Similar documents
BMC Cancer. Open Access. Abstract. BioMed Central

Angiogenesis Targeted Therapies in Renal Cell Carcinoma

Sequential Therapy in Renal Cell Carcinoma*

Sustained Response to Temsirolimus in Chromophobe variant of Metastatic Renal Cell Carcinoma

Horizon Scanning Technology Briefing. Sutent (Sunitinib) for first-line and adjuvant treatment of renal cell carcinoma

Current Status of Studies on Targeted Therapy for Renal Cell Carcinoma

Prognostic Factors: Does It Really Matter if New Drugs for Targeted Therapy Will Be Used?

Evidenze cliniche nel trattamento del RCC

MOLECULAR AND CLINICAL ONCOLOGY 5: , JUNYA FURUKAWA, HIDEAKI MIYAKE and MASATO FUJISAWA

european urology 53 (2008)

David N. Robinson, MD

Tyrosine Kinase Inhibitors in Clinical Practice: Case Reports

University of Groningen. BNP and NT-proBNP in heart failure Hogenhuis, Jochem

pan-canadian Oncology Drug Review Stakeholder Feedback on a pcodr Request for Advice Axitinib (Inlyta) for Metastatic Renal Cell Carcinoma

A new score predicting the survival of patients with spinal cord compression from myeloma

BNP as a Predictor of Cardiovascular Disease and All Cause Mortality. Dr. Thierry Le Jemtel

Winship Cancer Institute of Emory University Neoadjuvant Systemic Therapy in Metastatic Renal Cell Carcinoma Patients

Efficacy and Toxicity of Sunitinib in Metastatic Renal Cell Carcinoma Patients in Egypt

Perifissural nodules in metastatic renal cell carcinoma patients treated with vascular endothelial growth factor receptor (VEGFR) inhibitors

Timing of targeted therapy in patients with low volume mrcc. Eli Rosenbaum Davidoff Cancer Center Beilinson Hospital

Continued Progress in the Treatment of Advanced Renal Cell Carcinoma: An Update on the Role of Sunitinib

Have Results of Recent Randomized Trials Changed the Role of mtor Inhibitors?

Axitinib in renal cell carcinoma: now what do we do?

Renal Cell Cancer and TKIs:

Metastatic Renal Cancer Medical Treatment

ESCBM meeting 2018, Prague Utility of Cardiac Biomarkers in Clinical Heart Failure Care. Md. Shahidul Islam, M.D., Ph.D

Sequential Use of the Tyrosine Kinase Inhibitors Sorafenib and Sunitinib in Metastatic Renal Cell Carcinoma: A Retrospective Outcome Analysis

B-Type Natriuretic Peptide Levels in Obese Patients With Advanced Heart Failure

Monitoring Sunitinib-Induced Vascular Effects to Optimize Radiotherapy Combined with Soy Isoflavones in Murine Xenograft Tumor 1

NCCP Chemotherapy Regimen

B-type Natriuretic Peptide in VHD: a Non-imaging Helper for the Cardiologist. Dr. Julien Magne, PhD Sart Tilman Liège, BELGIUM

Timing of NT-pro-BNP sampling for predicting adverse outcome after acute pulmonary embolism

Efficacy and safety of advanced renal cell carcinoma patients treated with sorafenib: roles of cytokine pretreatment

PFIZER INC. THERAPEUTIC AREA AND FDA APPROVED INDICATIONS: See USPI

Sorafenib in the management of metastatic renal cell carcinoma

Trial to Reduce. Aranesp* Therapy. Cardiovascular Events with

ST2 in Heart Failure. ST2 as a Cardiovascular Biomarker. Competitive Model of ST2/IL-33 Signaling. ST2 and IL-33: Cardioprotective

Sunitinib Treatment for Metastatic Renal Cell Carcinoma in Patients with Von Hippel-Lindau Disease

Sergio Bracarda MD. Head, Medical Oncology Department of Oncology AUSL-8 Istituto Toscano Tumori (ITT) San Donato Hospital Arezzo, Italy

The incidence and mortality rates of renal cell carcinoma (RCC) have been rising steadily worldwide at a rate of 2% to

Targeted and immunotherapy in RCC

A Korean multi-center, real-world, retrospective study of first-line pazopanib in unselected patients with metastatic renal clear-cell carcinoma

