Fatty Acid Beta-Oxidation Disorders: A Brief Review

Similar documents
Carnitine palmitoyl transferase 2 deficiency (CPT2) is a rare inherited disorder that occurs when

The breakdown of fats to provide energy occurs in segregated membrane-bound compartments

Fatty Acid Oxidation Disorders- an update. Fiona Carragher Biochemical Sciences, GSTS Pathology St Thomas Hospital, London

e-learning Fatty Acid Oxidation Defects Camilla Reed and Dr Simon Olpin Sheffield Children s Hospital

Fatty acid oxidation. Naomi Rankin

Very-long-chain acyl-coa dehydrogenase deficiency

Fatty Acid Oxidation Disorders Organic Acid Disorders

Fatty Acid Oxidation Disorders

Medium-chain acyl-coa dehydrogenase deficiency

ANATOMY OF A METABOLIC CRISIS: FAOD-style. Mark S. Korson, MD Tufts Medical Center Boston, MA

Mitochondrial Fatty Acid Oxidation Deficiencies Prof. Niels Gregersen

VLCAD At a Glance. Before VLCAD was included on the newborn screening test, three types of VLCAD were recognized by the severity of the condition:

Fatty Acid Oxidation Disorders

My Experiences and Understanding of VLCAD Deficiency and its Treatment Charles R. Roe, MD June 26, 2011 (Now retired)

Newborn Screen & Development Facts about the genetic diseases new since March 2006 (Excluding Cystic Fibrosis)

Information for health professionals

Learning Objectives. At the conclusion of this module, participants should be better able to:

Providing the Right Fuels for FOD s. Elaina Jurecki, MS, RD Regional Metabolic Nutritionist Kaiser Permanente Medical Center Oakland, CA

Neurodevelopmental Risk?

So Much More Than The PKU Test

Metabolic Changes in ASD. Norma J. Arciniegas, MD Simón E. Carlo, MD Instituto Filius

NEONATAL HYPOGLYCEMIA HEATHER MCKNIGHT-MENCI, MSN, CRNP CHILDREN S HOSPITAL OF PHILADELPHIA

Alvaro Serrano Russi MD University of Iowa Hospitals and Clinics

BIOCHEMICAL AND MOLECULAR HETEROGENEITY IN CARNITINE PALMITOYLTRANSFERASE II DEFICIENCY

Morbidity and Mortality Among Exclusively Breastfed Neonates With MCAD Deficiency

PRACTICE GUIDELINES WOMEN S HEALTH PROGRAM

Metabolic Precautions & ER Recommendations

SCAD and GA-II: Truths and Confusions

Introduction to Organic Acidemias. Hilary Vernon, MD PhD Assistant Professor of Genetic Medicine Johns Hopkins University 7.25.

Neonatal Hypoglycaemia

Organic Acid Disorders

The Arctic Variant of CPT-1A

Neonatal Hypoglycemia

Controversies in Neonatal Hypoglycemia PAC / LAC CONFERENCE, JUNE 1 ST 2017

Overview. o Limitations o Normal regulation of blood glucose o Definition o Symptoms o Clinical forms o Pathophysiology o Treatment.

3 HYDROXY 3 METHYLGLUTARYL CoA (3 HMG CoA) LYASE DEFICIENCY RECOMMENDATIONS ON EMERGENCY MANAGEMENT OF METABOLIC DISEASES

OVERVIEW M ET AB OL IS M OF FR EE FA TT Y AC ID S

DIAGNOSIS OF FATTY ACID OXIDATION DISORDERS BY MASS SPECTROMETRY

Evidence-Based Update: Using Glucose Gel to Treat Neonatal Hypoglycemia

Inborn Errors of Metabolism. Metabolic Pathway. Digestion and Fasting. How is Expanded Newborn Screening Different? MS/MS. The body is a factory.

