Research Article In Vitro Activity of Lawsonia inermis (Henna) on Some Pathogenic Fungi

Similar documents
International Journal of Pharma and Bio Sciences ABSTRACT

Evaluation of Antibacterial and Antifungal Activities of Leaf and Seed Extracts of Croton Tiglium Plant against Skin Disease Causing Microbes

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

Octa Journal of Biosciences

Antibacterial Activity of Francoeuria crispa, Pulicaria undulata, Ziziphus spina-christi and Cucurbita pepo Against Seven Standard Pathogenic Bacteria

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

In vitro study of antibacterial activity of Carissa carandas leaf extracts

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens

3. REVIEW OF LITERATURE

ISSN Vol.02,Issue.19, December-2013, Pages:

Screening for Antimicrobial Activity in Acanthus ilicifolius

SYNERGISTIC ACTIVITIES OF TWO PROPOLIS WITH AMPHOTERICIN B AGAINST SOME AZOLE-RESISTANT CANDIDA STRAINS. PART II

ANTIBACTERIAL ACTIVITIES OF SELECTED THAI MEDICINAL PLANTS BEARING QUINONOIDS. Sciences, Chulalongkorn University, Bangkok 10330, Thailand

Research Journal of Pharmaceutical, Biological and Chemical Sciences

PIDSP Journal 2011 Vol 12 No.1 Copyright 2011

Antimicrobial activity of Terminalia chebula

Phytochemical screening and antibacterial properties of Garcinia kola

Antifungal Activity of Eleutherine Bulbosa Bulb against Mycelial Fungus

IN VITRO ANTIFUNGAL ACTIVITY OF Ixora brachita ROXB AGAINST DERMATOPHTES

Antioxidant and Antimicrobial Activities of Tabebuia Rosea

Available online at

IN VITRO ANTIMICROBIAL ACTIVITY OF VARIOUS EXTRACTS OF MIRABILIS JALAPA LEAVES

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

Isolation of Herbal Plants: Antifungal and Antibacterial Activities

Journal of Pharmaceutical Research & Development

Antifungal Properties of Cranberry Juice

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

Antifungal activity of some plant extracts against Clinical Pathogens

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

Evaluation of in Vitro Antifungal Activity of Ketoconazole and Griseofulvin

Opportunistic fungal infections, mainly resulting from Candida, Cryptococcus, and Aspergillus spp. are life-threatening in

In vitro Evaluation of Antibacterial Activity of Bark and Flower Extracts of Pimenta officinalis Lindl.

Antimicrobial activity of Lawsonia inermis leaf extracts against some human pathogens

Pelagia Research Library

Pharmacologyonline 2: (2011) ewsletter Tiwari et al. A EVALUATIO OF A TIMICROBIAL ACTIVITIES OF ROOT EXTRACT OF CALE DULA OFFICI ALIS (LI.

Influence of the crude Phenolic, Alkaloid and Terpenoid compounds extracts of Cardaria draba (Lepidium draba L.) on Human Pathogenic Bacteria

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Efficacy of Terminalia catappa L. Wood and Bark against Some Fungal Species

Jigna Parekh, Nehal Karathia and Sumitra Chanda*

The textile material is goods carrier of various types

*Kareem, S. O.; Akpan, I. and Ojo, O. P. Department of Microbiology, University of Agriculture P. M. B. 2240, Abeokuta, Nigeria

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Determination of MIC & MBC

Antimicrobial Activity of Ethanol Leaf Extracts of Catharanthus Roseus From Saudi Arabia

Screening of Chinese Medicinal Herbs for the Inhibition of Brucella melitensis

EVALUATION OF ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF Zingiber officinale (GINGER) RHIZOME EXTRACT

Research Letter. Antimicrobial and anti-inflammatory activities of the leaves of Clerodendrum splendens leaves INTRODUCTION MATERIALS AND METHODS

ANTIMICROBIAL AND PHYTOCHEMICAL SCREENING OF TRAGIA INVOLUCRATA L. USING UV-VIS AND FTIR

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

Antifungal Activity of the Ethanolic Extract of Nitella hyalina

Phytochemical analysis and antifungal activity of Cauliflower stem (Brassica oleraceae var botrytis L.)

Available online at Phytochemical analysis and inhibitory activity of Ornamental Plant (Bougainvillea spectabilis)

World Journal of Pharmaceutical and Life Sciences WJPLS

Phytochemical and Antimicrobial Investigation of Girardinia diversifolia (Link) Friis (Urticaceae)

Available online at Scholars Research Library

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

ANTIBACTERIAL ACTIVITY OF LEAF AND SEED EXTRACTS OF DELONIX REGIA AND ACHYRANTHUS ASPERA AGAINST SELECTED BACTERIAL STRAINS

Life Science Archives (LSA)

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Minimum Inhibitory Concentration (MIC) of antimicrobial activity in various dried extracts of Gnaphalium polycaulon, Indian folkloric medicinal plant

The Effect of Dimethyl Sulfoxide DMSO on the Growth of Dermatophytes

Evaluation of Biological Activity (In-Vitro) of Some 2-Phenyl Oxazoline Derivatives

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Antimicrobial activity of different extracts of leaf of Moringa oleifera (Lam) against gram positive and gram negative bacteria

*MIAN SHAHZADA ZIA AHMAD & ZAHEER-UD-DIN KHAN. Department of Botany, GC University, Lahore. ABSTRACT INTRODUCTION

NOVASTREAK. Microbial Contamination Monitoring Device TYPICAL CULTURAL MORPHOLOGY Baird Parker Agar. S. aureus growth on Baird Parker Agar

International Journal of Ayurvedic and Herbal Medicine 1:1 (2011) 1 7

in vitro Evaluation of Aqueous and Solvent extract of Tribulus terrestris L. leaf against Human bacteria

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

Antimicrobial activity of Trinpanchmool drugs

Sensitization of Solvent Extract of Spirulina platensis (Geitler) against Some Dermatophytes and Related Fungi

Antimicrobial Potential of Whole Plant and Callus Extract of Aristolochia bracteolata Lam

ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL SCREENING OF SERIAL EXTRACTS FROM LEAVES OF AEGLE MARMELOS (LINN.)

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

In vitro antioxidant activity of a flavonoid compound isolated from methanolic extract of Helianthus annuus leaves (Asteraceae)

Enhanced antibacterial potential of ethanolic extracts of neem leaf (Azadiracta indica A. Juss.) upon combination with bacteriocin

In vitro Antimicrobial Activity of Extracts from Careya arborea Roxb Leaves

Comparism of the Antimicrobial Activities of N-hexane and Diethyl Ether Extracts of Garcinia kola Heckel [Bitter kola] Seed

ANTIMICROBIAL ACTIVITY OF ADHATODA VASICA FLOWERS

Bioactivity of Cassia auriculata Methanol Extract against Human Pathogenic Bacteria and Fungi

Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers. Mona A. M. Abd-Elmageed 1 and B. A. Hussein 2

Staphylococci. Gram stain: gram positive cocci arranged in clusters.

Department of Employment, Economic Development and Innovation

Chapter 3 Screening of medicinal plant extracts against Plasmopara halstedii causing downy mildew disease of sunflower 3.

Bioautography assay of Caesalpinia coriaria (Jacq) wild, as antifungal agent.

ANTIBACTERIAL EFFECTS OF CRUDE EXTRACT OF Azadirachta indica AGAINST Escherichia coli and Staphylococcus aureus

Antifungal activity of secondary metabolites present in Psidium guajava leaves against dermatophytes

Aliphatic acids. Cycloaliphatic compounds. Lactone carboxylic acids. Polyketide pathway LICHEN. Shikimic acid. pathway

Council for Innovative Research

Journal of Chemical and Pharmaceutical Research

International Journal of Pharma and Bio Sciences

ANTI-MICROBIAL ACTIVITIES OF BETEL NUT (ARECA CATECHU LINN) SEED EXTRACTS

In Vitro Studies with R 51,211 (Itraconazole)

Mr. Vipul R. Suryavanshi Department of Pharmaceutical Analysis Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai

Antimicrobial Activity of Black Fruit Variant of Solanum nigrum L.

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

Transcription:

Journal of Mycology, Article ID 375932, 5 pages http://dx.doi.org/10.1155/2014/375932 Research Article In Vitro Activity of Lawsonia inermis (Henna) on Some Pathogenic Fungi Elham Abdelbasit Suleiman 1 and Elbasheir Ahmed Mohamed 2 1 Veterinary Research Institute, P.O. Box 8067, Amarat, Khartoum, Sudan 2 Faculty of Medical Laboratories Science, Omdurman Islamic University, Sudan Correspondence should be addressed to Elham Abdelbasit Suleiman; elham842001@yahoo.com Received 25 May 2014; Revised 18 August 2014; Accepted 2 September 2014; Published 23 September 2014 Academic Editor: Terezinha Inez Estivalet Svidzinski Copyright 2014 E. A. Suleiman and E. A. Mohamed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The present study was conducted to investigate antifungal activity of Lawsonia inermis (Henna plant). Leaf samples of the plant were collected from Eastern Nile of Khartoum State, Sudan. Ethanol and petroleum ether extracts were obtained by maceration (cold method). The extracts were bioassayed in vitro to know their bioactivity to inhibit the growth of tested fungi. The cup-plate agar diffusion method was adopted to assess the antifungal activity of the extracts against tested yeasts, while agar incorporated method was used for other molds. Both extracts revealed antifungal activity against all yeast strains except Pichia fabianii which was found resistant to both ethanol and ether extracts. The results displayed antifungal activity against tested fungi. Minimum inhibition concentration (MIC) of 5, 7.5, and 10 mg/ml was found to inhibit the growth of tested dermatophytes. The obtained results revealed antifungal activity of Henna leaves extracts which support the traditional use of Henna in therapy of fungal infections. The possibility of therapeutic use of Sudanese Henna as antifungal agent is recommended. 1. Introduction Plants have been used to treat humans, animals, and plant diseases from time immemorial. Herbal medicines have been knowntomanforcenturies[1]. Henna plant, Lawsonia inermis Linn, is such a plant known for healing attributes and is now the subject of intense scientific study [2]. Though it was used for various purposes, the antifungal property was not yet investigated. Thus the present study was conducted to evaluate its antifungal potential.lawsonia inermis (Henna) is an ornamental evergreen plant cultivated in the tropics [3]. It belongs to the family Lythraceae. In Sudan it is traditionally used to develop a red or black coloring to hands, feet, and hair in some occasions such as weddings and religious festivals. The phytochemical analysis of the plant leaves revealed the presence of anthroquinones as major constituents which are commonly known to posses antimicrobial activity [4]. Ethyl acetate extract of Lawsonia inermis was found to be active against all bacteria tested [5]. Screening of the barks of 30 plant species against Microsporum gypseum and Trichophyton mentagrophytes showed that only L. inermis L. extract exhibited absolute toxicity. The extract showed broad fungicidal spectrum when tested against 13 ring worm fungi [6]. The present study was conducted to evaluate the antifungal potential of Lawsonia inermis leaf extracts. 2. Materials and Methods 2.1. Henna Plant. Home-grown (Lawsonia inermis Linn) Henna leaves were collected from El Bakrab village east of the Blue Nile, Khartoum State, Sudan. The plant was identified and authenticated by the experts of Medicinal and Aromatic Plants Research Institute (MAPRI). Voucher specimen has been deposited at the Herbarium of MAPRI. 2.2. Microorganisms. Candida albicans (ATCC 7596) was obtained from National Centre for Research (Sudan) and the clinical isolates of Pichia fabianii, Saccharomyces cerevisiae, Aspergillus flavus, Scopulariopsis brevicaulis, Trichophyton mentagrophytes, Trichophyton violaceum, Trichophyton verrucosum, and Phialophora richardsiae were obtained from

