LC/MS/MS of Buprenorphine and Norbuprenorphine in Whole Blood Using Agilent Bond Elut Plexa PCX and an Agilent Poroshell 120 Column

Similar documents
Authors. Abstract. Forensic Toxicology. Irina Dioumaeva, John M. Hughes Agilent Technologies, Inc.

Analyze Barbiturates in Urine with Agilent 6430 LC/MS/MS and Poroshell 120 EC-C18

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Application Note. Author. Abstract. Introduction. Food Safety

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

Cannabinoid Quantitation Using an Agilent 6430 LC/MS/MS

Mycotoxin Analysis in Peanut Butter Using Captiva EMR Lipid Cleanup and LC/MS/MS

Author. Introduction. Small Molecule Pharmaceuticals & Generics

Analysis of Cholesterol-Lowering Drugs (Statins) Using Dried Matrix Spot Technology

Application Note. Abstract. Authors. Pharmaceutical

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

Quantitative Analysis of Opiates in Urine Using RRHT LC/MS/MS. Application. Authors. Introduction. Abstract. Forensics

Reduced Ion Suppression and Improved LC/MS Sensitivity with Agilent Bond Elut Plexa

Rapid and Robust Detection of THC and Its Metabolites in Blood

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

Mycotoxin Analysis in Infant Formula Using Captiva EMR Lipid Cleanup and LC/MS/MS

Quantitative Analysis of Underivatized Amino Acids in Plant Matrix by Hydrophilic Interaction Chromatography (HILIC) with LC/MS Detection

Efficient Quantitative Analysis of THC and Metabolites in Human Plasma Using Agilent Captiva EMR Lipid and LC-MS/MS

Analysis of Vitamins Using an SFC/UHPLC Hybrid System with a Triple Quadrupole LC/MS for Quantification

LC/MS/MS Separation of Cholesterol and Related Sterols in Plasma on an Agilent InfinityLab Poroshell 120 EC C18 Column

LC/MS/MS of Trichothecenes and Zearalenone in Wheat Using Different Sample Prep Methods

Detection, Confirmation, and Quantification of Chloramphenicol in Honey, Shrimp and Chicken Using the Agilent 6410 LC/MS Triple Quadrupole

LC-MS/MS analysis of Chlorates in Milk and Whey Powder using the Agilent 6470 QQQ

LC-MS/MS Method for the Determination of Tenofovir from Plasma

LC/MS Method for Comprehensive Analysis of Plasma Lipids

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

Fast and simultaneous analysis of ethanol metabolites and barbiturates using the QTRAP 4500 LC-MS/MS system

A FORENSIC TOXICOLOGY METHOD FOR THE DETERMINATION OF DESOMORPHINE, HEROIN, METHADONE, BUPRENORPHINE AND METABOLITES IN URINE USING LC/MS QQQ

Author. Introduction. Abstract

Supporting Information

Determination of Bath Salts (Pyrovalerone Analogs) in Biological Samples

Determination of Benzodiazepines in Urine by CE-MS/MS

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Quantitative Analysis of Amphetamine-Type Drugs by Extractive Benzoylation and LC/MS/MS. Application. Introduction. Authors. Abstract.

Modified QuEChERS for HILIC LC/MS/MS Analysis of Nicotine and Its Metabolites in Fish

Multiclass Mycotoxin Analysis in Cheese Using Agilent Captiva EMR Lipid Cleanup and LC/MS/MS

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

Determination of Aflatoxins in Food by LC/MS/MS. Application. Authors. Abstract. Experimental. Introduction. Food Safety

Authors. Abstract. Introduction. Environmental

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions

Analysis of Acrylamide in French Fries using Agilent Bond Elut QuEChERS AOAC kit and LC/MS/MS

Sample Preparation Techniques for Biological Matrices: Finding the right balance to achieve optimal results

Quantitative Determination of Drugs of Abuse in Human Plasma and Serum by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases

Determination of Amantadine Residues in Chicken by LCMS-8040

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Fast and easy separation of 23 drugs of abuse. including high, stable resolution of isobaric opioids from human urine by UHPLC-MS/MS

Application. Detection of Cannabinoids in Oral Fluid Using Inert Source GC/MS. Introduction. Authors. Abstract. Forensic Toxicology

Fast quantitative Forensic Analysis of THC and its Metabolites in Biological Samples using Captiva EMR- Lipid and LC/MSMS

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Dienes Derivatization MaxSpec Kit

A Comprehensive Screening of Illicit and Pain Management Drugs from Whole Blood Using SPE and LC/MS/MS

Extraction of Multiple Mycotoxins From Nuts Using ISOLUTE Myco prior to LC-MS/MS Analysis

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE Myco prior to LC-MS/MS Analysis

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

Determination of Opiates and Metabolites in Blood Using Electrospray LC/MS. Application Note

Extraction of Aflatoxin M1 From Infant Formula Using ISOLUTE Myco SPE Columns prior to LC-MS/MS Analysis

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Determination of Multi-Residue Tetracyclines and their Metabolites in Milk by High Performance Liquid Chromatography - Tandem Mass Spectrometry

Profiling of Endogenous Metabolites Using Time-of-Flight LC/MS with Ion Pair Reverse Phase Chromatography

Ultrafast Analysis of Benzodiazepines in Urine by the Agilent RapidFire High-Throughput Triple Quadrupole Mass Spectrometry System

Determination of Gamma-Hydroxy-Butyrate (GHB) in Biological Samples

2D-LC as an Automated Desalting Tool for MSD Analysis

Detection of Cannabinoids in Oral Fluid with the Agilent 7010 GC-MS/MS System

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS)

Edgar Naegele. Abstract

Direct Analysis of Urinary Opioids and Metabolites by Mixed-Mode µelution SPE Combined with UPLC/MS/MS for Forensic Toxicology

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

The Raptor HILIC-Si Column

Determination of Amphetamine and Derivatives in Urine

Separation of Polyphenols by Comprehensive 2D-LC and Molecular Formula Determination by Coupling to Accurate Mass Measurement

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

Protein Precipitation for Biological Fluid Samples Using Agilent Captiva EMR Lipid 96-Well Plates

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine

Selectivity Comparison of Agilent Poroshell 120 Phases in the Separation of Butter Antioxidants

Detection of Cotinine and 3- hydroxycotine in Smokers Urine

Determination of Patulin in Apple Juice Using SPE and UHPLC-MS/MS Analysis

Application Note. Authors. Abstract. Food

Automated Hydrolysis, Extraction and Determination of Opioids in Urine using a Novel Robotic Autosampler and LC-MS/MS Platform

Analysis of Per- and Polyfluoroalkyl Substances (PFASs) in Biological Fluid Using a Novel Lipid Removing Sorbent and LC-MS/MS

Determination of B-vitamins in Energy Drinks by CE/MS/MS

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE. SLE+ Prior to LC/MS-MS Analysis

Mass-Based Purification of Natural Product Impurities Using an Agilent 1260 Infinity II Preparative LC/MSD System

Extraction of Synthetic and Naturally Occurring Cannabinoids in Urine Using SPE and LC-MS/MS

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS

Detection of Low Level of Chloramphenicol in Milk and Honey with MIP SPE and LC-MS-MS

Shuguang Li, Jason Anspach, Sky Countryman, and Erica Pike Phenomenex, Inc., 411 Madrid Ave., Torrance, CA USA PO _W

Screening by immunoassay and confirmation & quantitation by GC-MS of buprenorphine and norbuprenorphine in urine, whole blood and serum

Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts

Improved Isolation and Analysis of Mycotoxins from Cereals, Beer and Wine

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Filtration Approaches to Sample Preparation and Cleanup. Golnar Javadi Application Engineer Sample Preparation Products

Transcription:

LC/MS/MS of Buprenorphine and orbuprenorphine in Whole Blood Using Agilent Bond Elut Plexa PCX and an Agilent Poroshell 10 Column Application ote Forensic Toxicology Author Irina ioumaeva Agilent Technologies, Inc. Abstract etermination of buprenorphine and norbuprenorphine in whole blood by forensic toxicology laboratories requires an analytical method capable of reliable detection of these compounds at concentrations below 1 ng/ml. A simple sample cleanup procedure coupled with an LC/MS/MS method using mass transitions 468. & 55.1 and 414. & 83.1 allows for a limit of detection (L) below 0.1 ng/ml for both analytes. Typical calibration curves are linear in the range of 0. to 0 ng/ml for each analyte, with R values equal or higher than 0.999. High sensitivity is achieved by using Agilent products, including an Agilent Bond Elut Plexa PCX mixed mode polymeric SPE sorbent, an Agilent Poroshell 10 EC-C18.7 µm superficially porous LC column, an Agilent 100 Infinity LC system, and an Agilent 6460 Triple Quadrupole LC/MS System with Agilent Jet Stream Technology (AJST) enhanced electrospray source.

Introduction Buprenorphine is a semisynthetic opioid with a structure similar to morphine, although buprenorphine is much more hydrophobic (Figure 1). Buprenorphine is converted to norbuprenorphine, its major active metabolite [1,4]. Concentrations of buprenorphine and norbuprenorphine in blood are very similar, and in more than 50% cases, are below 1 ng/ml [9], presenting a challenge for an analyst. In addition, MS/MS detection of these compounds is complicated by the rigidity of the molecular structures of the analytes, resulting in very low amounts of collision-induced fragments. To achieve sensitivity below 1 ng/ml, analytical methods for determination of these compounds need not only excellent MS performance, but also an efficient sample cleanup procedure providing high recoveries and low ion suppression. We used an extraction method that delivered detection limits below 0.1 ng/ml, easily achieved due to the cleanliness of SPE-processed whole blood extracts. Unlike other polymeric sorbents, all members of the Agilent Bond Elut Plexa family possess an amide-free hydroxylated particle surface that excludes protein binding. This results in minimized ion suppression and maximum sensitivity. Fast flow and reproducible performance are due to the narrow particle size distribution with no fines to cause blockages. Experimental Analytes H 3 C C( ) 3 Buprenorphine C 9 H 41 4 M.W. 467.65 Log P 4.9-5.0 pka 8.3 H 3 C C( ) 3 orbuprenorphine C 5 H 35 4 M.W. 413.55 Log P 3.4-3.8 Good separation of analytes and excellent peak shapes achieved with this method are distinctive features of the Agilent Poroshell 10 column family. With superficially porous.7 µm particles, these columns provide similar efficiency to sub- µm UHPLC columns, but with approximately 40% less backpressure. This allows users of even 400 bar LC systems to increase resolution and to shorten analysis and re-equilibration times by applying a higher flow rate. H 3 C C( ) 3 3 C C( ) 3 ew ion transitions identified as the most abundant and used in this work for quantitation are 468. > 55.1 (buprenorphine) and 414. > 83.1 (norbupenorphine). With only 0.5 ml of blood, a low sample injection volume of 10 µl and preconcentration of only 5 at the extraction step, the method demonstrates excellent signal-to-noise ratios at 0. ng/ml:84:1 for buprenorphine and 0:1 for norbuprenorphine (Figure ). Buprenorphine- 4 C 9 H 37 4 4 M.W. 471.6 orbuprenorphine- 3 C 5 H 3 3 4 M.W. 416.53 Figure 1. Buprenorphine and norbuprenorphine analytes and their structures. Log P pka values are from SRC and PubChem. rug standards were purchased from Cerilliant Corporation as 1 mg/ml (buprenorphine, norbuprenorphine) and 100 µg/ml (buprenorphine- 4 and norbuprenorphine- 3 ) solutions in methanol.

Materials and instrumentation SPE Agilent Bond Elut Plexa PCX cartridges 30 mg, 3 ml (p/n 1108303) Agilent vacuum manifold VacElut 0 (p/n 134100) Agilent stopcock valves (p/n 13450) Agilent silanized autosampler vials ml (p/n 5183-07) Agilent vial inserts, 50 µl, deactivated glass, with polymer feet (p/n 5181-887) Agilent screw caps for AS vials (p/n 518-0717) LC Agilent Poroshell 10 EC-C18, 3 50 mm,.7 µm column (p/n 699975-30) Agilent 160 Infinity LC system (G1379B microdegasser, 131B binary pump in low delay volume configuration, G1367E autosampler, G1330B thermostat) MS Agilent 6460A Triple Quadrupole LC/MS system with AJST electrospray ionization source. Sample preparation Pretreatment 1. Spike 0.5 ml of blood with IST at 10 ng/ml, or prepare 10 ng/ml solution of IST in 0.1 M phosphate buffer (ph 6.0) and add 0.5 ml of this buffer to each blood sample. Use of methanol-rinsed and air-dried glass tubes 1 75 mm is recommended.. After adding IST, add to.5 ml phosphate buffer (so that blood is diluted at least 1:5). 3. Vortex and centrifuge to obtain a good pellet. Extraction 1. Condition Bond Elut Plexa PCX cartridge with 0.5 ml methanol, soak, then let drip.. Load sample/supernatants with a Pasteur glass pipette. 3. Wash 1: ml % formic acid. 4. Wash : 3 ml of 70 MeH:30 of % formic acid. 5. ry 5-10 minutes under vacuum (10-15 in Hg). 6. Elute with 1.5 ml of 80 ethyl acetate:0 isopropanol: 5 H 4 H eluent. Add H 4 H shortly before elution. Apply eluent in aliquots and soak the sorbent bed with each aliquot. Soak for approximately 0.5 minute with the stopcock valves closed, then let the eluate drip into the collection vials under gravity. When the dripping stops, apply low vacuum to extract eluate from the smallest pores. 7. Evaporate to dryness under a stream of nitrogen at 45 C. 8. Reconstitute in 0.1 ml initial mobile phase (15% methanol, 85% water, 0.1% formic acid), vortex, and transfer into vial inserts with polymer feet. LC/MS/MS LC conditions Mobile phase A: 0.1% formic acid in water Mobile phase B: 0.1% formic acid in methanol Flow rate: 0.8 ml/min Gradient: Time (min) % B 0.0 15.0 70.1 95 5.5 95 5.51 15 Stop time: 5.6 min Post time: min Max pump pressure: 400 bar Injection volume: 10 µl Injection with needle wash eedle wash: Flush port 95 methanol:5 water for 10 s isable overlapped injection: o automatic delay volume reduction: MS conditions ES source parameters Ionization mode: positive Capillary voltage:,800 V rying gas flow: 10 L/min rying gas temperature: 350 C ebulizer gas: 35 psi Sheath gas flow: 1 L/min Sheath gas temperature: 350 C ozzle voltage: 0 V MS parameters Scan type: MRM Prerun script: SCP_MSiverterValveToWaste() {MH_Acq_Scripts.exe} Time segments: #1: 1.8 min - diverter valve to MS elta EMV (+): 400 V Table 1 shows the MRM transitions for one quantifier and one qualifier product ion for the target compounds, and their deuterated internal standards. 3

Table 1. MRM Transitions. Compound name Precursor MS1 Res Product MS Res Fragmentor Collision energy Buprenorphine 468.3 Unit 55.1 Wide 00 6 Buprenorphine 468.3 Unit 396. Wide 00 45 Buprenorphine- 4 47.3 Unit 59.1 Wide 00 6 Buprenorphine- 4 47.3 Unit 400. Wide 00 45 orbuprenorphine 414.3 Unit 83.1 Wide 188 60 orbuprenorphine 414.3 Unit 57.1 Wide 188 50 orbuprenorphine- 3 417.3 Unit 83.1 Wide 188 60 orbuprenorphine- 3 417.3 Unit 57.1 Wide 188 50 Results and iscussion At low ph, buprenorphine and norbuprenorphine are protonated at the tertiary amine group and strongly retained on Agilent Bond Elut Plexa PCX polymeric sorbent by a combination of hydrophobic retention and strong cation exchange. A 100% methanol wash led to partial loss of analytes from the SPE column. The optimum wash that efficiently removed most matrix interferences without loss of analytes proved to be 70 MeH:30 % formic acid. A strong base is added to the organic eluent to break the ionic interaction between the analytes and the strong cation-exchange sorbent. The recovery of buprenorphine and norbuprenorphine was optimized with 5% H 4 H added to the combination eluent (80 ethyl acetate: 0 isopropanol) shortly before sample elution. Two-step elution with a soaking procedure is recommended to enhance the solvent-analyte interaction and improve analyte recoveries. ue to high hydrophobicity, buprenorphine and norbuprenorphine can adhere to glassware, LC tubing, and injector parts, which is why we recommend a 95% MeH column rinse in the LC method and 95 MeH:5 water flushing solution for the flushport needle rinse. eactivated vials/inserts and MeH-rinsed/air-dried glassware (both tubes and bottles for ST/IST dilutions) also ensure reproducible results. The LC separation intentionally begins with a relatively low fraction of organic solvent (15%) to allow salts and other polar components of blood to elute at the beginning of the sample run. A flow rate of 0.8 ml/min allows for a short retention and re-equilibration time. Each sample run begins with diverting a first portion of flow (0 to 1.8 minutes) to waste to minimize source contamination. ata collection begins at 1.8 minutes, immediately after the diverter valve switch. Chromatograms for buprenorphine and norbuprenorphine at the LQ of 0. ng/ml and corresponding deuterated internal standards at 10 ng/ml are shown in Figure. 4 A B C 10 3 4 10 3 10 5 1 10 4 1 0.5 +MRM (468. -> 55.1) L1-1-o.d oise (Peak-to-peak) = 69.36; SR (.46 min) = 84.7 1. 1.4 1.6 1.8..4.6.8 3 3. +MRM (414. -> 83.1) L1-1-o.d oise (Peak-to-peak) = 61.39; SR (.8 min) = 0.5 1. 1.4 1.6 1.8..4.6.8 3 3. +MRM (47. -> 59.1) L1-1-o.d oise (Peak-to-peak) = 386.09; SR (.45 min) = 68.0 1. 1.4 1.6 1.8..4.6.8 3 3. +MRM (417. -> 83.1) L1-1-o.d oise (Peak-to-peak) = 35.58; SR (.7 min) = 1.0 1. 1.4 1.6 1.8..4.6.8 3 3. Figure. MRM extracted ion chromatograms: A: buprenorphine, B: norbuprenorphine (both at 0. ng/ml), C: buprenorphine- 4, and : norbuprenorphine- 3 (both at 10 ng/ml) in whole blood extract processed on Agilent Bond Elut Plexa PCX and an Agilent Poroshell 10 EC-C18 3 50 mm,.7 µm column. oise regions are shown in bold.

The high stability of molecular ions of both buprenorphine and norbuprenorphine presents a challenge for MS/MS detection [3,9]. It led many researchers to quantitation in SIM mode [,8], or in SRM mode by monitoring a molecular ion > molecular ion transition at relatively high collision energy without fragmentation [3,9]. Compared to a more selective quantitation by a parent-product transition, this approach is less reliable. It results in a much higher signal-to-noise (S/) ratio and, therefore, in a higher lower limit of quantification (LLQ). MS-MS transitions most commonly used for buprenorphine/norbuprenorphine quantification were 468 to 414, 396 m/z for buprenorphine, and 414 to 396, 340 and 101 m/z for norbuprenorphine [, 3, 4, 5, 6, 7]. A new stable fragmentation pattern achieved with an Agilent 6460 Triple Quadrupole LC/MS System (Table 1) at high collision energy levels allows for a reliable quantitation with an LLQ of 0. ng/ml for both analytes. The most abundant fragment of buprenorphine is the methylocyclopropyl (C 4 H 7 ) group with m/z 55.1. Its identification is confirmed by a fragment of buprenorphine- 4 with m/z 59.1. The most abundant product of norbupenorphine fragmentation (m/z 83.1) probably comes from the branched side chain of the parent ion and includes the tert-butyl group ( ) 3 C. Compared to most commonly used fragmentation products obtained at their optimum collision energies, m/z 55.1 is a 8 more abundant product of buprenorphine than m/z 396., while m/z 83.1 is a more abundant product of norbuprenorphine than m/z 101.1. MRM transitions listed in Table 1 are for one quantifier and one qualifier product ion for both target compounds and their deuterated ISTs. Agilent MassHunter software automatically calculates qualifier ion ratios, highlighting those out of the acceptable range. Either normal or dynamic MRM acquisition modes can be used with this method. S/ ratios at the LLQ level of 0. ng/ml were 84:1 for buprenorphine and 0:1 for norbuprenorphine Figures, A and B). This illustrates the efficiency of a sample cleanup procedure and the excellent sensitivity of the 6460 Triple Quadrupole, capable of detecting these analytes with Ls way below 0.1 ng/ml. Figure 3 shows typical calibration curves for buprenorphine and norbuprenorphine in extracted whole blood standards at five concentration levels. Calibration standards were prepared by spiking whole blood with analytes at 0., 1, 5, 10, and 0 ng/ml. euterated internal standards were added at 10 ng/ml. Excellent linear fit (R > 0.999) to each of the curves demonstrates linearity of the method. o weighting was applied, and the origin was included in the curve fit. Table shows recovery (accuracy) and precision (CV, or RS) data collected for five samples of whole blood fortified with 1 ng/ml of each analyte. Quantitation was performed against calibration curves obtained from the spiked matrix standards (Figure 3). Conclusions A simple, solid phase extraction procedure coupled with an LC/MS/MS detection method allows determination of buprenorphine and norbuprenorphine in whole blood at concentrations below 0. ng/ml. This method is intended for users of Agilent 1100 and 100 LC series since the backpressure in the LC system does not exceed 400 bar. Table. Method Performance at 1 ng/ml of Each Analyte, n = 5. Accuracy (%) CV % Buprenorphine 94. 0.6 orbuprenorphine 103 0. Relative responses Relative responses.4. 1.8 1.6 1.4 1. 1 0.8 0.6 0.4 0. 0 _ 0..8.6.4. 1.8 1.6 1.4 1. 0.8 1 0.6 0.4 0. _ 0 0. BUP - 5 Levels, 5 Levels Used, 10 Points, 10 Points Used, 14 QCs y = 0.11756* _ 0.00649 R = 0.99997503 _ 1 0 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Concentration (ng/ml) BUP - 5 Levels, 5 Levels Used, 10 Points, 10 Points Used, 14 QCs y = 0.19907* _ 0.010709 R = 0.99995931 _ 1 0 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Concentration (ng/ml) Figure 3. Typical calibration curves for buprenorphine and norbuprenorphine in whole blood extract. Concentration range 0. to 0 ng/ml. Linear fits R > 0.999. 5