Carnitine Palmitoyltransferase 1A Deficiency

Organic Acid Disorders

Lehninger 5 th ed. Chapter 17

Manipulation of the Nutrient Sensors (AMPK/TOR) with Anaplerotic Diet Therapy (Triheptanoin) An Alternative to Diet Restriction

Metabolic Disorders. Chapter Thomson - Wadsworth

Organic Acid Disorders

TEMPLE MCADD. Tools Enabling Metabolic Parents LEarning ADAPTED BY THE DIETITIANS GROUP. British Inherited Metabolic Diseases Group

11/8/12. KERNICTERUS: The reason we have to care about bilirubin. MANAGING JAUNDICE IN THE BREASTFEEDING INFANT AKA: Lack of Breastfeeding Jaundice

Guideline for the diagnosis and management of isovaleryl-coa-dehydrogenase deficiency (isovaleric acidemia) - a systematic review -

For Your Baby s Health Department of Health

How MS/MS Revolutionized Newborn Screening

HA Convention 2016 Master course How to Handle Abnormal Newborn Metabolic Screening Results Causes, Management and Follow up

Comprehensive Molecular Testing for Fatty Acid Oxidation Disorders. A Guide for Clinicians

Biochemistry and Management of Fatty Acid Oxidation Disorders: From Infancy to Adulthood

Newborn screening for congenital metabolic diseases Optional out-of-pocket tests Information Sheet

Routine Newborn Screening, Testing the Newborn Inherited Metabolic Disorders Update August 2015

Tala Saleh. Razi Kittaneh ... Nayef Karadsheh

INBORN ERRORS OF METABOLISM (IEM) IAP UG Teaching slides

Retrospective Chart Review Triheptanoin in FAOD patients ICIEM Presentation

Evaluation of newborn screening for medium chain acyl-coa dehydrogenase deficiency in babies

Inborn Errors of Metabolism (IEM)

The University of Arizona Pediatric Residency Program. Primary Goals for Rotation. Genetics

7/11/2018. Oral Dextrose Gel Treatment for Newborns with Hypoglycemia Reduces NICU Admissions DISCLOSURE. Objectives

The Association Between Acute Fatty Liver of Pregnancy and Fatty Acid Oxidation Disorders Patricia A. Jamerson PRINCIPLES & PRACTICE.

Nutritional Interventions in Primary Mitochondrial Disorders

Critical Newborn Screens in Double Heterozygotes of Inborn Errors of Metabolism A Clinical Report and Recommendations

W1A- Cases I Learned From

The spectrum and outcome of the. neonates with inborn errors of. metabolism at a tertiary care hospital

Amino Acid Disorders. What is ASAL deficiency? Genetic Fact Sheets for Parents

Urea Cycle Defects. Dr Mick Henderson. Biochemical Genetics Leeds Teaching Hospitals Trust. MetBioNet IEM Introductory Training

Glycogen Storage Disease

Organic Acid Disorders

Summary of Changes: References/content updated to reflect most current standards of practice.

Disorder name: Argininemia / Arginase deficiency Acronym: ARG 1 deficiency

ISOVALERIC ACIDAEMIA -ACUTE DECOMPENSATION (standard version)

TEMPLE. Tools Enabling Metabolic Parents LEarning ADAPTED BY THE DIETITIANS GROUP. British Inherited Metabolic Diseases Group

Metabolic Muscle Disease

Maternal-fetal Opiate Medical Home (MOMH) Jocelyn Davis DNP,CNM, RN, CEFMM Karen Frantz BSN, RNC

Sending and Receiving Newborn Screening Results in Indiana: The HIE Perspective

2017 Newborn Screening and Genetic Testing Symposium September 10, 2017

LILY FOUNDATION. An Introduction to Ketogenic Diets. Susan Wood. Matthew s Friends. Registered Dietitian Adults & Paediatrics

CHAPTER 12 HYPERTENSION IN SPECIAL GROUPS HYPERTENSION IN PREGNANCY

Isovaleric Acidemia: Quick reference guide

Positive Newborn Screens: What do you do next?