Echocardiography analysis in renal transplant recipients

CLINICAL POLICY Department: Medical Management Document Name: Inlyta Reference Number: NH.PHAR.100 Effective Date: 05/12

Antiangiogenic Agents in NSCLC Where are we? Which biomarkers? VEGF Is the Only Angiogenic Factor Present Throughout the Tumor Life Cycle

Oncology A Phase II Study of Presurgical Sunitinib in Patients with Metastatic Clear-cell Renal Carcinoma and the Primary Tumor In Situ

Sunitinib in Patients With Metastatic Renal Cell Carcinoma JAMA. 2006;295:

Targeted Therapy in Advanced Renal Cell Carcinoma

National Horizon Scanning Centre. Sunitinib (Sutent) for advanced and/or metastatic breast cancer. December 2007

Treatment of everolimus-resistant metastatic renal cell carcinoma with VEGF-targeted therapies

Clinical Review Criteria Galectin-3 Blood Assay Test

Cancer survivors. Half of Cancer Survivors Die of Other Conditions. Cause of Death in Cancer Survivors

Cardiotoxic Effects of Chemotherapy on Pediatric and Adult Survivors of Cancer

Introduction. pissn , eissn Cancer Res Treat. 2014;46(4):

Cardiac Involvement is Underdiagnosed in Patients with Biopsy-Proven Systemic AL Amyloidosis

Οξεία καρδιακή ανεπάρκεια: Ποιες παράμετροι συμβάλλουν στη διαστρωμάτωση κινδύνου των ασθενών;

PKPD Modeling of VEGF, svegfr-2, svegfr-3, and skit as Predictors of Tumor Dynamics and Overall Survival Following Sunitinib Treatment in GIST

CANCER UROLOGY VOL. 12. P. S. Borisov 1, M. I. Shkol nik 2, R. V. Orlova 3, P. A. Karlov 1 DOI: /

Cancer Cell Research 14 (2017)

Citation for published version (APA): Lok, D. J. A. (2013). Novel markers in chronic heart failure. Groningen: s.n.

Australian Journal of Basic and Applied Sciences, 9(36) December 2015, Pages: ISSN: Journal home page:

Accepted Manuscript. The Golden Ratio. Tomasz A. Timek, MD PhD

Therapeutic effects and associated adverse events of multikinase inhibitors in metastatic renal cell carcinoma: A meta-analysis

E2804 The BeST Trial

Targeted Therapy for Metastatic Renal Cell Carcinoma Robert J. Motzer and Ronald M. Bukowski

Predictor Value Cytokines for Recurrence of. Arrhythmia in Patients with Coronary Heart. Disease Combined Hypertension and Persistent

Advanced Echocardiography in the Evaluation of Chemotherapy Patients

Treatment with sorafenib and sunitinib in renal cell cancer: a Swedish register-based study

Plasma MR-proADM is superior to NTproBNP for all-cause short term mortality prediction in acute pulmonary embolism.

Cardiotoxicity: The View of the Cardiologist

A Review in the Treatment Options for Renal Cell Cancer

Immunotherapy versus targeted treatments in metastatic renal cell carcinoma: The return game?

Effect of Short-term Maximal Exercise on BNP Plasma Levels in. Healthy Individuals

Is B-type natriuretic peptide a risk factor for heart failure in patients treated with bardoxolone methyl?

Feasibly of axitinib as first-line therapy for advanced or metastatic renal cell carcinoma: a single-institution experience in Japan

pan-canadian Oncology Drug Review Final Clinical Guidance Report Axitinib (Inlyta) for metastatic Renal Cell Carcinoma March 7, 2013

Medical Management of Renal Cell Carcinoma

Anthracyclines in the elderly breast cancer patients

BNC105 Results Presentation

Dose individualization of sunitinib in mrcc: Toxicity-adjusted dose or Therapeutic drug monitoring

ΒΙΟΔΕΙΚΤΕΣ ΣΤΗΝ ΚΑΡΔΙΑΚΗ ΑΝΕΠΑΡΚΕΙΑ. ΔΗΜΗΤΡΙΟΣ ΤΟΥΣΟΥΛΗΣ Καθηγητής Καρδιολογίας

National Horizon Scanning Centre. Bevacizumab (Avastin) for glioblastoma multiforme - relapsed. August 2008

Metastatic renal cancer (mrcc): Evidence-based treatment

Can point of care cardiac biomarker testing guide cardiac safety during oncology trials?

