Chapter 15. Objectives. Objectives 01/09/2013. Shock and Resuscitation

Similar documents
Chapter 28. Objectives. Objectives 01/09/2013. Bleeding and Soft-Tissue Trauma

Chapter 11. Objectives. Objectives 01/09/2013. Baseline Vital Signs, Monitoring Devices, and History Taking

Cardiovascular Emergencies. Chapter 12

Lesson 4-3: Cardiac Emergencies. CARDIAC EMERGENCIES Angina, AMI, CHF and AED

OBJECTIVE. 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation.

Chapter 32. Objectives. Objectives 01/09/2013. Spinal Column and Spinal Cord Trauma

Chapter 18. Objectives. Objectives 01/09/2013. Altered Mental Status, Stroke, and Headache

Chapter 11 - The Primary Assessment

1 Chapter 10 Shock 2 Shock Shock: Inadequate State of collapse and failure of the system Leads to inadequate circulation Without adequate blood flow,

Automated External Defibrillation Principle of Early Defibrillation States that all BLS personnel be trained, equipped and allowed to operate a if

Chapter 20. Objectives. Objectives 01/09/2013. Acute Diabetic Emergencies

Emergency Medical Training Services Emergency Medical Technician Basic Program Outlines Outline Topic: Shock Revised: 11/2013

Chapter 29. Objectives. Objectives 01/09/2013. Burns

Shock. Perfusion. The cardiovascular system s circulation of blood and oxygen to all the cells in different tissues and organs of the body

Michigan Pediatric Cardiac Protocols. Date: November 15, 2012 Page 1 of 1 TABLE OF CONTENTS

COALINGA STATE HOSPITAL. NURSING POLICY AND PROCEDURE MANUAL SECTION Emergency Procedures POLICY NUMBER: 716. Effective Date: March 3, 2007

Chapter 21. Objectives. Objectives 01/09/2013. Anaphylactic Reactions

Introduction (1 of 3)

EMT. Chapter 10 Review

Introduction to Emergency Medical Care 1

Chapter 31. Objectives. Objectives 01/09/2013. Head Trauma

Chapter 34. Objectives. Objectives 01/09/2013. Chest Trauma

Michigan Pediatric Cardiac Protocols. Date: November 15, 2012 Page 1 of 1 TABLE OF CONTENTS

Automated External Defibrillation

TENNESSEE Project ADAM. Preventing Sudden Cardiac Death (SCD): Implementing your school s Public Access to Defibrillation (PAD) program.

WHY IS FIRST AID IMPORTANT?

Version Effective date Changes Prepared By CPR + AED

The Importance of CPR in Sudden Cardiac Arrest

Shock Kills! By the time you see it, it is probably too late! Contact Information. Overview

1. The 2010 AHA Guidelines for CPR recommended BLS sequence of steps are:

Out-Of-Hospital Management and Outcomes of Sudden Cardiac Death Abdelouahab BELLOU, MD, PhD

Pediatric Cardiac Arrest General

Written 01/09/17 Rewritten 3/29/17 for Interior Regional EMS Symposium

Chapter 19. Objectives. Objectives 01/09/2013. Seizures and Syncope

ACLS Review. Pulse Oximetry to be between 94 99% to avoid hyperoxia (high oxygen tension can lead to tissue death

Chapter 29 - Chest_and_Abdominal_Trauma

Early Defibrillation. Dr. M. Ravishankar

Medical First Responder Program Protocols

Adult Advanced Cardiovascular Life Support 2015 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular

Defibrillation. Learning outcomes. Introduction. Mechanism of defibrillation. Factors affecting defibrillation. success. Transthoracic impedance

2017 Northern Mine Rescue Contest Written Exam (First Aid Competition)

Preparing for your upcoming PALS course

EMT. Chapter 14 Review

ACLS Prep. Preparation is key to a successful ACLS experience. Please complete the ACLS Pretest and Please complete this ACLS Prep.

