Lipoprotein (A) Levels in Type 2 Diabetic Patients With Diabetic Retinopathy

Similar documents
1, 2. Senior Resident 3. Senior Professor, Department of ophthalmology SMS college of Jaipur

Ο ρόλος των τριγλυκεριδίων στην παθογένεια των μικροαγγειοπαθητικών επιπλοκών του σακχαρώδη διαβήτη

Diabetologia 9 Springer-Verlag 1991

Diabetic retinopathy is a retinal vascular abnormality; due to chronic

Comparison of Age of Onset and Frequency of Diabetic Complications in the Very Elderly Patients with Type 2 Diabetes

The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy

A pilot Study of 25-Hydroxy Vitamin D in Egyptian Diabetic Patients with Diabetic Retinopathy

Serum Retinol-binding Protein 4 Levels in Patients with Diabetic Retinopathy

year resident, Department of Medicine, B. J. Medical college, Ahmedabad.

Supplementary table 1 Demographic and clinical characteristics of participants by paraoxonase-1 (PON-1) gene polymorphisms

Longitudinal Studies of Incidence and Progression of Diabetic Retinopathy Assessed by Retinal Photography in Pima Indians

Diabetic retinopathy (DR) was first PROCEEDINGS DIABETIC RETINOPATHY * Ronald Klein, MD, MPH ABSTRACT

CORRELATION BETWEEN SERUM LIPID PROFILE AND ALBUMINURIA IN NORMOTENSIVE DIABETIC SUBJECTS Dr.Abhijit Basu 1*, Dr J.S. Jhala 2

DIABETES MEASURES GROUP OVERVIEW

ISSN X (Print) Research Article. *Corresponding author V. Krishna Chaitanya K

Eugene Barrett M.D., Ph.D. University of Virginia 6/18/2007. Diagnosis and what is it Glucose Tolerance Categories FPG

Unraveling the concealed and calculated cardiovascular risks in diabetes

Supplementary Online Content

The relationship between lipoprotein (a) levels and microvascular complications in patients with type 2 Diabetes mellitus

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

7Progression and regression:

Obesity, Insulin Resistance, Metabolic Syndrome, and the Natural History of Type 2 Diabetes

Case study: Lean adult with no complications, newly diagnosed with type 2 diabetes

Retinopathy in a diabetic population

Optimal HbA1c cutoff for detecting diabetic retinopathy

Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic

Table S1. Characteristics associated with frequency of nut consumption (full entire sample; Nn=4,416).

RISK FACTORS FOR DIABETIC RETINOPATHY PROGRESSION

Prevalence of retinopathy in Caucasian type 2 diabetic patients from the South of Brazil and relationship with clinical and metabolic factors

The Open Hypertension Journal, 2015, 7, 1-6 1

Supplementary Online Content

Coronary Heart Disease. Relationship Between Erectile Dysfunction and Silent Myocardial Ischemia in Apparently Uncomplicated Type 2 Diabetic Patients

American Academy of Insurance Medicine

Hypertriglyceridemia and the Related Factors in Middle-aged Adults in Taiwan

Risk Factors for Ischemic Stroke: Electrocardiographic Findings

Prevalence of and risk factors for diabetic retinopathy among the patients with diabetes mellitus in Dharan municipality, Nepal

The investigation of serum lipids and prevalence of dyslipidemia in urban adult population of Warangal district, Andhra Pradesh, India

Hypertension and Associated Cardiovascular Risk Factors in Kelantan

Disclosures. Diabetes and Cardiovascular Risk Management. Learning Objectives. Atherosclerotic Cardiovascular Disease

Patients characteristics associated with better glycemic response to teneligliptin and metformin therapy in type 2 diabetes: a retrospective study

Aspirin Resistance in Patients with Chronic Renal Failure (P 5325)

Diabetes Care 24: , 2001

Diabetes and Hypertension

DECLARATION OF CONFLICT OF INTEREST. None

Know Your Number Aggregate Report Single Analysis Compared to National Averages

Diabetes, Diet and SMI: How can we make a difference?

