needs discussion. The duration for which carbon dioxide rebreathing using a paper bag should be attempted before further intervention should be determined. Treatment using a rebreathing bag for a prolonged period may result in a decrease in oxygen content. In our case, a cause of the desaturation (92%) might be related to reducing the oxygen supply by inappropriate continuation of rebreathing paper bag for a prolonged period of 15 minutes before the arrival of our team. Callaham et al. revealed that the paper bag rebreathing method seems to be a potentially risky procedure, because death, severe hypoxia and collapse have been reported to occur with paper bag rebreathing [7]. The need for sedative/anxiolytic drug therapy in the early stages of hyperventilation should be considered, even though sedative and anxiolytic agents have the potential to depress respiratory control. Another unanswered question is the need for oxygen supplementation if desaturation is observed during rebreathing therapy, and whether the arterial PO 2 level directly alters the compensatory response to hyperventilation. Previous reports have suggested that it might be desirable to provide a proper amount of oxygen, because hypoxemia is detrimental for the brain and hypoxemia during hypocapnia does not stimulate respiration [1]. Our experience seems to indicate that respiratory assistance using a bag and mask should be performed in critical cases of post-hyperventilation apnea with hypoxemia and loss of consciousness. It should be noted that most patients with post-hyperventilation apnea recover spontaneously in a short time without any treatment. Therefore, we can wait for spontaneous recovery for some time without the use of a bag-valve-mask under full monitoring of vital signs related to cardio-respiratory function. However, as indicated in a previous case report by Munemoto T et al. [1], if prolonged post-hyperventilation apnea associated with severe hypoxemia persists, as a precautionary measure it is necessary to immediately perform respiratory assistance by bag-valve-mask. Routine monitoring of SpO 2 and other vital signs, such as heart rate and blood pressure, should be available for patients with hyperventilation syndrome. Conclusion We experienced a case of post-hyperventilation apnea during dental treatment. Our experience suggests that monitored anesthesia care with propofol may be effective in the general management of patients with severe hyperventilation attacks and post-hyperventilation apnea. This case highlights the fact that proper emergency treatment should be available for patients with hyperventilation syndrome who might develop post-hyperventilation apnea associated with hypoxemia and loss of consciousness. Consent Written informed consent was obtained from the patient s parent for the publication of this case report and accompanying images.

Kobayashi et al. BioPsychoSocial Medicine 2014, 14:26 Page 5 of 5 Competing interests The authors declare that they have no competing interests. Authors contributions MK, KS, and TA all were involved in the management of this patient and the preparation of this case report. All authors read and approved the final manuscript. Received: 1 August 2014 Accepted: 24 November 2014 References 1. Munemoto T, Masuda A, Nagai N, Tanaka M, Yuji S: Prolonged post-hyperventilation apneaintwoyoungadultswithhyperventilationsyndrome.bio Psycho Social Med 2013, 7:9. 2. MacDonald KF, Bowers JT, Flynn RE: Posthyperventilation apnea associated with severe hypoxemia. Chest 1976, 70:554 557. 3. Inagaki T, Mizuno S, Miyaoka T, Tsubouchi K, Momose I, Kishi T, Horiguchi J, Kanata K, Hiruta H, Nakatani T, Doi K, Saito Y: Breath-holding spells in somatoform disorder. Int J Psychiatry Med 2004, 34:201 205. 4. Chin K, Hirai M, Kuriyama T, Kita H, Nakamura T, Shimizu K, Kuno K, Ohi M: Hypoxaemia in patients with hyperventilation syndrome. QJM 1997, 90:477 485. 5. Xie A, Skatrud JB, Puleo DS, Dempsey JA: Influence of arterial O2 on the susceptibility to posthyperventilation apnea during sleep. J Appl Physiol 2006, 100:171 177. 6. Hirokawa Y, Kondo T, Ohta Y, Kanazawa O: Clinical characteristics and outcome of 508 patients with hyperventilation syndrome. Nihon Kyobu Shikkan Gakkai Zasshi 1995, 33:940 946. 7. Callaham M: Hypoxic hazards of traditional paper bag rebreathing in hyperventilating patients. Ann Emerg Med 1989, 18:622 628. 8. Bouras N, Kartsounis LD, Bridges PK: Death associated with hyperventilation. Lancet 1987, 2:568. 9. Tawadrous FD, Eldridge FL: Posthyperventilation breathing patterns after active hyperventilation in man. J Appl Physiol 1974, 37:353 356. 10. Ogawa N, Hara K, Ueki H: Treatment of post-hyperventilation apnea. Rinsho Seishin Yakuri 2000, 3:677 683. 11. Date K, Morimoto K, Suwake H, Ogura S: The case of hyperventilation syndrome with severe post-hyperventilation apnea by diazepam injection. Saishin Seishin Igaku 2002, 7:255 258. 12. Tomioka S, Takechi M, Ohshita N, Nakajo N: Propofol is not effective for hyperventilation syndrome. Anesth Analg 2001, 92:781 782. doi:10.1186/s13030-014-0026-9 Cite this article as: Kobayashi et al.: Management of post-hyperventilation apnea during dental treatment under monitored anesthesia care with propofol. BioPsychoSocial Medicine 2014 14:26. Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit