Clinical Trials Lecture 4: Data analysis

Similar documents
Hot Issues in Tuberculosis: Treatment of Latent TB Infection and New TB Drugs

Multiple Drug-resistant Tuberculosis: a Threat to Global - and Local - Public Health

New Drugs, New Treatments, Shorter Regimens

Upcoming TB Alliance Studies. CPRT DST Review September, 2014

Final Results from Stage 1 of a Double-Blind, Placebo- Controlled Trial with TMC207 in Patients with Multi- Drug Resistant (MDR)

Newer anti-tb drugs and regimens. DM Seminar

Development of New Regimens for Tuberculosis Zhenkun Ma, Ph.D.

Modeling LTBI What are the key issues to consider? Dr Dick Menzies, Montreal Chest Institute, McGill International TB Centre

The shorter regimen for MDR-TB: evidence and pitfalls

Preventing TB: Recent Research Results and Novel Short Course Therapy for LTBI

Sirturo: a new treatment against multidrug resistant tuberculosis

Title: Meta-analysis of Individual patient Data (IPD) of Patients with INH (mono or poly-drug) Resistant Tuberculosis.

Assessing the programmatic management of drug-resistant TB

The role of ART and IPT in TB prevention: Latest updates

ACCESS TO MEDICINES. Update on tuberculosis field activities

Elizabeth A. Talbot MD Assoc Professor, ID and Int l Health Deputy State Epidemiologist, NH GEISELMED.DARTMOUTH.EDU GEISELMED.DARTMOUTH.

HA Convention 2016 : Special Topic Session 3 May 2016

Short Course Treatment for MDR TB

TB Updates for the Physician Rochester, Minnesota June 19, 2009

Pre-Treatment Evaluation. Treatment of Latent TB Infection (LTBI) Initiating Treatment: Patient Education. Before initiating treatment for LTBI:

Recognizing MDR-TB in Children. Ma. Cecilia G. Ama, MD 23 rd PIDSP Annual Convention February 2016

New TB Medications. National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention

Multidrug-resistant tuberculosis in children

Disclosures. Public Health Motivation 6/6/2012. The 12-Dose INH-Rifapentine Once-Weekly DOT Regimen: What Next?

TB-CHAMP A PHASE 3 CLUSTER RANDOMIZED TRIAL FOR PREVENTION OF TB IN CHILD HOUSEHOLD CONTACTS

Treatment of TB Infection Lisa Y. Armitige, MD, PhD April 7, 2015

Isoniazid Prevention Therapy for HIV Positive Patients

Phase III Clinical Trial Results at the 48 th Union World Conference on Lung Health: Implications for the Field 1

NEW DRUGS FOR TUBERCULOSIS: THE NEED, THE HOPE AND THE REALITY

10/3/2017. Updates in Tuberculosis. Global Tuberculosis, WHO 2015 report. Objectives. Disclosures. I have nothing to disclose

5. HIV-positive individuals treated with INH should receive Pyridoxine (B6) 25 mg daily or 50 mg twice/thrice weekly on the same schedule as INH

Certainty assessment of patients Effect Certainty Importance. a standardised 9 month shorter MDR-TB regimen. e f

TB: Management in an era of multiple drug resistance. Bob Belknap M.D. Denver Public Health November 2012

TUBERCULOSIS AND THE TNF-α INHIBITORS. Lloyd Friedman, M.D. Yale University Milford Hospital

Issues to Consider in the Design of Randomized Controlled Trials

Diagnosis and Treatment of Tuberculosis, 2011

Diagnosis and Medical Management of Latent TB Infection

Pediatric TB Intensive San Antonio, Texas October 14, 2013

Issues in TB Drug Development for Sensitive Disease - Clinical Development

TB PREVENTION: TREATMENT OF LATENT TB INFECTION AND BCG VACCINATION

Non-rifampin rifamycins in TB/HIV

Sharing the Care: Working Together on LTBI Treatment and Management Webinar. September 24, Curry International Tuberculosis Center

Management of MDR TB. Dr Priscilla Rupali MD; DTM&H Professor and Head Department of Infectious Diseases Christian Medical College Vellore

Research Excellence to Stop TB Resistance. Plan for MDR-TB Clinical Trials: An Overview March 9, 2010

Moving Past the Basics of Tuberculosis Phoenix, Arizona May 8-10, 2012

Experience with Pyrazinamide and Rifampin Regimens for Latent TB Infection

TB Nurse Case Management San Antonio, Texas April 9-11, 2013

Treatment of Tuberculosis

What Is New in Combination TB Prevention? Lisa J. Nelson Treatment and Care (TAC) Team HIV Department WHO HQ

Treatment of Tuberculosis, 2017

Anti-Infective Drugs Advisory Committee Meeting. Briefing Document. TMC207 (bedaquiline) Treatment of Patients with MDR-TB NDA

Contact Investigation and Prevention in the USA

TB Prevention in PLHIV: Options Other Than Isoniazid. Johns Hopkins Center for Tuberculosis. Research. Richard E. Chaisson, MD

Overview: TB Alliance Drug Development Pipeline

TB prevention studies in PLHIV: recent updates and what can they tell us for the future?