Synopsis. Study Phase and Title: Study Objectives: Overall Study Design

Toxicity as a Biomarker

SUPPLEMENTAL MATERIAL

Update on the treatment of metastatic clear cell and non-clear cell renal cell carcinoma

Original Article Brain Natriuretic Peptide as the long-term cause of mortality in patients with cardiovascular disease: a retrospective cohort study

UPDATE FROM ASCO GU FEBRUARY 2018, SAN FRANCISCO, USA. Prof. David Pfister University Hospital of Cologne Germany RENAL CELL CARCINOMA

Renal cell carcinoma (RCC) represents 2% of all

Update on the Management of HER2+ Breast Cancer. Christian Jackisch, MD, PhD Sana Klinikum Offenbach Offenbach, Germany

Changes in Brain Natriuretic Peptide and Norepinephrine Over Time and Mortality and Morbidity in the Valsartan Heart Failure Trial (Val-HeFT)

To estimate the serum level of N-terminal pro-brain natriuretic peptide levels in acute coronary syndrome

SPECIAL AUTHORIZATION REQUEST FOR COVERAGE OF HIGH COST CANCER DRUGS

NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE. Health Technology Appraisal

Clinical Biomarker in Kidney Cancer. Maria Nirvana Formiga, M.D., Ph.D.

National Horizon Scanning Centre. Temsirolimus (Torisel) for mantle cell lymphoma - relapsed and/or refractory. January 2008

Biomarkers in the Assessment of Congestive Heart Failure

Transcription:

BMC Cancer This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Brain natriuretic peptide precursor (NT-pro-BNP) levels predict for clinical benefit to sunitinib treatment in patients with metastatic renal cell carcinoma BMC Cancer 2010, 10:489 doi:10.1186/1471-2407-10-489 Konstantinos T Papazisis (konstantinos.papazisis@gmail.com) Loukas F Kontovinis (loukas.kontovinis@gmail.com) Christos N Papandreou (cpapandr@otenet.gr) George Kouvatseas (g.kouvatseas@heads.gr) Christos Lafaras (iatros@the.forthnet.gr) Evangelos Antonakis (stema1977@gmail.com) Maria Christopoulou (christopoulou@windowslive.com) Charalambos Andreadis (elkageba@otenet.gr) Despoina Mouratidou (cchemo@otenet.gr) Alexandros H Kortsaris (akortsar@med.duth.gr) ISSN 1471-2407 Article type Research article Submission date 30 March 2009 Acceptance date 14 September 2010 Publication date 14 September 2010 Article URL http://www.biomedcentral.com/1471-2407/10/489 Like all articles in BMC journals, this peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ 2010 Papazisis et al., licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Brain natriuretic peptide precursor (NT-pro-BNP) levels predict for clinical benefit to sunitinib treatment in patients with metastatic renal cell carcinoma Konstantinos T. Papazisis (1,2)* Lukas F. Kontovinis (1,2)* Christos N. Papandreou (3) George Kouvatseas (4) Christos Lafaras (5) Evangelos Antonakis (6) Maria Christopoulou (6) Charalambos Andreadis (1) Despoina Mouratidou (1) Alexandros H. Kortsaris (7) (1) 3rd Department of Medical Oncology, Theagenion Cancer Hospital, Al. Simeonidi str. 2, 54007, Thessaloniki, Greece (2) Applied Molecular Oncology Laboratory, Theagenion Cancer Hospital, Al. Simeonidi str. 2, 54007, Thessaloniki, Greece (3) Department of Medical Oncology, University Hospital of Larissa, Biopolis 41110, Larissa, Greece (4) Health Data Specialists Ltd, 11526, Athens, Greece (5) Cardiology Unit, Theagenion Cancer Hospital, Al. Simeonidi str. 2, 54007, Thessaloniki, Greece (6) Laboratory of Biochemistry, Theagenion Cancer Hospital, Al. Simeonidi str. 2, 54007, Thessaloniki, Greece (7) Laboratory of Biochemistry, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece *These authors contributed equally to the work Corresponding author FAX: +30 2310868777 Tel: +30 2310898704 1