MASSACHUSETTS DEPARTMENT OF PUBLIC HEALTH OFFICE OF EMERGENCY MEDICAL SERVICES Basic EMT Practical Examination Cardiac Arrest Management

Advanced Resuscitation - Adult

San Benito County EMS Agency Section 700: Patient Care Procedures

Use of Automated External Defibrillators (AED s) Frequently Asked Questions

ITLS Pediatric Provider Course Basic Pre-Test

Advanced Cardiac Life Support (ACLS) Science Update 2015

SHOCK Susanna Hilda Hutajulu, MD, PhD

Portage County EMS Annual Skills Labs

STATE OF OKLAHOMA 2014 EMERGENCY MEDICAL SERVICES PROTOCOLS

Hanna K. Al-Makhamreh, M.D., FACC Interventional Cardiologist

THE FOLLOWING QUESTIONS RELATE TO THE RESUSCITATION COUNCIL (UK) RESUSCITATION GUIDELINES 2005

Emergency Medical Training Services Emergency Medical Technician Basic Program Outlines Outline Topic: CARDIAC EMERGENCIES Revised: 11/2013

CHAPTER 9. Shock National Safety Council

CHANHASSEN FIRE DEPARTMENT MEDICAL / RESCUE SKILLS

Cardiopulmonary Resuscitation in Adults

Competency Log Professional Responder Courses

Algorithm Focus. Emergency Cardiovascular Care: EMT-Intermediate Treatment Algorithms. Perspective regarding the EMT- Intermediate algorithms

Chapter 13. Objectives. Objectives 01/09/2013. Patient Assessment

Restore adequate respiratory and circulatory conditions. Reduce pain

Advanced Resuscitation - Child

Final Written Exam ASHI ACLS

Cardiac arrest Cardiac arrest (CA) occurs when the heart ceases to produce an effective pulse and circulate blood It includes four conditions:

DEFIBRILLATORS. Prof. Yasser Mostafa Kadah

Introduction to Emergency Medical Care 1

HeartCode PALS. PALS Actions Overview > Legend. Contents

CPR Cardio Pulmonary Resuscitation

Cardiac Electrical Therapies. By Omar AL-Rawajfah, PhD, RN

Emergency Care Progress Log

Objectives. Shock. Terminology. Terminology Pathophysiology of Shock Stages of Shock Classification of Shock Assessment Treatment Scenario

Objectives. Terminology. Shock. Terminology (cont.) Terminology (cont.)

Student Guide Module 4: Pediatric Trauma

Introduction to Emergency Medical Care 1

Bleeding and Shock. Circulatory System

Chapter 39. Objectives. Objectives 01/09/2013. Geriatrics

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function

Chapter 10. Objectives. Objectives 01/09/2013. Airway Management, Artificial Ventilation, and Oxygenation

What works? What doesn t? What s new? Terry M. Foster, RN

Advanced Resuscitation - Adolescent

2015 Interim Training Materials

Chapter 26. Objectives. Objectives 01/09/2013. Behavioral Emergencies

Presents American Heart Association BLS / AED Training for the Neighbors Saving Neighbors Program

Bleeding and Shock *** CME Version *** Aaron J. Katz, AEMT-P, CIC

ADVANCED LIFE SUPPORT

TEACHING BASIC LIFE SUPPORT (& ALS)

CARDIAC ARREST GENERAL CONSIDERATION

Cardiac Emergencies. Jim Bennett Paramedic and Clinical Education Coordinator American Medical Response Spokane, Washington

Department of Paediatrics Clinical Guideline. Advanced Paediatric Life Support. Sequence of actions. 1. Establish basic life support

LIFEPAK 500. automated external defibrillator. Instructor Guide

Chapter 14. Cardiovascular Emergencies

1-Epinephrine 2-Atropine 3-Amiodarone 4-Lidocaine 5-Magnesium

SEMINOLE COUNTY EMS PROVISIONAL EMT SKILLS VERIFICATION

Hypotension / Shock. Adult Medical Section Protocols. Protocol 30

Prehospital Resuscitation for the 21 st Century Simulation Case. VF/Asystole

Chapter Goal. Learning Objectives. Chapter 17. Hemorrhage & Shock

MICHIGAN. State Protocols. Pediatric Cardiac Table of Contents 6.1 General Pediatric Cardiac Arrest 6.2 Bradycardia 6.