Ruth Moro M.D., M.P.H. Medical Epidemiologist. CDC, Division of Tuberculosis Elimination Clinical Research Branch Tuberculosis Trials Consortium

New Drug Evaluation: Bedaquiline. Month/Year of Review: January 2014 End date of literature search: September 1, 2013

CDC's Tuberculosis Trials Consortium

Conducting and managing randomised controlled trials (RCTs)

Managing Complex TB Cases Diana M. Nilsen, MD, RN

Treatment of latent tuberculosis infection: An update

ANNEXURE A: EXPLANATORY NOTES ON THE DMR 164 REPORTING ON HIV AND TB FORM

Disclosures. Outline. No disclosures or conflicts of interest to report. Special LTBI situations. H t it d id ff t

Screening and Treatment Recommendations for Persons Exposed to MDR TB

Overview. Therapeutic Window. Does drug concentration matter? Treatment of Tuberculosis Therapeutic Drug Monitoring

TBTC research update: are we ready for 3 month treatment? 2009 TBTC Recompetition. NTCA presentation outline

In this second module in the clinical trials series, we will focus on design considerations for Phase III clinical trials. Phase III clinical trials

A Randomized Clinical Trial Comparing 6 EH vs 36H for TB Prevention in HIV-infected Adults in south India: Impact on Mortality

Improving Translation in TB Drug Development Through Quantitative Modeling. CPTR Workshop 2016, Washington DC

MULTIDRUG- RESISTANT TUBERCULOSIS. Dean Tsukayama Hennepin County Medical Center Hennepin County Public Health Clinic

Shorter TB regimens What is in de pipeline? Martin Boeree, Associate Professor Radboudumc, Nijmegen, the Netherlands Tuesday, 23 September, 2014

Pediatric Tuberculosis Lisa Y. Armitige, MD, PhD September 14, 2017

Evidence review for Intermittent therapy for drug-susceptible TB: Questions addressed: intermittent therapy

Treatment of Tuberculosis Therapeutic Drug Monitoring

LTBI Videos-Treatment

Bedaquiline and delamanid combination as part of a MDR-TB treatment regimen: Current evidence and practices

Isoniazid preventive therapy for HIV+:

Dosage and Administration

Research gaps for eliminating TB deaths among people living with HIV. GJ Churchyard 25 th July 2017

I. Kalfus MD, D. Riff MD, R. Fathi PhD, D. Graham MD

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives:

State of the State in TB Control

Scaling up LTBI Treatment with Short Course Regimens to Eliminate TB

Scaling up LTBI Treatment with Short Course Regimens

TB Intensive San Antonio, Texas

Tuberculosis Intensive November 17 20, 2015 San Antonio, TX

HIV/TB Co infection TB Clinical Intensive October 11, 2018

Using delamanid in MDR-TB Francis Varaine MSF

Annex 2. GRADE glossary and summary of evidence tables

Management of Multidrug- Resistant TB in Children. Jennifer Furin, MD., PhD. Sentinel Project, Director of Capacity Building

GSK Medicine: Study Number: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment: Objectives:

Treatment of Tuberculosis

Soedarsono Department of Pulmonology & Respiratory Medicine Faculty of Medicine, Universitas Airlangga Dr. Soetomo General Hospital

Background. The global burden of latent M. tuberculosis. More than 2 billion people infected

Information Note. WHO call for patient data on the treatment of multidrug- and rifampicin resistant tuberculosis

THE USE OF BEDAQUILINE IN THE TREATMENT OF MULTIDRUG RESISTANT TUBERCULOSIS EXPERT GROUP MEETING REPORT January 2013, Geneva

has the following disclosures to make:

Methodological aspects of non-inferiority and equivalence trials

CLINICAL EXPERIENCE OF TREATING XDR- TB AT JOSE PEARSON TB HOSPITAL

Treatment of Tuberculosis

Transcription:

Clinical Trials Lecture 4: Data analysis Dick Menzies, MD Respiratory Epidemiology and Clinical Research Unit Montreal Chest Institute TB Research methods course July 17, 2014

Lecture 4: Data analysis Overview Interim analyses Final - Descriptive analysis Participation the Consort diagram (Figure 1) Study participants (Table 1) Primary analysis (reminder superiority vs non-inferiority) Effectiveness (Intention to treat ) Modified intention to treat Efficacy per protocol Secondary analyses Planned and Hypothesis generating

Interim Analysis and Stopping Rules In large trials interim analyses commonly done. Adverse events Primary outcomes - Can the study be ended early hypothesis answered. Or, Should the study be ended early patient s safety. Must use more stringent rules (p<0.01, not p<0.05) Usually reviewed by independent panel (DSMB)

Interim Analysis Example Vernon et al Lancet 1999 Enrolment began in April 1995. By early 1997 four HIV positive patients had relapsed with Rifampin mono resistance among all occurred in those taking once weekly RPT-INH. The DSMB, CDC, and the investigators decided to stop enrolment of HIV positive patients. Those still taking once weekly RPT- INH were switched to standard treatment. Once weekly INH-RPT Twice weekly INH-RIF p value Number 30 31 - Relapse 5 3.41 RIF-R 4 0.05

Final Analysis: Step 1 Accounting for all subjects The CONSORT statement - JAMA 1996 (consolidated standards of reporting trials) Revised CONSORT Statement. Ann Intern Med 2001; vol 134: p666 www.consort-statement.org/

Consort diagram general structure Potential Eligible Patients Identified n= Excluded - not eligible n= Reasons Refused n= Included and Randomized n= Intervention A n= (ITT) Intervention B n= (ITT) Post-randomization valid exclusions. Reasons N= (MITT) Post-randomization valid exclusions. Reasons N= (MITT) Did not complete Tx Did not complete F-U Included in per protocol analysis n= Did not complete Tx Did not complete F-U Included in per protocol analysis n=

Consort diagram example Mfinanga LID 2014

Consort diagram example Moxi Gati

Step 1B: Analysis of nonparticipants Subjects who are screened as potential participants, but were not eligible, or refused. If not randomized do not impact the internal validity of the study. But affect external validity (capacity to generalize). Especially important if high exclusion or refusal rate

Step 2: Describing and comparing study participants (Table 1) This is a simple descriptive analysis comparing study participants randomized to the different interventions Demographic characteristics (age and sex) Major clinical characteristics (extent of disease, drug resistance) Comorbidities (HIV, Diabetes etc) No statistical testing please

Baseline characteristics example Swaminathan 2010 varying lengths of treatment in HIV TB Characteristic of Study Subjects Reg6M (n=167) Reg9M (n=160) Median age, years (IQR) 33 (29-38 33 (29-39) Median weight, kg (IQR) 44(39-50) 44 (39-50) Median CD4 cells/mm (IQR) 152 (80-304) 167 (88-280) Median viral Load, (copies/ml) 94,300 (n=100) 168,000 (n-113) Males N % 119 (79%) 112 (75%) Pulmonary TB (n=299) Culture Positive 117 (78%) 110 (74%) Susceptible to all first-line drugs, 99 (88%) 95 (88%) Culture Negative 34 (22%) 38 (26%) Extrapulmonary TB (n=28) Culture Positive 4 (25%) 2 (16%) Culture Negative 12 (75%) 10 (84%)

Baseline characteristics example Moxi and Gati Patient Characteristics Regimen Gatifloxacin n=136 Moxifloxacin n=115 Control n=165 Sex Male 103 (76%) 83 (72%) 122 (74%) Age (years): <40 90 (66%) 88 (77%) 120 (73%) Body weight (Kg): Mean 43.7 44.2 43 Sputum culture 3+ growth 107 (79%) 94 (82%) 127 (77%) X-ray Chest >2 Zones affected 107 (79%) 94 (82%) 127 (77%) Did the randomization work?

Step 3: Primary analysis The primary analysis addresses the primary objective. Sample size calculations were based on this planned analysis.

Primary analysis Ideally all randomized participants must be included in the primary analysis. Withdrawals: Participants who sign consent, and are randomized. But withdraw consent so ethically not included in the analysis. Can bias the results of the study (the 2 groups of participants remaining may not be comparable) Drop-outs from therapy: Do not complete therapy, but do complete follow-up post therapy. Contribute fully to analysis Lost no idea of final outcome. More difficult

Superiority Studies (reminder) Test New Interventions against a standard or placebo. Hypothesis: New intervention is better. New intervention will be adopted if patients outcomes are better.