KTP: konstantinos.papazisis@gmail.com LFK: loukas.kontovinis@gmail.com CNP: cpapandr@otenet.gr GK: g.kouvatseas@heads.gr CL: iatros@the.forthnet.gr EA: stema1977@gmail.com MC: christopoulou@windowslive.com CA: elkageba@otenet.gr DM: cchemo@otenet.gr AHK: akortsar@med.duth.gr Key words: Sunitinib, Renal Cell Cancer, Brain Natriuretic Peptide, Surrogate Marker 2

Abstract BACKGROUND: Sunitinib is an oral, multitargeted tyrosine kinase inhibitor that has been approved for the treatment of metastatic renal cell carcinoma. Although the majority of sunitinib-treated patients receive a clinical benefit, almost a third of the patients will not respond. Currently there is no available marker that can predict for response in these patients. METHODS: We estimated the plasma levels of NT-pro-BNP (the N-terminal precursor of brain natriuretic peptide) in 36 patients that were treated with sunitinib for metastatic clearcell renal carcinoma. RESULTS: From the 36 patients, 9 had progressive disease and 27 obtained a clinical benefit (objective response or disease stabilization). Increases in plasma NT-pro-BNP were strongly correlated to clinical outcome. Patients with disease progression increased plasma BNP at statistically significant higher levels than patients that obtained a clinical benefit, and this was evident from the first 15 days of treatment (a three-fold increase in patients with progressive disease compared to stable NT-pro-BNP levels in patients with clinical benefit, p < 0.0001). Median progression-free survival was 12.0 months in patients with less than 1.5 fold increases (n=22) and 3.9 months in patients with more than 1.5 fold increases in plasma NT-pro-BNP (n=13)(log-rank test, p = 0.001). CONCLUSIONS: This is the first time that a potential surrogate marker has been reported with such a clear correlation to clinical benefit at an early time of treatment. Due to the relative small number of accessed patients, this observation needs to be further addressed on larger cohorts. More analyses, including multivariate analyses are needed before such an observation can be used in clinical practice. 3

Background Sunitinib is an oral, multitargeted tyrosine kinase inhibitor of VEGFR-1, VEGFR-2, Fmslike tyrosine kinase receptor 3 (FLT3), c-kit (stem-cell factor [SCF] receptor) and PDGFR (1) that has shown clinical activity in the treatment of metastatic renal cell carcinoma. The majority of sunitinib-treated renal cancer patients obtain a clinical benefit in the form of either objective response or disease stabilization (31% and 48% respectively in the large, phase III trial (2)). Treatment with sunitinib results in alterations of several plasma proangiogenic factors, as svegfr2, VEGF, PDGF and PIGF (3). However, none of these markers has a predictive value for response and the search for a surrogate marker is still ongoing (4). Cardiac toxicity is reported to be a common adverse event in sunitinib-treated patients (5). Schmidinger et al, reported that from 86 renal cancer patients that were treated with sunitinib or sorafenib, 33.6% experienced a cardiac event, 40.5% had ECG changes and 18% were symptomatic (6). On a report by Rixe and colleagues, patients that developed hypertension during treatment (or other sunitinib-related adverse events) had a better outcome than normotensive ones (7), but this observation remains to be confirmed. Brain natriuretic peptide (BNP) has been shown to be associated with left ventricular dysfunction (8). This peptide is secreted by atrial and/or ventricular myocardial cells due to volume or pressure overload, according to the severity of myocardial dysfunction. Pro-BNP, the precursor of BNP may provide the same diagnostic information as BNP, but less is known about its clinical utility. Brain natriuretic peptide (BNP) and N-terminal (NT) pro-bnp are useful as diagnostic objective markers of chronic heart failure (CHF) due to systolic and diastolic dysfunction and important prognostic predictors (9). 4

