Journal of Neurological Sciences [Turkish] 34:(3)# 59; , doi: /jns.7801.

Similar documents
Rescue Balloon Reposition of the Protruding Coil Loops during Endovascular Treatment of An Anterior Communicating Artery Aneurysm: A Case Report

Y-Stent-Assisted Coil Embolization of Anterior Circulation Aneurysms

Comparison between Solitaire AB and Enterprise stent assisted coiling for intracranial aneurysms

NIH Public Access Author Manuscript J Am Coll Radiol. Author manuscript; available in PMC 2013 June 24.

Role, safety, and efficacy of WEB flow disruption: a review

Shallow aneurysms with wide necks pose a technical challenge

Repair of Intracranial Vessel Perforation with Onyx-18 Using an Exovascular Retreating Catheter Technique

Shallow aneurysms with wide necks pose a technical challenge

Usefulness of Coil-assisted Technique in Treating Wide-neck Intracranial Aneurysms: Neck-bridge Procedure Using the Coil Mass as a Support

RESEARCH HUMAN CLINICAL STUDIES

Y-Stent Assisted Coil Embolisation of Wide-Necked Aneurysms Using a New Fully Retrievable and Detachable Intracranial Stent: Report of Two Cases

Endovascular treatment is increasingly used for ruptured

UPSTATE Comprehensive Stroke Center

Coiling of ruptured and unruptured intracranial aneurysms

Dept. of Neurosurgery, Division of Endovascular Neurosurgery, Medilaser Clinic, Tunja, Colombia 2

Semi-Jailing Technique Using a Neuroform3 Stent for Coiling of Wide-Necked Intracranial Aneurysms

The self-expandable Neuroform2 stent (Boston Scientific,

Endovascular treatment (EVT) of intracranial aneurysms is an

Long term follow-up after endovascular treatment for intracranial aneurysms. Bart Emmer, MD, PhD

Kissing Aneurysms at Fenestrated Proximal Basilar Artery: Double-barrel Stent-assisted Coiling Using Dual Closed-cell Stents

Pipeline Embolization Device

Initial experience with implantation of novel dual layer flow-diverter device FRED

Novel non-occlusive temporary endoluminal neck protection device to assist in the treatment of aneurysms in a canine model

Outcomes of Stent-assisted Coil Embolization of Wide-necked Intracranial Aneurysms Using the Solitaire TM AB Neurovascular Remodeling Device

Selective Endovascular Treatment of Intracranial Aneurysms with a Liquid Embolic: A Single-Center Experience in 39 Patients with 41 Aneurysms

Initial Experience with the New Double-lumen Scepter Balloon Catheter for Treatment of Wide-necked Aneurysms

Treatment of Unruptured Vertebral Artery Dissecting Aneurysms

CONCLUSIONS: In this large prospective series of patients, WEB flow disruption was a safe and efficient technique.

Introducing a New Treatment Method for Brain Aneurysms

A single center comparison of coiling versus stent assisted coiling in 90 consecutive paraophthalmic region aneurysms

MATERIALS AND METHODS: MCA aneurysms treated with pconus in 4 European centers were retrospectively reviewed.

A Novel Technique of Microcatheter Shaping with Cerebral Aneurysmal Coil Embolization: In Vivo Printing Method

FDA Executive Summary

ORIGINAL PAPER. 8-F balloon guide catheter for embolization of anterior circulation aneurysms: an institutional experience in 152 patients

The incidence of subarachnoid hemorrhage (SAH) increases

A Self-expanding Nitinol Stent (Enterprise) for the Treatment of Wide-necked Intracranial Aneurysms: Angiographic and Clinical Results in 40 Aneurysms

Irretrievable unraveled coil remaining in the vascular lumen between the cerebral aneurysm and puncture site

Endovascular treatment is now the first-line treatment. Safety and efficacy of aneurysm treatment with WEB: results of the WEBCAST study

SHA aneurysms are rare. They arise from the internal carotid

Three Cases with Wide-necked Cerebral Aneurysms in Whom the T-stent Technique Was Useful

Mechanical Thrombectomy of Large Vessel Occlusions Using Stent Retriever Devices

Enterprise Stent-assisted Cerebral Aneurysm Coiling: Can Antiplatelet Therapy be Terminated after Neointima Formation with the Enterprise Stent?

The International Subarachnoid Aneurysm Trial 1 showed

Endovascular treatment with coils has become an established

What Is Interventional Radiology? Intracranial Aneurysms: Perspectives On the Disease and Endovascular Therapy

Endosaccular aneurysm occlusion with Guglielmi detachable coils for obstructive hydrocephalus caused by a large basilar tip aneurysm Case report

LVIS Intraluminal Stent Device: Separates itself from other stents used in treatments for aneurysm with recent PMA FDA approval

A Case of Retrieval of a Migrated Coil with a Stent Retriever

First experience in intracranial aneurysm occlusion by balloon assisted coiling technique

KIVILCIM YAVUZ, M.D., 1 SERDAR GEYIK, M.D., 1 ALMILA GULSUN PAMUK, M.D., 2 OSMAN KOC, M.D., 1 ISIL SAATCI, M.D., 1 AND H. SARUHAN CEKIRGE, M.D.

Coil Embolization of Cerebral Tiny Aneurysms

Endovascular treatment of cerebral aneurysms using the Woven EndoBridge technique in a single center: preliminary results

Quality Metrics. Stroke Related Procedure Outcomes

Mechanical Thrombectomy Using a Solitaire Stent in Acute Ischemic Stroke; Initial Experience in 40 Patients

CASE REPORT. Alpha horizontal stent delivery for coil embolization of a broad-necked large basilar apex aneurysm: a case report

Stent-assisted coiling is a widely applied technique for

Endovascular therapy is a well-established treatment

Single-stage Coil Embolization for Kissing Aneurysms of the Internal Carotid Artery Using Enterprise Stent: Three Cases Reports

To balloon, or not to balloon

Shaheen Shaikh, M.D. Assistant Professor of Anesthesiology, University of Massachusetts Medical center, Worcester, MA.

Understanding aneurysms and flow diversion treatment

The Neuroform stent system (Boston Scientific, Natick,

Introduction. Study perspective. Donald R. Ricci a,b, Joost de Vries c and Raphael Blanc d SHORT COMMUNICATION

Neuroform Microdelivery Stent System

Coiling of intracranial aneurysms is safe and effective, but endovascular

Endovascular treatment for pseudoocclusion of the internal carotid artery

Epidemiology And Treatment Of Cerebral Aneurysms At An Australian Tertiary Level Hospital

Index. average stress 146. see ACIS

lek Magdalena Puławska-Stalmach

Endovascular treatment is now the first-line approach for both

Solitaire FR Revascularization Device

Retrieval of Unintended Migrated Detached Coil - Case Report -

The treatment of wide-neck and giant intracranial aneurysms

A Comparison of Functional and Physical Properties of Self-Expanding Intracranial Stents [Neuroform3, Wingspan, Solitaire, Leo( + ), Enterprise]

Introduction. Abstract. Journal of Vascular and Interventional Neurology, Vol. 8

Neuroform EZ Stent System

Neurosurgical decision making in structural lesions causing stroke. Dr Rakesh Ranjan MS, MCh, Dip NB (Neurosurgery)

Beneficial Remodeling of Small Saccular Intracranial Aneurysms after Staged Stent Only Treatment: A Case Series

Incidental aneurysms are now more frequently diagnosed

Practical Feasibility and Packing Density of Endovascular Coiling Using Target Nano TM Coils in Small Cerebral

Limitations of thrombolysis, including low recanalization

Yoshikazu Matsuda, 1,2 Joonho Chung, 1,3 Kiffon Keigher, 1 Demetrius Lopes 1 ORIGINAL RESEARCH. New devices

COIL EMBOLIZATION OF WIDE NECK CEREBRAL ANEURYSMS USING BALLOON REMODELING TECHNIQUE-INITIAL EXPERIENCE IN PAKISTAN

Intracranial aneurysms are an important health problem

Endovascular Procedures (Angioplasty and/or Stenting) for Intracranial Arterial Disease (Atherosclerosis and Aneurysms)

Case 37 Clinical Presentation

Ruptured intracranial vertebral confluence

What You Should Know About Cerebral Aneurysms

Surgical Treatment of Unruptured Intracranial Middle Cerebral Artery Aneurysms: Angiographic and Clinical Outcomes in 143 Aneurysms

Small UIAs, <7 mm in diameter, uncommonly cause aneurysmal symptoms and are the most frequently detected incidentally.

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE Medical technology guidance SCOPE Pipeline embolisation device for the treatment of

Endovascular treatment of intracranial aneurysms with bare

Long-term effects of antiplatelet drugs on aneurysm occlusion after endovascular treatment

Long term follow-up of patients with coiled intracranial aneurysms Sprengers, M.E.S.

Stent assistance for coil embolization of cerebral aneurysms

Multi-modality management of intracranial aneurysms

Transcription:

Journal of Neurological Sciences [Turkish] 34:(3)# 59;277-282, 2017 http://www.jns.dergisi.org/text.php3?id=1046 doi: 10.24165/jns.7801.14 Case Report Consecutive Coil Migrations Through Solitaire AB Stents During Stent-assisted Coiling of an Aneurysm: A Case Report Kim SANGHYEON 1, Kang MYONGJIN 1, Choi Jae-HYUNG 2 1 Regional Cardio-Cerebrovascular Diseases Center, Dong-A University Hospital, Radiology, Busan, Korea, Republic Of 2 Regional Cardio-Cerebrovascular Diseases Center, Dong-A University Hospital, Neurosurgery, Busan, Korea, Republic Of Abstract Endovascular treatment has been established as a safe and efficacious approach to the treatment of cerebral aneurysms. These stents provide support to decrease the risk of coil herniation. However, complications associated with stent-assisted embolization include aneurysm recurrence, stent migration, in-stent stenosis, and hemorrhagic and thromboembolic complications. Herein, we report a case of consecutive coil migrations into the distal middle cerebral artery (MCA) during stent-assisted coil embolization. F/U 1-month perfusion magnetic resonance imaging showed no hypoperfusion in the MCA territory. Keywords: Stent; coil migration; wide-necked aneurysm; intracranial aneurysm Soliter AB Stentleri İle Anevrizmanın Stentin Eşlik Ettiği Kolillenmesini İzleyen Koil Migrasyonu: Bir Olgu Sunumu Özet Endvasküler tedavi serebral anevrizmalarin tedavisinde güvenli ve etkili bir yaklaşım olarak kabul edilmektedir. Bu stentler koil hernisyonu riskinin azalmasına destek sağlar. Ancak stentle desteklenen embolizasyonun anevrizma tekrarı, stent migrasyonu, stent içi stenoz ve hemorajik ve tromboembolik olaylar gibi komplikasyonları vardır. Burada distal orta serebral artere (MCA) stentle desteklenen koil embolizasyonunu izleyen koil migrasyonu olgusu bildirmekteyiz. İzleyen 1 aylık perfüzyon sonrasında manyetik rezonans görüntülemede MCA alanında hipoperfüzyon dikkat çekmemiştir. Anahtar Kelimeler: Stent, koil migrasyonu; geniş-boyunlu anevrizma; intrakraniyel anevrizma INTRODUCTION Wide-necked intracranial aneurysms were classically considered to be the major limitation for endovascular treatment (1). With advancements in endovascular devices and techniques, stent-assisted coil embolization has been found to be safe and efficacious for complex and widenecked intracranial aneurysms (2). These stents provide support to decrease the risk of coil herniation. However, we report a case of consecutive coil migrations during stent-assisted coil embolization. 277