Chapter 12 - Vital_Signs_and_Monitoring_Devices

Transcription:

Chapter 15 Shock and Resuscitation Prehospital Emergency Care, Ninth Edition Joseph J. Mistovich Keith J. Karren Copyright 2010 by Pearson Education, Inc. All rights reserved. Objectives 1. Define key terms introduced in this chapter. 2. Explain the pathophysiology of shock (hypoperfusion), including the consequences of cellular hypoxia and death (slide 16). 3. Describe the physiology of maintaining adequate perfusion (slide 17). 4. Describe how inadequate vascular volume, inadequate heart function, and decreased peripheral vascular resistance can lead to shock (slide 18-22). 5. Give examples of conditions that can lead to (slides 18-22, 25-47): a. Loss of vascular volume b. Inadequate heart function c. Decreased peripheral vascular resistance Objectives 6. Explain the mechanisms and pathophysiology of each of the following categories and types of shock (slides 23-50): a. Hypovolemic (hemorrhagic and nonhemorrhagic) b. Distributive (anaphylactic, septic, neurogenic) c. Cardiogenic d. Obstructive e. Metabolic or respiratory 7. Explain how compensatory mechanisms to shock are maintained through (slides 53-56): a. Direct nerve stimulation b. Release of hormones 8. Explain the body s compensatory responses to hypoperfusion and how they manifest in the early signs and symptoms of shock (slides 51-56). 1

Objectives 9. Differentiate between early (compensatory) and late (decompensatory/irreversible) signs of shock (slide 58). 10. Describe the progression of shock through the compensatory, decompensatory (progressive), and irreversible stages (slide 58). 11. Explain how to identify the patient who is in a shock state and demonstrate the assessment of patients to identify shock (slides 59-64). 12. Explain the influence of age on the assessment and management of patients with shock (slides 65-66). 13. Discuss the goals of prehospital management of patients with shock (slides 67-69). Objectives 14. Describe the pathophysiology of cardiac arrest (slides 70-73). 15. Differentiate between the electrical, circulatory, and metabolic phases of cardiac arrest (slide 73). 16. Identify situations in which resuscitative attempts should be withheld (slides 76-77). 17. Explain each of the links in the Chain of Survival of cardiac arrest (slides 78-79). 18. Explain the importance of early defibrillation in cardiac arrest (slides 80-81). 19. Explain the rationale for the push hard and push fast approach to cardiopulmonary resuscitation (CPR) (slides 82-83). Objectives 20. Describe the features, functions, advantages, disadvantages, use, and precautions in the use of automated external defibrillators (AEDs) (slides 84-87). 21. Compare and contrast ventricular fibrillation, ventricular tachycardia, asystole, and pulseless electrical activity (slides 88-92). 22. Given a series of cardiac arrest scenarios involving infants, children, and adults, demonstrate appropriate assessment and resuscitative techniques, including the integrated use of AEDs (automated and semiautomated), ventilation, and CPR, and explain the purpose and procedure for reassessment of the cardiac arrest patient (slides 94-101). 2

Objectives 23. Demonstrate assessment and management of a post cardiac-arrest patient with return of spontaneous circulation (slides 98-101). 24. Given a cardiac arrest scenario, make decisions regarding obtaining advanced cardiac life support (ACLS) (slide 105). 25. Describe the safety precautions to be taken to protect yourself, other EMS providers, the patient, and bystanders in resuscitation situations (slides 93, 107-108). Objectives 26. Explain the importance of AED maintenance, EMT training and skills maintenance, and medical direction in the Chain of Survival of cardiac arrest (slides 109-115). 27. Discuss special considerations in the use of an AED in patients with cardiac pacemakers and automatic implanted cardioverter-defibrillators (slides 118-121). 28. List the advantages and disadvantages of automated chest compression devices, impedance threshold devices, and other circulation-enhancing devices (slides 122-129). Multimedia Directory Slide 22 Slide 50 Slide 69 Etiology of Shock Animation Types of Shock Animation Bleeding Control/Shock Management Video 3

Topics Shock Resuscitation in Cardiac Arrest Automated External Defibrillation and Cardiopulmonary Resuscitation Recognizing and Treating Cardiac Arrest Special Considerations for the AED CASE STUDY Dispatch EMS Unit 102 Respond to 46 Hillman Street. You have a 26- year-old male patient who has been stabbed in the leg and is bleeding profusely. Law enforcement is en route. Time out 2102 4