Neonatal Hypoglycemia. Presented By : Kamlah Olaimat 25\7\2010

Intrapartum and Postpartum Management of the Diabetic Mother and Infant

Neonatal Hypoglycaemia Guidelines

Vishwanath Pattan Endocrinology Wyoming Medical Center

Lynne A. Wolfe, MS, ACNP, PNP, BC Department of Genetics Yale School of Medicine

Management of Pregestational and Gestational Diabetes Mellitus

Epatite B: fertilità, gravidanza ed allattamento, aspetti clinici e terapeutici. Ivana Maida

National Metabolic Biochemistry Network Guidelines for the investigation of hypoglycaemia in infants and children

Management and outcome in 75 individuals with long-chain fatty acid oxidation defects: results from a workshop

Biochemistry #02. The biochemical basis of skeletal muscle and bone disorders Dr. Nabil Bashir Bara Sami. 0 P a g e

Not Your Typical Case of Ketotic Hypoglycemia

Inborn Errors of Metabolism in the Emergency Department. Will Davies June 2014

Newborn Screening in Manitoba. Information for Health Care Providers

Objectives. Types of HIV Tests. Age Appropriateness of Tests. Breastfeeding and HIV Testing. Why are there different tests for different ages?

THE ED APPROACH OF THE CHILD WITH SUSPECTED METABOLIC DISEASE

Transcription:

Mini Review Received: July 12, 2015 Accepted: November 12, 2015 Published online: March 11, 2016 Fatty Acid Beta-Oxidation Disorders: A Brief Review Vijay A. Vishwanath Division of Pediatric Neurology, Department of Neurology, Albany Medical Center, Albany, N.Y., USA Key Words Mitochondrial fatty acid β-oxidation disorders Fatty acid β-oxidation disorder MCAD deficiency Abstract Background: Mitochondrial fatty acid β-oxidation disorders (FAODs) are a heterogeneous group of defects in fatty acid transport and mitochondrial β-oxidation. They are inherited as autosomal recessive disorders and have a wide range of clinical presentations. Summary: The background information and case report provide important insight into mitochondrial FAODs. The article provides a wealth of information describing the scope of these disorders. Key Messages: This article presents a typical case of medium chain acyl-coa dehydrogenase deficiency and summarizes the pathophysiology, clinical presentation, diagnosis and treatment of mitochondrial FAODs. 2016 S. Karger AG, Basel Introduction Mitochondrial fatty acid β-oxidation disorders (FAODs) are a group of about 20 defects in fatty acid transport and mitochondrial β-oxidation that are inherited as autosomal recessive disorders. FAODs have a varied presentation, with either neonatal onset with hyperammonemia, transient hypoglycemia, metabolic acido- sis, cardiomyopathy and sudden death or late onset with neuropathy, myopathy and retinopathy [1]. Most cases with FAODs are now identified using newborn screening by mass spectrometry (MS/MS) of blood spots. Pregnancies of mothers heterozygous for FAOD have been associated with development of severe pre-eclampsia, acute fatty liver of pregnancy and HELLP syndrome (hemolysis, elevated liver enzymes, low platelets) in mothers and intrauterine growth retardation in infants [2]. Case Report A 5-year-old girl is brought in by the emergency medical services to the pediatric emergency room for sudden loss of consciousness in school. She was found to have blood glucose level of 66 and was started on a bolus of intravenous fluids on the way to the hospital. Her mom insisted that patient be given a bolus of D10 initially and she also brought in extensive medical records that indicate that she has a FAOD. Her birth history was as follows: a 6 lbs 3 oz baby girl was born to a 32-year-old G1P0 mom at 39 weeks gestational age with APGAR scores of 8 and 8 after 16 h of labor via spontaneous vaginal delivery without further instrumentation after artificial rupture of membranes. Baby was placed on hypoglycemia protocol for initial low blood glucose levels by finger sticks, but recovered after being given formula feeds in the nursery. Mom had requested that baby be exclusively breastfed after the first couple of days when she started producing sufficient breast milk. The baby developed hyperbilirubinemia on day 4 of life and was transferred to NICU for mild respiratory distress (not requiring intubation), phototherapy and management of transient hypoglycemic episodes in spite of ad- E-Mail karger@karger.com www.karger.com/aon 2016 S. Karger AG, Basel 0972 7531/16/0231 0051$39.50/0 Dr. Vijay A. Vishwanath, MD, PhD Assistant Professor, Division of Pediatric Neurology Department of Neurology, Albany Medical Center, 43 New Scotland Ave. Mail Code 70, Albany, NY 12208 (USA) E-Mail vishwav @ mail.amc.edu