CASE PRESENTATION A man aged 74 years was admitted to our hospital because of headache. He had a medical history of hypertension and his neurologic examination was normal. Magnetic resonance (MR) angiography revealed a small, wide-necked aneurysm of the distal internal carotid artery (ICA) (Figure 1). The aneurysm was 2.3 x 1.4 mm in size, and located in the vascular concavity of the distal ICA. It would have been difficult to place a microcatheter into the aneurysm because of the acute angle between the aneurysmal sac and the tortuous distal ICA. Therefore, we planned stent-assisted coil embolization using the "jailing" technique (3). Premedication was initiated 5 days prior to the procedure with 100 mg of aspirin and 75 mg of clopidogrel per day. The patient underwent endovascular treatment under general anesthesia. A Rebar Micro Catheter was advanced over a micro guidewire into the normal distal artery beyond 1-2cm. The coiling catheter was then navigated into the aneurysm in order to jail it with the stent. The catheter was placed in the aneurysm sac after a number of attempts. The initial 1.5 x 20-mm coil was deployed (MicroPlex 10, Hypersoft helical, MicroVention ). After that, a 6 x 20-mm Solitaire AB stent (EV3, Irvine, CA, USA) was introduced into the hub of the Rebar catheter and deployed by withdrawing the microcatheter. The initial coil and catheter tip were not moved while the Solitaire stent was being deployed. While a second identical 1.5 x 20-mm coil was being deployed into the aneurysm, the first coil migrated out of the aneurysm into the parent artery and then into the distal middle cerebral artery (MCA) (Figure 2). The herniated coil was located in the M3 branch of the MCA. We did not attempt to retrieve the coil because we were concerned about further herniation of the coil, and the 10-minute delayed angiography did not show compromised flow in the distal MCA. However, the contour of the aneurysm became more irregular. Due to the concern of high risk of aneurysm rupture, we performed a second trial of coil embolization for the aneurysm. A 2 x 20-mm coil (Axium, ev3) was advanced. However, the coil was too large to be deployed into the aneurysm. Again, a 1.5 x 20-mm coil was deployed (MicroPlex 10, Hypersoft helical, MicroVention ). The coil deployed showed a more favorable appearance like that of a complex coil. The 20-minute delayed angiography showed no movement of the coil. However, angiography after detaching the coil showed mild coil protrusion into the parent artery. We tried to place a second stent but a microcatheter could not be passed through the initial stent. In the 30- min delayed angiography, the coil migrated out of the aneurysm into the distal MCA (Figure 3). The coiling was not reattempted. The 40-min delayed angiography after coil migration showed normal contrast filling of the distal MCA. F/U 1-month perfusion MRI showed no hypoperfusion in the MCA territory (Figure 4). At the 3-month follow-up, the patient had been taking 100 mg of aspirin and 75 mg of clopidogrel per day. He was neurologically normal. 278

Figure 1: Angiograph at working angle showed a wide-necked aneurysm in the distal internal carotid artery ( 2.3 x 1.4 mm ). Figure 2: First migration of coil in stent-assisted coil embolization of an aneurysm. a) 1.5 mm x 20-mm helical coil placed, which appeared to be in good position. The distal marker of Solitaire AB stent is visible (arrow). b) When a second identical 1.5 mm x 20-mm coil was being deployed into the aneurysm, the first coil migrated out of the aneurysm into the distal middle carotid artery (arrow). 279

Figure 3: Second migration of coil in stent-assisted coil embolization of an aneurysm. a) 1.5 mm x 2-mm helical coil placed which appeared a more favorable appearance like that of a complex coil. However, angiography after detaching the coil showed mild coil protrusion into the parent artery. b) In the 30-min delay angiography after detaching the coil, the coil migrated out of the aneurysm into the distal middle carotid artery (arrowhead). The first migrated coil was further migrated into the distal middle carotid artery (arrow). Figure 4: F/U 1-month perfusion MRI showed no hypoperfusion in the middle cerebral artery territory on the time-to-peak map. 280

DISCUSSION Since publication of the International Subarachnoid Aneurysm Trial (ISAT) endovascular treatment has been established as an efficient, safe, and smart approach in the treatment of cerebral aneurysms (1). However, complications associated with stent-assisted embolization include aneurysm recurrence, stent migration, in-stent stenosis, and hemorrhagic and thromboembolic complications (4,5). Parent vessel size and curvature are associated with risk of incomplete stent apposition in patients undergoing stentassisted coiling. In larger diameter vessels, such as the distal ICA, there may be a higher incidence of incomplete stent apposition (6). O"Hare et al. reported a case of coil migration into the MCA bifurcation during treatment of a periophthalmic aneurysm with the Neuroform stent (7). Stent lumen flattening in Solitaire stents when placed in tortuous vessels is less than that in Neuroform and Enterprise stents (8). Moreover, Solitaire stents have major advantages because they allow the retrieval, repositioning, and deployment of stents whenever necessary. Thus, in a large vessel (>4mm), we used the 6-mm Solitaire stent. Wide-necked small aneurysms and small coils together with stent cells may play a role in the escape of coils through the stent. It has been suggested that it is possible for small coils (2 to 3 mm) to prolapse through cells of the stent, especially when the stent is deployed at a vessel convexity (9). It has been suggested that complex threedimensional (3-D) coils may have less chance of prolapse. However, we avoid using the 3-D coils because we think that 3-D coils do not provide enough space to create a stable intertwined coil pack in small-sized aneurysms. In our case, a 1.5- mm coil may appear to have been small for the aneurysm lumen measuring 2.3 x 1.4 mm. Under normal circumstances, in a narrow-necked aneurysm without a stent, these coils would certainly be undersized relative to the aneurysm. However, we believed that the coil could be securely positioned within the aneurysm sac with the stent, although it was only 2 mm, helical or complex. In our case, we think that the open side of the Solitaire stent overlapped the aneurysm neck and subsequently facilitated migration of the deployed coils. If a longer size coil had been chosen for our patient, it may have been in closer contact with the aneurysm wall after deployment and therefore may not have escaped from the stent. Little is known about the natural history of coil migration into the cerebral vasculature from the aneurysm after Guglielmi detachable coil treatment (10). It is not easy to retrieve a migrated coil. Antiplatelet and anticoagulation therapy may be helpful in situations of coil migration. Fortunately, in our case, the escaped coil did not cause occlusion of an artery and perfusion MRI showed normal perfusion. CONCLUSION Coil escape from the confinement of the stent is a rare event. However, we should always keep in mind that there is a possibility of coil migration through the stent when using coils smaller than 2-3mm. We must pay attention to coil size for wide-necked small aneurysms. Correspondence to: Kang Myongjin E-mail: myongjinkang1@gmail.com 281