Methods We recently reported on a cohort of patients treated with sunitinib for metastatic clearcell renal carcinoma in our department (10). Following-up these data we estimated the plasma levels of NT-pro-BNP in 36 sunitinib-treated patients as a marker for cardiac toxicity. Sunitinib was administrated in the usual scheme (50 mg daily, four weeks on treatment, followed by two weeks off treatment, on a six - week cycle). During the first two cycles, plasma was obtained every 2 weeks with a complete blood count and a full biochemical profile. All patients had an appropriate renal, liver, cardiac and bone marrow function (10). The plasma levels of NT-pro-BNP were analyzed using Elecsys 2010 automated immunoassay analyzer. The study was approved by the local ethics review board (Theagenion Cancer Hospital Research and Ethics Committee) and was carried out in accordance with the Declaration of Helsinki and Good Clinical Practice Guidelines. All patients had confirmed metastatic disease (CT and/or MRI and bone scan), were informed for their participation and signed the appropriate consent form. Statistical Analysis The Chi-square test was used for testing significance of correlation for categorical variables. Univariate comparisons of Plasma NT-pro-BNP levels as well as changes from baseline where performed with the Wilcoxon non-parametric test. Logistic regression analysis was used in order to assess jointly the effects of baseline Plasma NT-pro-BNP levels and day 15 changes on disease progression. The area under the Receiver Operating Characteristic (ROC) curve is also reported. Time to event curves were calculated with the Kaplan-Meier method. Indicative cutpoint determination in PFS analysis was made using the method of Contal and O Quigley (1999) (11) but there was no formal assessment of the significance of the cutpoint due to the small size of the sample. 5

Results Data on the patient cohort are presented on table 1. At the end of cycle 2, patients were assessed for response. Patients that obtained a clinical benefit (CB, disease stabilization or objective response according to the RECIST criteria) remained on treatment, whilst patients with progressive disease (PD) were discontinued. From the 36 patients, 9 had progressive disease and 27 obtained a clinical benefit (11 had disease stabilization and 16 had partial responses). Development of hypertension during the first two cycles did not predict for response (37.5% in the PD group and 40.74% in the CB group, p=0.8). Plasma NT-pro-BNP was increased during treatment and did not return to baseline values during the off-treatment period. This increase was not associated to changes in arterial pressure or decreased left ventricular ejection fraction, as it was assessed by echocardiogram or MUGA test. Baseline values as well as increases in plasma NT-pro-BNP were strongly correlated to clinical outcome. Patients with disease progression had lower baseline values and increased plasma BNP at statistically significant higher levels than patients that obtained a clinical benefit (table 2), and this was evident from the first 15 days of treatment. Using logistic regression we assessed the joint effect of baseline values and change at 15 days on disease progression in order to depict the most significant predictor. Since in the logistic regression model baseline NT-pro-BNP levels were not statistically significant while change at 15 days was (p-value=0.2912 and 0.0274 respectively) it appears that the latter has most of the information in separating the two groups. Regression to the mean might have influenced this result. Furthermore, the area under the ROC curve for the change at 15 days was 94.9%, while the high correlation between change at 15 days and disease progression is also depicted in figure 1 through the sharp increase in predicted probability of disease progression when there is an increase in plasma NT-pro-BNP levels. 6

Median PFS was 6.9 months in patients (n=15) with increases in plasma NT-pro-BNP after 15 days of treatment and 15.8 months in patients (n=20) where plasma NT-pro-BNP remained at the baseline or lower values (p=0.036, log-rank test). We further explored the effect of change at 15 days on PFS in order to select with a statistical technique an alternative cutpoint for grouping the patients into separate groups. By testing several alternatives, the maximum value of the log rank statistic was obtained at the 1.5 fold change. Median PFS (figure 2) was 3.9 months in patients (n=13) with more than 1.5 fold increases in plasma NT-pro-BNP after 15 days of treatment and 12.0 months in patients (n=22) where plasma NT-pro-BNP showed less than 1.5 fold increases or remained at the baseline or lower values (p=0.001, log-rank test). NT-pro-BNP levels in healthy population are depended on age and gender (12). In our cohort of metastatic RCC patients, NT-pro-BNP levels were not statistically significantly different in men than women and in older (>60 years old) that younger patients. Age and gender had no impact on the differences observed in fold-increase of NT-pro-BNP between PD and CB patients (Additional file 1: Table S1). Discussion and Conclusions Plasma NT-pro-BNP levels may reflect volume overload or cardiac dysfunction in patients with heart disease. We observed a high variation in pre-treatment NT-pro-BNP levels that was not associated to disease burden or baseline cardiac function. However, Baseline levels predicted for response and sharp increases in plasma NT-pro-BNP were observed in patients that did not obtain any clinical benefit from treatment, and this was evident from the first 15 days of treatment. BNP is produced by myocardial cells, but it has been reported to be produced by many tissues including renal parenchyma as well (13). Whether this observation reflects the increasing production of NT-pro-BNP from the nonresponding metastatic foci remains yet unanswered. When we assayed Caki-1 and Caki-2 7