Superiority studies: Results: CANNOT conclude superiority 0 Effect of Effect of New No Effect Standard Therapy New Therapy

Superiority studies: Results: CAN conclude superiority 0 No Effect Effect of Standard Therapy Effect of New therapy

Non-inferiority Studies If current therapy is effective - But is very costly, or lengthy - Or has major side effects Alternate therapies must be cheaper, shorter, or safer. Then we want to show that the new treatment is not worse. This is called a Non-inferiority study.

Non-Inferiority studies - Results CAN conclude non-inferiority 0 0.7 1.0 No effect Least Acceptable Effect of New Effect of Standard Therapy Therapy

Non-Inferiority studies - Results CANNOT conclude non-inferiority 0 0.7 1.0 No effect Least Acceptable Effect of New Effect of Standard Therapy Therapy

Efficacy and Effectiveness Effectiveness (intention to treat) The effect of a specific intervention, procedure, regimen, or service, when deployed in the field in routine circumstances. This accounts for non-compliance, dropouts and side effects. All patients randomized (allocated to treatment) are analysed, whether or not they completed the prescribed regimen, and follow-up. Conservative estimate: Answers the public health question What is the overall effect of this treatment given to a population?

Efficacy vs Effectiveness Efficacy (per protocol) : The extent to which a specific intervention, procedure, regimen, or service produces a beneficial result under ideal conditions; This means the patient actually took all doses of treatment, And all elements of the protocol followed (ie full follow-up) Optimal Estimate: Answers the patient s question What will this drug do. if I take it?

Duration of INH Therapy and efficacy/effectiveness (IUAT trial - Patients with Fibrotic Lesions) Population Duration Reduction in TB All participants INH 12 mo. 75% (Effectiveness) INH 6 mo. 65% INH 3 mo. 21% Completer/compliers INH 12 mo. 93% (Efficacy) INH 6 mo. 69% INH 3 mo. 31% Bull WHO 1982;555-64 Why is the difference biggest for those randomized to 12 months?

ITT and MITT Analyses: example Sterling et al; 3HP vs INH; NEJM 2011 Study Group N Subjects with Active TB no. no. per patient yr Cumulative rate Difference in Cumulative Rate percentage points Modified intention-to-treat analysis Isoniazid only 3745 15 0.16 0.43-0.24 Combination therapy 3986 7 0.07 0.19 Per-protocol analysis Isoniazid only 2585 8 0.11 0.32-0.19 Combination therapy 3273 4 0.05 0.13

Mis-use of ITT analysis The intention of ITT is to produce realistic estimates of what the treatment will achieve in real life. Many RCT select subjects carefully on the basis of compliance - Baseline characteristics (lifestyle, employment, etc) - Run-in period often 1-3 months to assess compliance What effect does this have on ITT analysis

Modified Intention to treat Analysis (MITT) There may be instances where patients may need to be randomized before all information is available. Particularly common in TB trials when eligibility depends upon culture and/or drug susceptibility testing. In latent TB trials, household contacts may start L:TBI therapy before knowing the DST of the index cases. Protocol may specify valid exclusions post randomization. Because LTBI treatment initiation cannot wait

Secondary Analyses: Planned Many studies pre-specify planned secondary analysis This should be stated in the published study protocol Not all subjects must be included Different sub-groups effect of age or gender Different end-points Adverse events Efficacy analysis may be a planned secondary analysis

Planned Primary and Secondary analyses example Gler et al, Use of Delanamid for MDR-TB; NEJM, 2013

Planned Primary and Secondary analyses example Gler et al Delamanid for MDR TB NEJM 2012 Primary endpoint proportion with sputum culture conversion at 2 months MITT Multiple secondary endpoints assessed. These included time to sputum culture conversion Safety performed in all patients randomized who received at least one dose of study medication (ITT) All endpoints pre-specified in formal statistical analysis plan. Plan finalized and filed before analysis begun.