2 Journal of Mycology the Mycology Department, Central Veterinary Research Institute, Soba, Khartoum, Sudan. 2.3. Preparation of Crude Extracts. Leaves of Lawsonia inermis (Henna) were dried in the shade. 150 g of powdered leaves was extracted in soxhlet apparatus with petroleum ether 60 80 C and 170 g of powdered leaves was extracted with 80% ethanol using maceration method [7]. Serial dilutions of the extracts were prepared to determine MIC. Dimethyl sulfoxide (DMSO) and petroleum ether were used as negative controlandketoconazoleandnystatinwereusedaspositive control. 2.4. Preparation of Stock Drug Solution (Ketoconazole). Stock drug solution (1280 mg/liter) was prepared by adding 50 ml ofdimethylsulfoxideto64mgofketoconazoleandallowed to stand for 30 min. It was then dispensed in small amount andstoredat 20 Cuntilused[8]. 2.5. In Vitro Assay of Antimicrobial Activity of the Extracts 2.5.1. The Cup-Plate Agar Diffusion Method. The cup-plate agar diffusion Hadecek and Greger [9] method was adopted with some minor modifications to assess the antifungal activity of the prepared extracts. One gram of each extract was weighed and dissolved in 5 ml of the solvent used for the extraction to give 200 mg/ml. The microorganisms were standardized according to the 0.5 McFarland scale. 100 μl of the stock solution was thoroughly mixed with 20 ml molten sterile Sabouraud dextrose agar and maintained at 25 C. The agar plates were left to set and in each of these plates 4 cups (10 mm in diameter) were cut using a sterile cork borer (Number 4) and agar discs were removed. Cups were filled with 0.2 ml of each extract using automatic microlitrepipetteandallowedtodiffuseatroomtemperature for two hours. The plates were then incubated in the upright position at 37 C for 2-3 days. Activity of each extract was tested in triplicate. The diameters of zones of inhibition were measured in millimeter using a transparent well calibrated ruler, averaged and the mean values were tabulated. Results of the qualitative screening were recorded as the average diameter of the growth inhibition zone surrounding the wells containing the extract [10]. 2.5.2. Agar Incorporation Technique. The antifungal susceptibility of the extracts and the standard drugs ketoconazole and Nystatin were determined using agar incorporation technique.concentrationsof50,100,and200mg/mlofthe extracts were tested. The test organisms were inoculated onto Sabouraud dextrose agar (SDA) supplemented with chloramphenicol (0.05 mg/ml) for yeasts and SDA supplemented with chloramphenicol and cycloheximide (0.5 mg/ml) for dermatophytes. Each plate was inoculated with the test organism. The control group was inoculated with the same organism. All plates were incubated at 25 Cforthreetoseven days except for dermatophytes which were incubated for up to three weeks at the same temperature [8]. Plates were observed for the presence or inhibition of growth. Negative control (ethanol and petroleum ether) and positive control (Nystatin and ketoconazole) were run in the same manner parallel to thetreatment.thetestwasperformedintriplicate. 2.6. Minimum Inhibitory Concentration (MIC) Determination. The MIC of the ethanol extract against tested microorganisms was determined by the macrobroth dilution method [8]. Stock solution of the extract at a concentration of 200 mg/ml was prepared by serial two-fold dilutions in Sabouraud s broth. The tubes were then inoculated with 100 μl ofcultures(10 7 cells). Uninoculated tubes containing growth medium and extract were used as controls. The tubes were then incubated at appropriate temperatures for 48 hours. The MIC was defined as the lowest concentration that completely inhibited the growth of the organism. 2.7. Statistical Analysis. Results were expressed as mean ± SD. The significant difference between means was determined using one-way analysis of variance (ANOVA). Statistical significance was established at P < 0.05. 3. Results The current investigation showed that Henna plant possesses good antimicrobial activity against tested fungi. The obtained results demonstrated antifungal activity of both extracts. The cup-agar diffusion method revealed antifungal activity of the extract against yeasts and mould demonstrated by area of inhibition zone around the wells, while inhibition of growth revealed antifungal activity against dermatophytes. The ethanol extract has shown significant activity against yeasts compared to petroleum ether extract. The inhibition zone induced by ethanol extract at the concentration of 10mg/mLwasfoundtobe26.3± 3mmagainstSaccharomyces cerevisiae and 17 ± 0mmagainst Candida albicans. Petroleum ether extract exhibits antifungal activity to S. cerevisiae with mean inhibition zone equal to 25.3 ± 0.6 mm at a concentration of 10 mg/ml and 22.7 ± 0.6 mm to C. albicans which is greater than that shown for the commercial Nystatin (17 ± 0 mm). It was noted that both extracts showed noantifungalactivityto Pichia fabianii (Table 1,Figures1 and 2). Significant antifungal effect expressed as MIC of ethanol extract against tested dermatophytes was shown (Table 2). Trichophyton mentagrophytes and T. violaceum were found more sensitive to ethanol extract with MIC of 7.5 mg/ml. However, all Trichophyton species were found sensitive to ethanol at a concentration of 10 mg/ml (Figure 3). The ethanol extract displayed fungicidal activity to tested moulds at a concentration of 5 mg/ml and fungi static activity to Aspergillus flavus at a concentration of 10 mg/ml (Table 3, Figures4, 5,and6). 4. Discussion The antifungal activity of L. inermis leaf extracts has been evaluated in vitro against C. albicans, S. cerevisiae, and some selected dermatophytes. The effect was found to be dose