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

ORIGINAL ARTICLE. Introduction

DR as a Biomarker for Systemic Vascular Complications

Clinical Practice Guideline Key Points

DM type. Diagnostic method of DR. fluorescein angiography; Ophthalmoscopy. ophthalmoscopic examination. fundus photography; Ophthalmoscopy

Microvascular Disease in Type 1 Diabetes

Chapter 37: Exercise Prescription in Patients with Diabetes

Metabolic Syndrome and Workplace Outcome

Risk factors associated with the development of overt nephropathy in type 2 diabetes patients: A 12 years observational study

Anticardiolipin Antibodies in Patients With Type 2 Diabetes Mellitus

Diabetes Overview. How Food is Digested

Effectiveness of a Multidisciplinary Patient Assistance Program in Diabetes Care

AGING KIDNEY IN HIV DISEASE

Risk factors for microvascular and macrovascular complications in men and women with type 2 diabetes

Modified version focused on CCNC Quality Measures and Feedback Processes

2013 Hypertension Measure Group Patient Visit Form

Diabetes Mellitus: A Cardiovascular Disease

Clinical Features and Subtypes of Ischemic Stroke Associated with Peripheral Arterial Disease

Clinical Trial Synopsis TL-OPI-518, NCT#

Update on CVD and Microvascular Complications in T2D

Blood Pressure, Lipids, and Obesity Are Associated With Retinopathy

Diabetes and Kidney Disease. Kris Bentley Renal Nurse practitioner 2018

Supplementary Online Content

Apolipoprotein A-I and Apolipoprotein B: Better Indicators of Dyslipidemia in Diabetic Retinopathy Patients?

Data Analysis Plan for assessing clinical efficacy and safety of ER niacin/laropiprant in the HPS2-THRIVE trial

Why Do We Treat Obesity? Epidemiology

Metformin should be considered in all patients with type 2 diabetes unless contra-indicated

Correlation of Lipoprotein(a) in normal individuals and in Chronic kidney disease patients with Diabetes Mellitus

Diabetic Nephropathy. Objectives:

Is there a relationship between body mass index and diabetic retinopathy in type II diabetic patients? A cross sectional study

Retinopathy in type 2 diabetic patients with microalbuminuria

Complications of Diabetes mellitus. Dr Bill Young 16 March 2015

Impact of Cardiovascular Risk Factors on Osteoporosis among Different Age Patients with Coronary Artery Disease

A: Epidemiology update. Evidence that LDL-C and CRP identify different high-risk groups

Practical Diabetes. Nic Crook. (and don t use so many charts) Kuirau Specialists 1239 Ranolf Street Rotorua. Rotorua Hospital Private Bag 3023 Rotorua

Eyes on Korean Data: Lipid Management in Korean DM Patients

The CARI Guidelines Caring for Australians with Renal Impairment. Control of Hypercholesterolaemia and Progression of Diabetic Nephropathy

Statin therapy in patients with Mild to Moderate Coronary Stenosis by 64-slice Multidetector Coronary Computed Tomography

School of Health Science & Nursing, Wuhan Polytechnic University, Wuhan , China 2. Corresponding author

Diabetic Management beyond traditional risk factors and LDL-C control: Can we improve macro and microvascular risks?

Abstract. Introduction. Original paper. Comparison of screening for diabetic retinopathy by non-specialists and specialists

Diabetes Care 34: , 2011

Prevalence of Diabetic Retinopathy in Non-insulin-

Diabetes: Staying Two Steps Ahead. The prevalence of diabetes is increasing. What causes Type 2 diabetes?

Diabetologia 9 Springer-Verlag 1995

Diabetic Retinopathy and Nephropathy

Guidelines on cardiovascular risk assessment and management

Apelin and Visfatin Plasma Levels in Healthy Individuals With High Normal Blood Pressure

Blood Pressure Treatment Goals

Supplementary Appendix

Lipoprotein (a) Disclosures 2/20/2013. Lipoprotein (a): Should We Measure? Should We Treat? Health Diagnostic Laboratory, Inc. No other disclosures

The New Gold Standard for Lipoprotein Analysis. Advanced Testing for Cardiovascular Risk

Ezetimibe Reduces Urinary Albumin Excretion in Hypercholesterolaemic Type 2 Diabetes Patients with Microalbuminuria

Early Detection of Asymptomatic Coronary Artery Disease in Patients with Type 2 Diabetes Mellitus

Transcription:

Lipoprotein (A) Levels in Type 2 Diabetic Patients With Diabetic Retinopathy U G Ö Ergün MD*, S Öztüzün, MD**, G Seydaoglu, MD*** *Family Medicine Specialist at Çukurova University Faculty of Medicine, Department of Family Medicine, Adana, Turkey, **Family Medicine Specialist at Haydarpasa Numune Education and Research Hospital, Istanbul, Turkey, *** Medical Doctor at Çukurova University Faculty of Medicine, Department of Biostatistics, Adana, Turkey Summary To examine a possible association between lipoprotein(a) [Lp(a)] levels and diabetic retinopathy in patients with type 2 diabetes mellitus. 100 type 2 diabetic patients were assessed with the following parameters: age, body mass index, duration of diabetes, blood pressure, fasting plasma glucose, total cholesterol, HDL-cholesterol, triglycerides, blood urea nitrogen, creatinine, Lp(a), and albumin excretion rate (AER). Retinopathy was classified as normal retina (NR), non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy (PDR) by an ophthalmologist. The PDR group had higher cholesterol (t=-2.24, p<0.05) and creatinine (z=-2.547, p<0.05) levels than the NPDR group. The PDR group had a higher value of AER (z=-2.439, p<0.01) than the NR group. The possibility of developing diabetic retinopathy after 10 years of diabetes was found to be 6.5 fold high (OR; 6.57, 95% CI 1.74-24.79; p<0.05). The Lp(a) levels were similar in the patients with retinopathy and those without retinopathy. In the study, there was no evidence for a relationship between the serum Lp(a) levels and diabetic retinopathy in type 2 diabetic patients. Key Words: Type 2 Diabetes Mellitus, Diabetic retinopathy, Lipoprotein (a) Introduction Atherosclerotic vascular diseases such as coronary heart disease, cerebrovascular disease, and peripheral vascular disease are a major cause of morbidity and mortality in patients with diabetes mellitus 1. Diabetic patients are also prone to develop microangiopathy clinically manifested as diabetic nephropathy, neuropathy and retinopathy 2. Hence, the early diagnosis and treatment of the risk factors that are responsible for the development of these complications are very important in the follow-up and management of the disease. The factors which are assumed to account for the occurrence of diabetic retinopathy include advanced age, duration of disease, poor glysemic control, hypertension, proteinuria, high serum creatinine, cholesterol, triglycerides, lipoprotein(a) [Lp(a)] levels, and microalbuminuria 3,4. Lp(a) is a macromolecular complex found in human plasma that combines structural elements from the lipoprotein and blood clotting systems and that is associated with premature coronary heart disease and stroke. Lp(a) is a plasma complex composed of apolipoprotein(a) covalently linked to apo B-100 by disulfide bridges 5. Due to the structural similarity of apolipoprotein(a) to plasminogen, Lp(a) has been suggested to have antifibrinolytic properties and additionally shown to compete with plasminogen for the plasminogen binding site with an equivalent affinity and capacity. It has been estimated that, at plasma concentrations of 30 mg/dl, Lp(a) reduces cellular This article was accepted: 16 April 2004 Corresponding Author: U. Guney Ozer Ergun, Cukurova University, Faculty of Medicine, Department of Family Medicine, 01330 Balcali, Adana, Turkey 406 Med J Malaysia Vol 59 No 3 August 2004