Upon Arrival A police officer leads you into the basement Patient is supine on the floor with a large pool of blood around his right thigh Patient is not alert, does not respond to voice, and appears extremely pale How would you proceed with the assessment of this patient? Shock Back to Topics 5

Inadequate tissue perfusion Review of Respiratory Pathophysiology Etiologies of Shock 6

Inadequate Volume Fig. 15-01 Don t have art yet - WDS Inadequate Pump Function Fig. 15-02 Don t have art yet - WDS Inadequate Vessel Tone Fig. 15-03 Don t have art yet - WDS 7

Etiology of Shock Click here to view an animation on the etiology of shock Return to Directory Categories of Shock Fig. 15-04 Don t have art yet - WDS 8

Categories of Shock Hypovolemic Shock Fig. 15-05 Don t have art yet - WDS Categories of Shock Distributive Shock 9

Fig. 15-06 Don t have art yet - WDS Categories of Shock Cardiogenic Shock Fig. 15-07 Don t have art yet - WDS 10

Categories of Shock Obstructive Shock Fig. 15-08 Don t have art yet - WDS Categories of Shock Metabolic or Respiratory Shock 11

Inability of the body to use, transport, and/or offload oxygen Specific Types of Shock Specific Types of Shock Hemorrhagic Hypovolemic Shock 12

Fig. 15-05a only (trim out nonhemorrhagic hypovolemic shock) Don t have art yet - WDS Specific Types of Shock Nonhemorrhagic Hypovolemic Shock Fig. 15-05b only (trim out Don t hemorrhagic have art yet hypovolemic - WDS shock) 13

Specific Types of Shock Burn Shock Fluid is pulled from the vascular space to the interstitial space, causing hypovolemia. Specific Types of Shock Anaphylactic Shock 14

Vasodilation moves blood from the central core to the periphery, causing distributive shock. Specific Types of Shock Septic Shock Bacteria or toxins throughout the body cause the blood vessels to dilate and to become permeable. 15

Specific Types of Shock Neurogenic Shock Spinal cord trauma causes a loss of blood vessel tone and results in widespread vasodilation. Specific Types of Shock Cardiogenic Shock 16

Depressed pump function reduces the force of the left ventricular contraction, stroke volume, cardiac output, systolic blood pressure, and perfusion. Types of Shock Click here to view an animation on types of shock. Return to Directory The Body s Response to Shock 17

The Body s Response to Shock Direct Nerve Stimulation Increased heart rate Increased contractile force Vasoconstriction Release of epinephrine and norepinephrine 18

The Body s Response to Shock Release of Hormones Hormones released stimulate alpha receptors in peripheral blood vessels, returning blood to the central core. Stages of Shock 19

Shock Assessment Shock Assessment History 20

Pay particular attention to chief complaint and SAMPLE Some medications may prevent compensation Shock Assessment Physical Exam Altered mental status Pale, cool, and clammy skin Delayed capillary refill Decreased urine output Weak or absent peripheral pulses 21

Skin color, temperature, and condition Pulse oximeter reading Blood pressure (both systolic and diastolic) Heart rate Pulse character Respiratory rate and tidal volume Age Considerations in Shock Medications and advanced age decrease compensation ability. Children compensate well and then suddenly decompensate. 22

General Goals of Prehospital Management of Shock Secure and maintain an airway Assure adequate ventilation Provide high-flow, high-concentration oxygen Avoid hyperventilation Stop any external bleeding Splint fractures to reduce bleeding Leave impaled objects in place Keep the patient warm Apply PASG if indicated and local protocol allows Provide rapid transport and perform other interventions en route Consider an ALS intercept Bleeding Control/ Shock Management Click here to view a video on the topic of bleeding control and shock management. Return to Directory 23

Resuscitation in Cardiac Arrest Back to Topics Sudden Resuscitation: Cardiac Arrest: Death: cardiac the bringing patient output the dies is patient within completely back one hour from ineffective of a potential the onset and or of no pulse apparent symptoms can be death felt Pathophysiology of Cardiac Arrest 24