Journal of Mycology 3 Table 1: Antimicrobial activity oflawsonia inermis, ethanol, and petroleum ether leaf extracts against yeasts. Extract Concentration (mg/ml 1 ) S. cerevisiae C. albicans Diameter of inhibition zone (mm) P. fabianii Nystatin Ethanol 100 23.3 ± 1.5 16.7 ± 0.6 0 Ethanol 200 26.3 ± 3.2 17 ± 0 0 17± 0 Petroleum ether 100 24.7 ± 0.6 21.3± 0.6 0 Petroleum ether 200 25.3 ± 0.6 22.7 ± 0.6 0 Data are presented as mean ± SD of zone of inhibition (mm); inhibition zones are the mean of three replicates; S (Saccharomyces); C(Candida); P(Pichia). Table 2:MICofethanol extract oflawsonia inermis leaf against dermatophytes. Extract Concentration (mg/ml) T. mentagrophytes T. verrucosum T. violaceum Ketoconazole 2.5 + + + Ethanol extract 5.0 + + 7.5 + 10 Sympols(+)indicatesgrowthoffungi;( )indicatesinhibitionofgrowth. Figure 1: Inhibition zone of C. albicans. C: ethanol as negative control; R: ether extract; E: ethanol extract. Figure 2: Inhibition zone of S. cerevisiae. C: ethanol as negative control; R: ether extract; E: ethanol extract. dependent. Petroleum ether extract showed a wide antifungal spectrum compared to ethanol extract against tested yeasts. It exhibited inhibition zone wider than the commercial Nystatin. Therefore, petroleum ether is a better solvent for consistent extraction of antifungal substances from L. inermis plant. Inhibion of growth of C. albicans showninthepresent study was consistent with that reported by Maher and his collaborators [11] where ethanol extract of Ruta chalepensis revealed similar inhibition zone of 17 mm. But S. cerevisiae was found to be more sensetive to ethanol extract at the concentration of 10 mg/ml compared to C. albicans. This shows spesies susceptibility to the extrcat used. Furthermore, all tested moulds were found to be sensitive to ethanol extract at a concentration of 5 mg/ml except Aspergillus flavus.this indicates less sensitivity of the extract to A. flavus. In the present study, all tested dermatophytes showed great sensitivity to ethanol extract where complete inhibition ofgrowthwasobserved.thisfindingissimilartothose obtained in some previous studies [12]where 100%inhibition of Trichophyton mentagrophytes growth was observed on using 10 mg/ml of L. inermis ethanol extract. This indicates great sensitivity of dermatophytes to L. inermis plant. Thus furtherresearchonmodeofactionofsuchnovelplantis recommended. The phytochemical screening of Sudanese Henna plant revealed naphthoquinone as an active ingredient that might display the antifungal activity against tested fungi [4]. Previous studies [6, 13] disclosedthesameresultwhenthey screened the antifungal activity of higher plants; leaves of L. inermis were found to exhibit strong fungicidal effect due to naphthoquinone which was found to be the main active ingredient. Furthermore, the presence of tannin might play a vital role as antimicrobial agent as suggested by Banerjee and his collaborators [14]. 5. Conclusions Ethanol and petroleum ether leaf extracts of L. inermis (Henna) revealed antimycotic activity against tested fungi. With the ever increasing resistant strains of microorganisms to the already available and synthesized antifungal drugs, the naturally available Lawsonia inermis (Henna) could be a potential alternative. Since our study was carried out using

4 Journal of Mycology (a) (b) Figure 3: Control plate (b) showing growth of T. verrucosum andgrowthinhibitionoft. verrucosum in ethanol extract of L. inermis leaves (a) at different concentrations after 10 days of incubation at 37 C( 40). (a) (b) Figure 4: Control plate of Scopulariopsis brevicaulis (a) and ethanol-treated plate (b) at a concentration of 10 mg/ml ethanol extract of L. inermis after 7 days of incubation at room temperature ( 40). (a) (b) Figure 5: Control plate of Phialophora richardsiae (a) and ethanol-treated plate (b) at a concentration of 10 mg/ml ethanol extract of L. inermis after 7 days of incubation at room temperature ( 40). Table 3: Minimun Inhibition Concentration (MIC) of ethanol extract of Lawsonia inermis Leaf against moulds. Extract Concentration (mg/ml) Aspergillus flavus Scopulariopsis brevicaulis Phialophora richardsiae Dimethyle Sulphoxide 2.5 + + + Ethanol 5.0 + 7.5 + 10 Symbols (+) indicates growth of fungi; ( ) indicates inhibition of growth.