renal cancer cell lines in vitro we did not find any significant BNP production and sunitinib had no effect of on BNP at a protein level (data not shown). On the other hand, hypoxia in large treatment-refractory tumours is a direct and sufficient stimulus for BNP induction via stabilization of HIF-1 alpha (14). Sunitinib treatment results in improved blood flow and less hypoxic tumour microenviroment (15,16) in patients that respond. Disease progression can therefore relate to a more hypoxic tumour environment, higher HIF-1 alpha expression, higher plasma VEGF levels (as we have already shown, ref 10) and, finally, increased HIF-1 alpha-dependent BNP induction. We report the value of plasma NT-pro-BNP measurement for predicting response to sunitinib treatment in patients with metastatic renal cell carcinoma. This is the first time that a potential surrogate marker has been reported with such a clear correlation to clinical benefit at an early time on treatment. Due to the relative small number of assessed patients, this observation needs to be further addressed on larger cohorts. More analyses, including multivariate analyses are needed before such an observation can be used in clinical practice. Competing interests The authors declare that they have no competing interests Authors Contributions KTP designed the study, evaluated the patients, evaluated the results and prepared the manuscript. LFK was responsible for the treatment of the patients, collection of the data and evaluation of the results. CNP critically reviewed the manuscript and the interpretation of the data. GK performed the statistical analysis and helped with the interpretation of the data. CL performed the cardiac assessment of the patients and was involved in the preparation of the manuscript. EA and MC helped with the plasma databank and performed the immunoassay tests. CA participated in the clinical part of the study. DM supervised the project and 8

participated in the clinical part of the study. AHK overviewed the analysis of the data and the manuscript. All authors read and approved the final manuscript. Acknowledgements We are obliged to the patients that participated in the study as well as to the nurses and clinical staff of Theagenion Cancer Hospital for their continuing support in our clinical and experimental work 9

References 1. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 2003, 9: 327-337 2. Motzer R, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007, 356: 115-124 3. Deprimo SE, Bello CL, Smeraglia J, Baum CM, Spinella D, Rini BI, Michaelson MD, Motzer RJ. Circulating protein biomarkers of pharmacodynamic activity of sunitinib, in patients with metastatic renal cell carcinoma: modulation of VEGF and VEGF-related proteins. J Transl Med 2007, 5: 32 4. DePrimo SE, Bello C. Surrogate biomarkers in evaluating response to antiangiogenic agents: focus on sunitinib. Ann Oncol 2007, 18 Suppl 10: x11-9 5. Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, Woulfe K, Pravda E, Cassiola F, Desai J, George S, Morgan JA, Harris DM, Ismail NS, Chen JH, Schoen FJ, Van den Abbeele AD, Demetri GD, Force T, Chen MH. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 2007, 370: 2011-2019 6. Schmidinger M, Zielinski CC, Vogl UM,, Bojic A, Bojic M, Schukro C, Ruhsam M, Hejna M, Schmidinger H. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2008, 26: 5204-5212 7. Rixe O, Billemont B, Izzedine H. Hypertension as a predictive factor of Sunitinib activity. Ann Oncol 2007, 18: 1117 10