Source parameters can be easily modified to use this method with other models of Agilent Triple Quadrupole LC/MS System instruments. Low detection limits are achieved due to cleanliness of sample extracts and robust MS detection using newly identified ion transitions with abundant fragmentation products. References 1. Baselt, R. (008) isposition of Toxic rugs and Chemicals in Man. 8th edition. Atlas Books, Ashland, H, USA.. Concheiro, M., Shakleya,. M. and Huestis, M. A. (009) Simultaneous quantification of buprenorphine, norbuprenorphine, buprenorphine-glucuronide and norbuprenorphine-glucuronide in human umbilical cord by liquid chromatography-tandem mass spectrometry Forensic Science International, 188 (1-3): 144 151. 3. Kronstrand, R., Selden, T. G. and Josefsson, M. (003) Analysis of buprenorphine, norbuprenorphine, and their glucuronides in urine by liquid chromatography mass spectrometry. Journal of Analytical Toxicology, 7: 464 470. 4. Miller, E. I., Torrance, H. J. and liver, J. S. (006) Validation of the Immunalysis microplate ELISA for the detection of buprenorphine and its metabolite norbuprenorphine in urine. Journal of Analytical Toxicology, 30:115 119. 6. Moore, C., Coulter, C. and Crompton, K. (007) etermination of buprenorphine, norbuprenorphine and their glucuronides in urine using LC/MS/MS. Agilent application note 5989-707E. Agilent Technologies, Inc. 7. Øiestad, E. L., Johansen, U., Øiestad, A. M. L. and Christophersen, A. S. (011) rug screening of whole blood by ultra-performance liquid chromatography-tandem mass spectrometry. Journal of Analytical Toxicology, 35: 80-93. 8. Scislowski, M., Piekoszewski, W., Kamenczak, A. and Florek, E. (005) Simultaneous determination of buprenorphine and norbuprenorphine in serum by highperformance liquid chromatography electrospray ionization-mass spectrometry. Journal of Analytical Toxicology, 9: 49 53. 9. Selden, T., Roman, M., ruid, H. and Kronstrand, R. (011) LC MS MS analysis of buprenorphine and norbuprenorphine in whole blood from suspected drug users. Forensic Science International, 09: 113 119. For More Information For more information on our products and services, visit our Web site at www.agilent.com/chem. 5. Moody,. E., Slawson, M. H., Strain, E. C., Laycock, J.., Spanbauer, A. C. and Foltz, R. L. (00) A liquid chromatographic electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies. Analytical Biochemistry, 306: 31 39. www.agilent.com/chem For Forensic Use. This information is subject to change without notice. Agilent Technologies, Inc., 014, 017 Printed in the USA January 7, 017 5990-9930E