Lipoprotein (A) Levels in Type 2 Diabetic Patients With Diabetic Retinopathy plasminogen binding by 20 per cent, thereby suppressing endothelial cell fibrinolysis and producing a procoagulent state 6. Furthermore, high serum Lp(a) levels have thus been shown to be an independent risk factor for atherogenesis and thromboembolic events in both diabetic and nondiabetic subjects 7,8. In this context, high serum Lp(a) levels might play a role in the occlusion of retinal capillaries leading to diabetic retinopathy. Controversial results have been obtained from limited studies both with type 1 and type 2 diabetic patients 9-15. The aim of the present study was to evaluate serum Lp(a) levels and the relationship between these levels and diabetic retinopathy in type 2 diabetic patients. Materials and Methods Subjects and admission criteria This was a cross-sectional study where 100 subjects of both sexes were enrolled. The study sample was recruited from 357 type 2 diabetic patients who were attending and being followed-up in the diabetic outpatient clinic at Haydarpasa Numune Education and Research Hospital in Istanbul, Turkey. The sample size required for the expected mean difference was calculated as 94 on the basis of the mean values which are 13.1±1.1 and 19.3±1.5 for the patients with normal retinopathy and with NPRP, respectively in literature number 13 (b=80 a=0.05). To conpensate for lost of follow-up, 115 patients were included. One of the three patients that applied to the outpatient clinic was randomly and sequentially included to the study. Of the 115 participants, 15 were excluded from the study for they had not had their blood chemistry tested because they had to be hospitalized due to their medical condition. This study was approved by the local ethical committee and written informed consent was taken from all participants. The parameters of the patients (67 female and 33 male) were assessed as follows; age, body mass index (BMI), duration of diabetes, blood pressure, fasting serum glucose, total cholesterol, HDL cholesterol (HDL-C), triglycerides, blood urea nitrogen (BUN), creatinine, Lp(a), and albumin excretion rate (AER). Arterial blood pressure was measured three times with a mercury sphygmomanometer in the sitting position after a 10- min rest, and the mean of the measurements was assessed. After 12 hours of fasting, serum glucose, triglycerides, total cholesterol, HDL-C, BUN and creatinine were measured by I1ab 1800 autoanalyzer via enzymatic colorimetric methods (Roche Modular System-DPP). Serum Lp(a) levels were measured by turbumetric method (Behring, Germany). The plasma concentrations between 0-29.9 mg/dl of Lp(a) were accepted as normal. Twenty-four hour of urine samples were collected by the patients so as to determine the albumin excretion rate (AER) via radioimmunoassay. AER: 0-30mg/24 hours was defined as normoalbuminuria; AER: 30-300mg/24 hours was defined as microalbuminuria and >300mg/24 hours was defined as overt proteinuria. Fundoscopic examination was performed by a senior ophthalmologist, using ophthalmoscope and/or biomicroscope through dilated pupils. The findings were graded as normal retina (NR), nonproliferative diabetic retinopathy (NPDR), and proliferative retinopathy (PDR). Statistical analysis The data are expressed as mean ± s.e. mean or median (range). Comparisons among three groups were made by analysis of variance with Duncan s multiple range test or Kruskal-Wallis test where appropriate. Comparisons between the normal group (NR) and diabetic retinopathy group (PDR+NPDR) were made by Mann-Whitney-U test and student t test where appropriate. The multivariate logistic regression was performed to find relative risk factors. P value <0.05 (two-tailed) was considered to be statistically significant. Results Among 100 patients; 38, 33 and 29 had NR, NPDR, PDR, respectively. Table I illustrates the clinical and laboratory characteristics related to each of three groups. The patients with PDR had longer duration of diabetes (z=- 2.863, p<0.05) than those with NR while no statistically significance was reached between PDR and NPDR groups. The PDR group expressed higher cholesterol (t=-2.24, p<0.05) and creatinine (z=-2.547, p<0.05) levels when compared to that of NPDR. In the case of creatinine levels, there was a difference between the patients with PDR and NR (z=-2.417, p<0.01). The PDR group had a higher value of AER (z=-2.439, p<0.01) and fasting serum glucose levels (t=-2.11, p<0.05) when compared to that with NR. Age, gender, BMI, blood pressure, triglycerides, HDL-C, BUN, uric acids, and Lp(a) concentrations were similar in the three groups (p>0.05). Med J Malaysia Vol 59 No 3 August 2004 407