Cytosol 1 Long chain acyl CoA CoA + long chain fatty acid Long chain fatty acid transporter 3 CPT I Carnitine transporter 2 L-carnitine 4 CACT Acylcarnitine 5 CPT II Fig. 1. Long chain fatty acid oxidation. The different sites of deficiencies causing FAODs are listed: (1) long-chain fatty acid transport or binding effect, (2) carnitine uptake defect, (3) CPT I deficiency, (4) CACT deficiency, (5) CPT II deficiency, (6) VLCAD, MCAD and SCAD deficiencies. Acyl CoA Acetyl Acetyl CoA CoA Oxidation 6 CoA Mitochondria equate breastfeeding time. The baby s hyperbilirubinemia and hypoglycemic episodes resolved by day 8 of life and baby was discharged home on breastfeeds after follow-up was advised with a hospital-based pediatrician. The newborn screen was drawn during the NICU stay on full feeds and was sent to the State labs for processing. By the end of the first month of life, the parents and the pediatrician received a letter from the State requesting for additional testing as the baby was found to have a FAOD on the newborn screen. The baby remained asymptomatic and continued to meet adequate milestones in the first 3 months of life. On further testing, the baby was found to have medium chain acyl-coa dehydrogenase (MCAD) deficiency. Since the age of 4 months, the patient had been hospitalized multiple times for episodes of hypoglycemia. Clinical Case: MCAD Deficiency MCAD deficiency presents with an incidence of approximately 1: 10,000 in Europe, Australia and the USA [3]. Patients with MCAD deficiency may be normal at birth and only present with the classic clinical features when exposed to periods of stress such as prolonged fasting or vomiting precipitated by active infection. These typically present in the first 2 years of life with transient episodes of hypoglycemia and sometimes with seizures or coma during periods of acute decompensation related to changes in diet when weaning the infant off breastfeeding or off nighttime feeds or during infections like upper respiratory tract infections or viral gastroenteritis. Patients may also present with cardiomegaly (usually hypertrophic), arrhythmias or myopathy. The cardiac presentation typically occurs within weeks while myopathy typically occurs after infancy. The most common mutation associated with MCAD deficiency is the K304E mutation of the ACADM gene [4]. Initial labs may indicate transaminitis, increased CPK and hypoglycemia [5]. Blood C8 carnitine level is a highly specific marker, but may only be moderately elevated in mild phenotypes [3]. The excretion of hexanoylglycine in urine is pathognomonic for MCAD; however, it is not detectable in milder phenotypes [3]. A definitive diagnosis is made if there is an elevation of C 8, C 8: 1 and C 10: 1 esters. Acute episodes are managed with intravenous fluids (containing 10% dextrose and bicarbonate) and therapy with carnitine. Patients are advised to avoid periods of catabolic stress and seek rapid intervention in periods of illness [6]. Discussion Overview of FAODs Fatty acids represent an important source of energy in periods of catabolic stress related to increased muscular activity, fasting or febrile illness, where as much as 80% of the energy for the heart, skeletal muscles and liver could be derived from them [7]. They play an important role in the neonate due to the limited glycogen reserves and high metabolic rate. Fatty acid oxidation produces acetyl-coa, which supplies energy to other tissues when glycogen stores are depleted. The medium- and short-fatty acids are transported directly into the cytosol and mitochondria. The long-chain fatty acids are conjugated to carnitine and transported across the mitochondrial membrane and released as acyl-coa to be used in the β-oxidation pathways ( fig. 1 ) [7]. Mitochondrial fatty acid oxidation disorders comprise 4 groups: (1) disorders of the entry of long-chain fatty acids into mitochondria, (2) intramitochondrial β-oxidation defects of long-chain fatty acids affecting membrane bound enzymes, (3) β-oxidation defects of short- and medium-chain fatty acids affecting enzymes of the mito- 52 Vishwanath