Journal of Mycology 5 Figure 6: White colony of A. flavus on SDA at a concentration of 10 mg/ml ethanol extract of L. inermis showing fungi static activity (vial) and green colony of the control (plate) after 7 days of incubation at room temperature ( 40). crude extract, it is necessary to purify the active principle and evaluate its bioactivity for therapeutic application. Conflict of Interests [8] D. W. Warnock, Methods with antifungal drugs, in Medical Mycology a Practical Approach, E.G.V.EvansandM.D. Richardson, Eds., chapter 11, pp. 235 247, IRL Press, Oxford, UK, 1st edition, 1989. [9] F. Hadecek and H. Greger, Testing of antifungal on natural products: methodologies, comparability of results and assay choice, Journal of Analytical Phytochemistry,vol.11,pp.137 141, 2000. [10] F. Kavanah, Analytical Microbiology, vol. 11, Academic Press, New York, NY, USA, 1972. [11] M. Obeidat, M. Shatnawi, M. Al-alawi et al., Antimicrobial activity of crude extracts of some plant leaves, Research Journal of Microbiology,vol.7,no.1,pp.59 67,2012. [12] M. M. Zakaria, The inhibitory effect of Lawsonia inermis leaves on some fungi, Irag Academic Scientific Journal, vol. 10, no. 4, pp.501 510,2010. [13] V. Natarajan, P. V. Venugopal, and T. Menon, Effect of Azadirachta indica (neem) on the growth pattern of dermatophytes, Indian Journal of Medical Microbiology, vol. 21, no. 2, pp. 98 101, 2003. [14]S.Banerjee,A.Das,P.Chakraborty,K.Suthindhiran,andM. A. Jayasri, Antioxidant and antimicrobial activity of Araucaria cookii and Brassaia actinophyla, Pakistan Journal of Biological Sciences,vol.17,no.5,pp.715 719,2014. The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgments The authors are grateful to Sudan Academy of Science (SAS) for the permission to carry out this study. Great thanks are due to the Staff of Mycology Department, Veterinary Research Institute for technical help. References [1] E. Goun, G. Cunningham, D. Chu, C. Nguyen, and D. Miles, Antibacterial and antifungal activity of Indonesian ethnomedical plants, Fitoterapia,vol.74,no.6,pp.592 596,2003. [2] H. S. Muhammad and S. Muhammad, The use of Lawsonia inermis linn. (henna) in the management of burn wound infections, African Journal of Biotechnology, vol.4,no.9,pp. 934 937, 2005. [3] K. N. Jallad and C. Espada-Jallad, Lead exposure from the use of Lawsonia inermis (Henna) in temporary paint-on-tattooing and hair dying, Science of the Total Environment, vol. 397, no. 1 3, pp. 244 250, 2008. [4] M. A. Abdulmoneim, Evaluation of Lawsonia inermis Linn. (Sudanese Henna) leaf extract as an antimicrobial agent, Research Journal of Biological Sciences, vol. 2, pp. 417 423, 2007. [5] N. A. A. Ali, W.-D. Jülich, C. Kusnick, and U. Lindequist, Screening of Yemeni medicinal plants for antibacterial and cytotoxic activities, Journal of Ethnopharmacology, vol.74,no. 2, pp. 173 179, 2001. [6] R. D. Tripathi, H. S. Srivastava, and S. N. Dixit, A fungitoxic principle from the leaves of Lawsonia inermis Lam, Experientia, vol.34,no.1,pp.51 52,1978. [7] J. B. Harborne, Phytochemical Methods, vol. 4, Chapmanand Hall, 4, 2nd edition, 1984.

Peptides BioMed Advances in Stem Cells International Virolog y Genomics Journal of Nucleic Acids Zoology Submit your manuscripts at The Scientific World Journal Journal of Signal Transduction Genetics Anatomy Enzyme Research Archaea Biochemistry Microbiology Evolutionary Biology Molecular Biology International Advances in Bioinformatics Journal of Marine Biology