8. Koglin J, Pehlivanli S, Schwaiblmair M, Vogeser M, Cremer P, vonscheidt W. Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure. J Am Coll Cardiol 2001, 38: 1934-1941 9. Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP, Glazer RD, Tognoni G, Cohn JN; Val-HeFT Investigators. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the Valsartan Heart Failure Trial (Val-HeFT). Circulation 2003, 107: 1278-1283 10. Kontovinis LF, Papazisis KT, Touplikioti P, Andreadis C, Mouratidou D, Kortsaris AH. Sunitinib treatment for patients with clear-cell metastatic renal cell carcinoma: clinical outcomes and plasma angiogenesis markers. BMC Cancer 2009, 9: 82 11. Contal C, O Quigley J. An application of changepoint methods in studying the effect of age on survival in breast cancer. Computational Statistics and Data Analysis 1999, 30: 253-270 12. Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PW, Sutherland P, Omland T, Vasan RS. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol 2002, 90: 254-8 13. Gerbes AL, Dagnino L, Nguyen T, Nemer M. Transcription of brain natriuretic peptide and atrial natriuretic peptide genes in human tissues. J Clin Endocrinol Metab 1994, 78: 1307-1311 14. Weidemann A, Klanke B, Wagner M, Volk T, Willam C, Wiesener MS, Eckardt KU, Warnecke C. Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1alpha, is a direct and sufficient stimulus for brain-type natriuretic peptide induction Biochem J. 2008, 409(1): 233-42 15. Czabanka M, Vinci M, Heppner F, Ullrich A, Vajkoczy P. Effects of sunitinib on tumor hemodynamics and delivery chemotherapy. Int J Cancer 2009, 124(6):1293-300 16. Hilman GG, Singh-Gupta V, Zhang H, Al-Bashir AK, Katkuri Y, Li M, Yunker CK, Patel AD, Abrams J, Haacke EM. Dynamic contrast-enhanced magnetic resonance imaging of vascular changes induced by sunitinib in papillary renal cell carcinoma xenograft tumors. Neoplasia. 2009, 11(9):910-20 11

Table 1: Patient characteristics Patient characteristics % Number Total included 36 100 Assessable for response 36 100 Sex Male 26 72 Female 10 28 Age Median 62 Range 25 75 Performance status 0 16 44.4 1 16 44.4 2 4 11.1 MSKCC criteria Low risk 2 5.6 Intermediate risk 15 41.7 High risk 19 48.7 Previous treatments Nephrectomy 30 83.3 Cytokines 15 41.7 Radiotherapy 10 27.8 Metastatic sites Lung 24 66.7 Bone 10 27.8 Lymph nodes 7 19.4 Liver 4 11.1 Local relapse 2 5.6 Other 5 13.9 12

Table 2: Median and first and third quartile levels (pg/ml) and medianfold-increase in plasma NT-pro-BNP in patients receiving sunitinib according to clinical outcome after the first two cycles of treatment. Baseline Actual values after baseline Day15 Day30 Day45 Day75 Median fold change to baseline Clinical outcome N Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 Median Q1-Q3 Day15 Day30 Day45 Day75 Disease progression 9 61.1 39.5-120.4 132.3 75.7-341.2 145.8 96.6-553.3 576.8 54.5-827.0 344.0 191.9-1071.0 2.8 3.9 8.9 5.4 Clinical benefit 27 149.0 97.7-535.6 179.5 80.5-337.5 215.2 87.4-380.6 241.7 111.2-555.5 260.1 120.6-637.4 1.0 1.0 0.9 0.9 p-value 0.021 0.768 0.951 0.726 0.374 0.0002 0.002 0.003 0.025 Note: Q1 and Q3 are the first and third quartiles respectively 13

Additional flies Additional file 1. Table S1 Baseline plasma NT-pro-BNP levels (pg/ml) and medianfold ratio after 15 days of sunitinib treatment according to age and gender. CB = Clinical benefit, PD = Progressive Disease. 14

Caption of figures Figure 1. Predicted probability of disease progression according to fold-increase in plasma NT-pro-BNP after two weeks of sunitinib treatment. The effect of increase is statistically significant (p-value=0.0274) but the 95% confidence limits of predicted probability are wide due to the small size of the sample (shaded area). Figure 2. Progression-free-survival in metastatic renal cell carcinoma patients according to fold-increase in plasma NT-pro-BNP after two weeks of sunitinib treatment. Median PFS was 12.0 months in patients with less than 1.5 fold increases or lower or equal to baseline NTpro-BNP levels (n=22) and 3.9 months in patients with more than 1.5 fold increases in plasma NT-pro-BNP (n=13)(log-rank test, p = 0.001). 15

Figure 1

Figure 2

Additional files provided with this submission: Additional file 1: Sept 2010 - Additional file 1.doc, 31K http://www.biomedcentral.com/imedia/1312978048448242/supp1.doc