Table 1. Classification of FAODs The different fatty acid oxidation disorders [6] could be classified as follows: (1) Disorders of plasma membrane functions Carnitine uptake defect Long-chain fatty acid transport/binding defect (2) Disorders of fatty acid transport across the mitochondrial membranes CPT I deficiency CACT deficiency CPT II deficiency (3) Disorders of long-chain fatty acid β-oxidation VLCAD deficiency Trifunctional protein deficiency and isolated long-chain L3-hydroxyl-COA dehydrogenase deficiency (4) Disorders of medium-chain fatty acid β-oxidation MCAD deficiency Medium- and short-chain L3-hydroxyl-COA dehydrogenase deficiency Medium-chain 3-ketoacyl-CoA thiolase deficiency (5) Disorders of short-chain fatty acid β-oxidation: SCAD deficiency chondrial matrix and (4) disorders of impaired electron transfer to the respiratory chain from mitochondrial β-oxidation [3]. FAODs may involve any part of the mitochondrial β-oxidation pathway affecting the plasma membrane functions, mitochondrial fatty acid transport or the short-, medium- or long-chain fatty acid β-oxidation pathways. Carnitine palmitoyltransferase I (CPT I), carnitine acylcarnitine translocase (CACT) and carnitine palmitoyltransferase II (CPT II) represent different enzymes of the carnitine cycle that help transport the longchain fatty acids across mitochondrial membranes and may be deficient causing impairments in transport of the fatty acids across mitochondrial membranes. Very longchain acyl-coa dehydrogenase (VLCAD), MCAD and short-chain acyl-coa dehydrogenase (SCAD) are responsible for metabolism of acyl-coas of chain lengths C 12 18, C 6 10 and C 4 6, respectively. Other deficiencies in the fatty acid oxidation cycle that may cause clinical symptoms include tri-functional protein deficiency, isolated long-chain L3-hydroxyl-CoA dehydrogenase deficiency, medium- and short-chain L3-hydroxyl-CoA dehydrogenase deficiency and medium-chain 3-ketoacyl- CoA thiolase deficiency ( table 1 ) [7]. Clinical Features There may be a range of clinical presentations ranging from mild liver dysfunction, cardiomyopathy and/or skeletal myopathy to severe liver disease that may present with a recurrent Reye-like syndrome that may start in the infantile period with hepatic steatosis, unexplained hepatic failure and non-ketotic hypoglycemia [8]. Stressors such as fasting may exacerbate the hepatic disease. Figure 2 shows both general and specific manifestations of FAODs. Diagnosis Prenatal Diagnosis FAODs are diagnosed prenatally by biochemical or molecular methods following chorionic villus sampling or amniocentesis. Mutation analysis is the preferred technique, if the molecular defect is known in the index case [9]. Prenatal diagnosis becomes necessary when there is a history of maternal liver disease complicating pregnancies [1]. Diagnosis in Newborns FAOD is screened as part of the newborn screen based on acylcarnitine profiling of blood spots using tandem mass spectrometry. The following FAODs are diagnosed by newborn screening: CACT deficiency, CPT II deficiency (neonatal and late onset), VLCAD deficiency, MCAD deficiency, SCAD deficiency and a few other disorders like electron transport flavoprotein-ubiquinone oxidoreductase (ETF-QO) deficiency, α-etf deficiency and β-etf deficiency [10]. Diagnosis in Children and Adults The main laboratory studies include routine labs (CBC, BMP, hepatic panel, ammonia, lactate and CPK), acylcarnitine levels, MS/MS analysis of organic acids, Fatty Acid Beta-Oxidation Disorders 53