Consort diagram 611 patients assessed for Eligibility 96 Excluded not eligible (91) - other (5) 34 Refused 481 Randomized 161 DMD 100 BID 161 in ITT (Safety) 160 DMD 200 BID 160 in ITT (Safety) 160 Placebo 160 in ITT (Safety) 20 Excluded Negative Culture Not MDR 141 in MITT (2 months culture conversion) 24 Excluded Negative Culture Not MDR 136 in MITT (2 months culture conversion) 35 Excluded Negative Culture Not MDR 125 in MITT (2 months culture conversion) 18 Excluded 14 withdrew 4 SAE 0 Lost 123 in efficacy (time to culture conversion) 14 Excluded 6 Withdrew 6 SAE 2 Lost 122 in Efficacy (time to culture conversion) 15 Excluded 8 Withdrew 4 SAE 3 Lost 120 in efficacy (time to culture conversion)

Planned secondary analysis: Incidence of Adverse Events Uses ITT population (took at least 1 dose of study drug) Delamanid 100mg Twice Daily (N=161) Delamanid 200mg Twice Daily (N=161) Placebo (N=160) Anemia 18(11.2) 10(6.2) 14(8.8) Nausea 58(36.0) 65(40.6) 53(33.1) Prolonged QT interval on ECG 16(9.9) 21(13.1) 6(3.8) Paresthesias 17(10.6) 20(12.5) 12(7.5) Anorexia 23(14.3) 34(21.2) 24(15.0) Hypokalemia 20(12.4) 31(19.4) 24(15.0)

Primary analysis - Uses MITT population: 2 Month culture Conversion on MGIT Planned secondary Analysis - Uses MITT population: 2 mos conversion on solid media

Planned secondary Analysis Efficacy: Uses per protocol Population Time to culture conversion

Planned Primary and Secondary analyses example Use of TMC-207 (Bedaquiline) for MDR TB Diacon et al NEJM 2009

Bedaquiline for MDR TB Diacon et al NEJM 2009 Primary Analysis (MITT)

Secondary Analysis (ITT) Incidence of Adverse Events Adverse Event TMC207 (N=23) Placebo (N=24) Nausea 6(26) 1(4) Diarrhea 3(13) 1(4) Arthralgia 4(17) 3(12) Rash 2(9) 4(17) Dizziness 3(13) 2(8)

Planned Secondary Analyses: (Efficacy) Rate of bacterial killing (per protocol)

Secondary Analyses: Post hoc (Hypothesis generating) Hypothesis generating vs data dredging Once the primary and planned secondary analyses are done, Then many exploratory analyses can be performed Risks- If 20 tests are done, 1 will be significant at p<.05 by chance alone. Especially if not clearly driven by a priori hypotheses, but rather by a desire for a p<.05!! Advantages- RCT generate a wealth of data which can and should be used to address other questions - but very important to describe these analyses clearly as such.

Post hoc Analyses example DMD Improves outcomes and reduces mortality in MDR TB Skripconoka et al, ERJ 2013

Post hoc Analyses example DMD Improves outcomes and reduces mortality in MDR TB Skripconoka et al, ERJ 2013 What they wrote in Abstract - Results and Conclusions: Mortality was reduced to 1% on those receiving long-term DMD vs short-terms no DMD (8.3% p>.001) Treatment benefit was also seen on patients with XDR TB This analysis suggests that treatment with DMD for 6 months in combination with optimized background regimen can improve outcomes and reduce mortality on patients with both MDR and XTR TB

Post hoc Analyses example DMD Improves outcomes and reduces mortality in MDR TB Skripconoka et al, ERJ 2013 Methods: Follow-up study after conclusion of initial 2 month treatment study Study launched 2-12 months after end of first study Substantial intervals between initial 2 month treatment with DMD, and later treatment Patients not randomized. Less than half selected for DMD by provider or by themselves.

24 month outcomes after treatment with DMD plus OBR in patients with MDR or XDR Skripconoka et al, ERJ 2013 Treatment Outcome 6-8 months DMD N=192 0-2 Months DMD N=229 Cured 110 (57%; 50-64) 111 (48%; 42-55) Completed 33 (17%; 12-23) 15 (7%; 4-11) Died 2 (1%; 0.1-4) 19 (8%; 5-13) Failed 32 (17%; 12-23) 26 (11%; 8-16) Defaulted 15 (8%; 4-13) 58 (25%; 20-32)

24 month outcomes after treatment with DMD plus OBR in patients with XDR only. Skripconoka et al, ERJ 2013 Treatment Outcome 6-8 months DMD N=44 0-2 Months DMD N=12 Cured 11 (25%; 13-40) 5 (42%; 15-72) Completed 16 (36%; 22-45) 1 (8%; 0.2-38) Died 0 (0 ) 3 (24%;5-57) Failed 14 (32%; 19-48) 3 (25%; 5-57) Defaulted 3 (7%; 1-19) 0 (0)

Does the abstract reflect the design of the study? Does the abstract reflect the strength of the findings?

Thanks