Electrical Phase Less than four minutes following arrest, the cardiac muscle uses its sugar/oxygen stores. Circulatory Phase From four to ten minutes following arrest, the cardiac muscle switches to anaerobic metabolism. Metabolic Phase Greater than ten minutes following arrest, cardiac cells swell, rupture, and die. Terms Related to Resuscitation Downtime The time the patient goes into cardiac arrest until CPR is effectively being performed Return of Spontaneous Circulation (ROSC) The patient regains a spontaneous pulse during the resuscitation effort. Total Downtime The total time from when the patient goes into cardiac arrest until you deliver the patient to the emergency department Survival A patient who survives to be discharged from the hospital 25

Withholding a Resuscitation Attempt You may also withhold resuscitation in cases of obvious death, such as decapitation. The Chain of Survival 26

Early Early Advanced Defibrillation: Access: CPR: Care: Immediate The Advanced Survival quicker CPR rates life someone support can of patients double (ALS) can in recognize or is VF even delivered SCA triple a decrease patient the most arrested often in cardiac approximately by patient s paramedics compromise, chance 7 10 who can of percent the survival provide better for every advanced the minute from chance ventricular cardiac that of defibrillation patient life support survival is (ACLS). delayed Automated External Defibrillation and Cardiopulmonary Resuscitation Back to Topics AHA Rationale for Early Defibrillation The most frequent initial rhythm in sudden cardiac arrest is ventricular fibrillation The most effective treatment for terminating ventricular fibrillation is electrical defibrillation The probability of successful defibrillation is directly related to the time from fibrillation to defibrillation Ventricular fibrillation will, without prompt or appropriate treatment, degenerate into asystole 27

Push hard and push fast 100 compressions per minute 30:2 compression to Pulse breath checks ratio should Start NOT with CPR follow if a the downtime defibrillation is unknown attempt. or Always greater resume than four CPR to five after minutes shocking a If patient the downtime with an is AED. less than four to five minutes, use the AED AHA Rationale for Current AED and CPR Standards Push hard and push fast will help avoid compressions that are delivered either too slow or too shallow The ratio of 30:2 minimizes interruptions to compressions for pulse checks and ventilations Compressions prior to defibrillation in unwitnessed arrests will make defibrillation more successful Rarely will a perfusing rhythm be evident by a pulse check immediately after defibrillation CPR as just described can double or triple the chance of survival Types of Defibrillators 28

An Manual automated defibrillators external defibrillator require extensive (AED) training prior to is much simpler to use operate. Advantages of AEDs: Speed Types of operation of AEDs: Safer, Fully automated more effective AED delivery Semiautomated AED More efficient monitoring Biphasic versus Monophasic 150 to 200 J 200, 300, 360 J Biphasic: more effective with less energy Monophasic: less effective with more energy 29

Analysis of Cardiac Rhythms Ventricular Fibrillation: Shockable! Ventricular Tachycardia: Shockable! 30

Asystole: NOT Shockable! Pulseless Electrical Activity: NOT Shockable! Organized electrical activity with no pulse! NEVER touch the patient, AED, or cables when the AED is analyzing a rhythm. 31

When and When Not to Use the AED Apply an AED if: The patient is in nontraumatic cardiac arrest For children one to eight years of age, an adult AED may be used, preferably with a pediatric dose attenuating system The downtime is less than four to five minutes, or two minutes of CPR has been performed Do not apply an AED if: The patient is in cardiac arrest as a result of trauma The downtime is greater than four to five minutes, and two minutes of CPR has not been performed 32

Recognizing and Treating Cardiac Arrest Back to Topics Assessment-Based Approach: Cardiac Arrest Fig 15-16a Assessment Don t have art yet - Summary WDS Cardiac 33

Performing Defibrillation Fig 15-16b and/or 15-17 I cannot determine Don t without have art yet - seeing WDS content Transporting the Cardiac Arrest Patient 34

When to transport Transporting a patient with a pulse Transporting a patient without a pulse Providing for Advanced Cardiac Life Support Request advance life support (ALS) providers as soon as possible. 35