General manifestations Specific manifestations intolerance > coma > > > Fig. 2. Clinical manifestations of FAODs [11]. plasma carnitine, acylcarnitines and urine acylglycine analysis, with a definitive diagnosis based on mutation analysis or measurement of specific enzyme activity [10]. Fatty acid transport studies using fibroblasts reveal possible fatty acid transporter defects. Liver biopsy may be necessary if patient present with primarily hepatic dysfunction and may reveal steatosis [8]. The diagnosis of FAODs even postmortem may help in genetic counselling and evaluation of siblings [3]. Treatment Acute Presentation The goal would be to reverse hypoglycemia and to treat comorbidities. The current treatment would include administering intravenous fluid bolus with 10% dextrose at 2 ml/kg in neonates or larger boluses in older children followed by D10 maintenance fluids. Some sources have used 12 15 mg/kg/min of glucose. It is important to not use intralipids in the acute presentation [6]. Long-Term Therapy The goal would be to stop fat catabolism by preventing further fatty acid oxidation. The initial steps would be the prevention of hypoglycemia in periods of catabolic stress by using frequent feeds and clinical supervision during periods of illnesses. A low fat, high carbohydrate diet is recommended. Dietary fat restriction is not indicated in MCAD deficiency and mild long-chain FAODs recently identified by newborn screening. Longchain fat, however, needs to be restricted in severe longchain FAODs and substituted by medium-chain triglycerides [3]. Hospital admission is recommended for procedures that would require the patients to take nothing orally for >8 h, especially if less than 1 year of age. Carnitine is undisputedly effective in patients with carnitine transporter deficiency [3]. Liver transplantation may be the ultimate consideration if there is no evidence of neurological disease or other systemic involvement that may impair recovery and return to baseline function [8]. Contribution Information V.A. Vishwanath, MD, PhD, contributed to the structure design, literature review, research of the patient case and write-up of the manuscript. Dr. V.A. Vishwanath reports no disclosures and will comply with Committee of Medical Journal Editor s uniform requirements. 54 Vishwanath

Acknowledgment I thank Dr. Olanrewaju Agbe-Davies for his support with editing of this paper. Disclosure Statement The author has no disclosures. References 1 Shekhawat PS, Matern D, Strauss AW: Fetal fatty acid oxidation disorders, their effect on maternal health and neonatal outcome: impact of expanded newborn screening on their diagnosis and management. Pediatr Res 2005; 57: 78R 86R. 2 Preece MA, Green A: Pregnancy and inherited metabolic disorders: maternal and fetal complications. Ann Clin Biochem 2002; 39: 444 455. 3 Blau N, Duran M, Gibson KM, et al: Physician s Guide to the Diagnosis, Treatment and Follow-Up of Inherited Metabolic Diseases. Springer, 2014, pp 247 264. 4 Dessein AF, Fontaine M, Andresen BS, et al: A novel mutation of the ACADM gene (c.145c>g) associated with the common c.985a>g mutation on the other ACADM allele causes mild MCAD deficiency: a case report. Orphanet J Rare Dis 2010; 5: 26. 5 Iafolla AK, Thompson RJ Jr, Roe CR: Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children. J Pediatr 1994; 124: 409 415. 6 The Philadelphia Guide: Inpatient Pediatrics. Philadelphia, Lippincott Williams & Wilkins, 2005. 7 Rinaldo P, Matern D, Bennett MJ: Fatty acid oxidation disorders. Annu Rev Physiol 2002; 64: 477 502. 8 Rudolph CD, Rudolph AM: Rudolph s Pediatrics, ed 21. McGraw-Hill, 2011, pp 594 596. 9 Vockley J, Singh RH, Whiteman DA: Diagnosis and management of defects of mitochondrial beta-oxidation. Curr Opin Clin Nutr Metab Care 2002; 5: 601 609. 10 Sim KG, Hammond J, Wilcken B: Strategies for the diagnosis of mitochondrial fatty acid beta-oxidation disorders. Clin Chim Acta 2002; 323: 37 58. 11 Fong C: Fatty Acid and Glycerol Metabolism Disorders. Merck Manuals Professional Edition. http://www.merckmanuals.com. Fatty Acid Beta-Oxidation Disorders 55