The characteristics concerning the groups with diabetic retinopathy (NPDR+PDR) and without retinopathy (NR) are shown in the Table II. The patients with retinopathy had higher AER than the patients without retinopathy (z=-2.50, p<0.05). The group with diabetic retinopathy had a longer duration of disease (t=-3.53, p<0.001) and a higher value of fasting plasma glucose (t=-2.16, p<0.05) when compared to those with NR group. The Lp(a) levels were similar in the patients with retinopathy and those without retinopathy (p>0.05). The factors associated with PDR were entered into a multivariate stepwise regression model (Table III). Independently from other risk factors, the possibility of developing diabetic retinopathy after 10 years duration of diabetes was found to be 6.5 fold higher (OR; 6.57, 95% CI 1.74-24.79; p<0.05). Table I: Clinical and laboratory characteristics of the subjects according to retinopathy groups NR NPDR PDR Number of cases (n) 38 33 29 Age (years) 56±2.9 57±3.23 60±2.74 Diabetes duration (years) 6±2.25 8±2.43 13±2.86* Body mass index (kg/m2) 29±2.08 31±2.38 29±2.53 Systolic blood pressure (mmhg) 149±5.23 152±4.68 149±4.84 Diastolic blood pressure (mmhg) 88±4.24 83±3.53 84±3.24 Fasting serum glucose (mg/dl) 153±5.55 164±2.17 174±2.60* Blood urea nitrogen (mg/dl) 16±1.86 16±2.17 17±2.60 Creatinine (mg/dl) 1.04±0.45 1.01±0.50 1.26±0.67*, Uric acid (mg/dl) 4±1.1 4±1.1 4±1.32 Cholesterol (mg/dl) 199±5.97 212±6.35 220±6.15 HDL cholesterol (mg/dl) 42±3.52 43±3.21 45±3.44 Triglycerides (mg/dl) 150±8.13 153±10.47 178±10.77 Albumin excretion rate (mg/24hour) 38±8.47 47±8.41 280±9.11* Lipoprotein(a) (mg/dl) 29.87±5.11 23.64±4.28 27.07±4.14 Data are means ± SEM. p<0.05; NPDR vs PDR, * p<0.05; NR vs PDR, ** p<0.05; NDPR vs NR NR; normal retina NPDR; nonproliferative diabetic retinopathy PDR; Proliferative retinopathy Table II: The characteristics of the groups with diabetic retinopathy and without retinopathy DR* (-) DR(+) Number of cases (n) 38 62 Fasting blood glucose (mg/dl) 153±5.55 169±6.38 Albumin excretion rate (mg/24hour) 38±8.47 156±7.61 Diabetes duration (years) 6±2.25 10±2.74 Data are means ± SEM ; p<0.05, ; p<0.001 *DR; Diabetic Retinopathy 408 Med J Malaysia Vol 59 No 3 August 2004

Lipoprotein (A) Levels in Type 2 Diabetic Patients With Diabetic Retinopathy OR 95% CI P value Lower Upper Gender 0.661 0.239 1.828.425 Age >50 (years) 1.421 0.460 4.388.541 Total Cholesterol 0.998 0.987 1.008.732 Fasting serum glucose (mg/dl) 1.010 0.998 1.023.112 Creatinine (mg/dl) 1.923 0.408 9.069.408 Albumin excretion rate (mg/24hour) 1.002 0.998 1.006.982 Lp (a)>29.9 (mg/dl) 1.092 0.405 2.940.862 Diabetes duration 0-2.9 years Ref..010 3-9.9 years 1.718 0.528 5.595.369 10 years 6.579 1.746 24.797.005 OR= Odds Ratio Table III: Multiple regression analysis for proliferative diabetic retinopathy Discussion The investigations designed to examine a relationship between Lp(a) levels and diabetic retinopathy have revealed controversial results. The reasons responsible for such discrepancies have not been completely explored, but assumed to be due to the type of diabetes, classification of retinopathy, or ethnic groups in each of the studies. Several studies carried out with type 2 diabetic patients reported that serum Lp(a) concentrations are associated with diabetic retinopathy 10,13, on the contrary, other investigators did not determine any relationship between these two parameters 14,15. Similarly, in this cross-sectional study, we did not find any relationship between serum Lp(a) levels and diabetic retinopathy in type 2 diabetic patients. Under the scope of the conflicting results, it seems not feasible to suggest that the type of the disease is responsible for the different results obtained in various studies. Thus, in support of this conclusion, similar controversial results were reported in type 1 diabetic patients 9,11. The second assumption was that the classification of retinopathy might bring about conflicting results. In this context, Korean type 2 diabetic patients with PDR were found to have higher serum Lp(a) levels 13, whereas no difference between NPDR and PDR existed even though serum Lp(a) levels were high in both groups 16. In contrast, high serum Lp(a) levels showed no correlation with either PDR or NPDR in the present study. Hence, further investigation is needed to understand the actual impact of classification towards the controversial results. Ethnic variations might account for the contradiction mentioned above, and accordingly, the differences in allele frequency of apo(a) phenotypes was shown to be associated with retinopathy in previous studies 9,12. In contrast to our results, in a recent study with Turkish type 2 diabetic patients, the investigators indicated a positive correlation between Lp(a) levels and PDR 10. The reason for the conflicting findings might be due to the genetic heterogeneity of Turkish patients coming from different ethnical groups. Further prospective studies are needed to determine the relationship between Lp(a) and retinopathy in Turkish type 2 diabetic patients. Besides Lp(a), a number of medical risk factors were investigated and many of them were significantly related to retinopathy in the present study. These included duration of disease, increased level of fasting serum glucose, high levels of creatinine, cholesterol, and albumin excretion rate. After adjustment for those confounding factors in the stepwise multiple regression model, only the duration of diabetes remained associated with PDR. Several studies showed that the duration of diabetes is found to be significantly associated with diabetic retinopathy in both type 1 and type 2 diabetic patients 17-19. In agreement with those studies, the group with diabetic retinopathy, especially with PDR, had a longer duration of disease compared to that with NR in the Med J Malaysia Vol 59 No 3 August 2004 409