Received by: 04 December 2014 Revised by: 28 March 2015 Accepted: 04 December 2016 The Online Journal of Neurological Sciences (Turkish) 1984-2017 This e-journal is run by Ege University Faculty of Medicine, Dept. of Neurological Surgery, Bornova, Izmir-35100TR as part of the Ege Neurological Surgery World Wide Web service. Comments and feedback: E-mail: editor@jns.dergisi.org URL: http://www.jns.dergisi.org Journal of Neurological Sciences (Turkish) Abbr: J. Neurol. Sci.[Turk] ISSNe 1302-1664 Coiling. A Case Report. Interv Neuroradiol 2009;15: 219-222. 8. Krischek O, Miloslavski E, Fischer S, Shrivastava S, Henkes H. A comparison of functional and physical properties of self-expanding intracranial stents [Neuroform3, Wingspan, Solitaire, Leo+, Enterprise]. Minim Invasive Neurosurg 2011;54: 21-28. 9. Benitez RP, Silva MT, Klem J, Veznedaroglu E, Rosenwasser RH. Endovascular occlusion of widenecked aneurysms with a new intracranial microstent (Neuroform) and detachable coils. Neurosurgery 2004;54: 1359-1368. 10. Bavinzski G, Killer M, Gruber A, Reinprecht A, Gross CE, Richling B. Treatment of basilar artery bifurcation aneurysms by using Guglielmi detachable coils: a 6-year experience. J Neurosurg 1999;90: 843-852. REFERENCES 1. Molyneux AJ, Kerr RS, Birks J et al. Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up. Lancet Neurol 2009;8: 427-433. 2. Pierot L, Spelle L, Vitry F, ATENA Investigators. Immediate clinical outcome of patients harboring unruptured intracranial aneurysms treated byendovascular approach: results of the ATENAtrial. Stroke 2008;39: 2497-2504. 3. Hong B, Patel NV, Gounis MJ et al. Semi-jailing technique for coil embolization of complex, widenecked intracranial aneurysms. Neurosurgery 2009;65: 1131-1138. 4. Clajus C, Sychra V, Strasilla C, Klisch J. Stentassisted coil embolization of intracranial aneurysms using the Solitaire? AB Neurovascular Remodeling Device: initial and midterm follow-up results. Neuroradiology 2013;55: 629-638. 5. Gory B, Klisch J, Bonafé A et al. Solitaire AB stentassisted coiling of wide-necked intracranial aneurysms: short-term results from a prospective, consecutive, European multicentric study. Neuroradiology 2013;55: 1373-1378. 6. Lubicz B, François O, Levivier M, Brotchi J, Balériaux D. Preliminary experience with the enterprise stent for endovascular treatment of complex intracranial aneurysms: potential advantages and limiting characteristics. Neurosurgery 2008;62: 1063-1069. 7. O'Hare A, Thornton J, Brennan P. Coil Migration through a Neuroform 3 Stent during Endovascular 282