Special Considerations for the AED Back to Topics Safety Considerations Remember the following safety guidelines: Clear the patient before shocking Water and metal conduct electricity very well Never place an electrode over a medication patch or implanted pacemaker If the patient has an extremely hairy chest and firmly pressing the pad on the chest does not work, then consider shaving the area with an electric clippers or disposable razor. 36

AED Maintenance Always inspect your AED for function and proper stock. The most common cause of AED failure is battery failure. Training and Skills Maintenance 37

Be prepared to use the AED at any time Practice your skills with the AED at least every 90 days Review incidents for quality improvement Keep up to date on new research on AED procedures Medical Direction and the AED Responsible for the following: Making sure that the EMS system has all necessary links in the AHA Chain of Survival Overseeing all levels of EMTs Reviewing the continual competency skill review program Engaging in an audit and/or quality improvement program 38

Incident review may be accomplished by: Written reports Review of the voice and/or ECG tapes if the system s AED is equipped with that feature Review of solid-state memory modules and magnetic tapes if the system s AED is so equipped Energy Levels of Defibrillators Typical Energy Levels Manual defibrillators typically range from five joules to 360 joules Most AEDs have two preset values of 200 joules and 360 joules 39

Cardiac Pacemakers Some patients require a pacemaker to maintain an adequate heart rate. They are usually placed under a clavicle. Automatic Implantable Cardioverter Defibrillators 40

Automatic Implantable Cardioverter Defibrillators (AICD) Implanted device that monitors the heart s activity Capable of delivering shocks directly to the heart to correct lethal dysrhythmias A conscious patient can tell you when a shock is delivered The shock from an AICD does not pose a risk to EMS providers Automated Chest Compression Devices Mechanical Piston Device A mechanical piston device in place on a patient 41

Automated Chest Compression Devices Load-Distributing- Band CPR or Vest CPR A load-distributing-band CPR device Automated Chest Compression Devices Impedance Threshold Device 42

An impedance threshold device Automated Chest Compression Devices Other Circulation Enhancing Devices Other devices, like the LUCAS, may also actively decompress the chest. 43

CASE STUDY Follow-Up CASE STUDY Primary Assessment Patient not alert and doesn t respond when name is called Pale color; apply in-line stabilization Patient moans to painful stimuli Respirations are adequate; place nonrebreather mask at 15 lpm Find blood coming from right leg wound; expose leg and apply direct pressure CASE STUDY Secondary Assessment You expose the patient s body to look for other injuries while rolling onto backboard No other injuries found BP: 72/58mmHg; HR: 132; RR: 26; skin pale, cool, and clammy Patient still responsive only to pain No history or medical information obtainable 44

CASE STUDY Reassessment Monitor mental status, ABCs, and bleeding en route No change en route Upon arrival, trauma surgeon meets you and brings the patient to the trauma bay Prepare written report and return to service Critical Thinking Scenario Dispatch advises you are responding to a man down; CPR in progress You arrive four minutes after the call came in and within moments of fire and PD You see a small crowd gathered around a male patient; two people are in fact performing CPR Critical Thinking Scenario You ve already donned gloves and eye protection while en route You grab your AED as you exit the ambulance Your primary assessment reveals an unresponsive man, mid-50s, supine on the ground with effective bystander CPR in progress 45

Critical Thinking Scenario Bystanders state that they began CPR immediately upon his collapse and then called 911 The patient s skin is slightly cyanotic You request that CPR be stopped temporarily while you assess pulse and breathing Your partner is setting up the AED Critical Thinking Scenario You find no carotid pulse and detect no breathing This is a priority patient for whom defibrillation is appropriate You direct a firefighter to resume compressions while you ventilate with a bag-valve mask and high-flow, highconcentration oxygen Critical Thinking Questions 1. What assessment findings indicate that this patient is indeed in cardiac arrest? 2. Which components of the Chain of Survival have already been met? 3. Why is this patient a candidate for immediate versus delayed AED use? 4. What cardiac rhythm is this patient most likely going to show? 46

Critical Thinking Questions 5. What is the compression to ventilation ratio going to be for this patient? 6. If the AED indicates that no shock is warranted, what should your next action be? Reinforce and Review Please visit www.bradybooks.com and follow the mybradykit links to access content for the text. 47