current study. Independently from the other risk factors, the possibility of developing PDR after 10 years of disease duration was found to be 6.5 fold high. In conclusion, we could not find any association between serum Lp(a) levels and diabetic retinopathy in our type 2 diabetic patients. However, further prospective studies are needed to determine this relationship. References 1. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham Study. J Am Med 1979; 64: 221-30. 2. American Diabetes Association. Implication of the United Kingdom Prospective Diabetes Study. Diabetes Care 2003; 26(1): 28-32. 3. American Diabetes Association. Diabetic retinopathy. Diabetes Care 2002; 25: 90-93. 4. De Fine Olivarius N, Nielsen NV, Andreanas AH. Diabetic retinopathy in newly diagnosed middle-aged and elderly diabetic patients. Prevalence and interrelationship with microalbuminuria and triglycerides. Graefes Arch Clin Exp Ophthalmol 2001; 239(9): 664-72. 5. Uttermann G. The mysteries of lipoprotein(a). Science 1989; 246: 904-10. 6. Scott J. Thrombogenesis linked to atherogenesis at last? Nature 1989; 341: 22-23. 7. Maher VMG, Brown BG. Lipoprotein(a) and coronary heart disease. Curr Opin Lipidol 1995; 6: 229-35. 8. Hiraga T, Kobayashi T, Okubo M, et al. Prospective study of lipoprotein(a) as a risk factor for atherosclerotic cardiovascular disease in patients with diabetes. Diabetes Care 1995; 18: 241-44. 9. Gazzaruso C, Garzanti A, Buscaglia P, Dannunzio G, et al. Lipoprotein(a) levels and apolipoprotein(a) polymorphism in type 1 diabetes mellitus: relationships to microvascular and neurological complications. Acta Diabetol 1998; 35: 13-8. 10. Tarkun I, Cetinarslan B, Canturk Z. Lipoprotein(a) concentrations in patients with type 2 diabetes mellitus without cardiovascular disease: relationship to metabolic parameters and diabetic complications. Nutr Metab Cardiovasc Dis 2002; 12(3): 127-31. 11. Guerci B, Meyer L, Sommer S, et al. Severity of diabetic retinopathy is linked to lipoprotein (a) in type 1 diabetic patients. Diabetes Metab 1999; 25: 412-8. 12. Suzuki T, Oba K, Igari Y, et al. Relation of apolipoprotein (a) phenotypes to diabetic retinopathy in elderly type 2 diabetes. J Nippon Med Sch 2002; 69(1): 31-8. 13. Kim CH, Park HJ, Park JY, et al. High serum lipoprotein (a) levels in Korean type 2 diabetic patients with proliferative diabetic retinopathy. Diabetes Care 1997; 21: 2149-151. 14. Deepa R, Mohan A, Rema M, et al. Lipoprotein(a) in South Indian type 2 diabetic subjects in relation to diabetic vascular complications. J Assoc Physicians India 2002; 50: 657-61. 15. Westerhuis LW, Venekamp WJ. Serum Lipoprotein-a levels and glyco-metabolic control in insulin and non-insulin dependent diabetes mellitus. Clin Biochem 1996; 29: 255-9. 16. Maioli M, Tonolo G, Pacifico A, et al. Raised serum apolipoprotein (a) in active diabetic retinopathy. Diabetologia 1993; 36: 88-90. 17. Liu DP, Molyneaux L, Chua E, et al. Retinopathy in a Chinese population with type 2 diabetes: factors affecting the presence of this complication at diagnosis of diabetes. Diabetes Res Clin Pract 2002; 56: 125-31. 18. Lovestam-Adrian M, Agardh CD, Torffvit O, Agardh E. Diabetic retinopathy, visual acuity, and medical risk indicators: a continuous 10-year follow-up study in Type 1 diabetic patients under routine care. J Diabetes Complications 2001; 15: 287-94. 19. Stratton IM, Kohner EM, Aldington SJ, et al. UKPDS 50: Risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 2001; 44: 156-63. 410 Med J Malaysia Vol 59 No 3 August 2004