9th Conference on Retroviruses and Opportunistic Infections Fecha de recepción: 31/12/2000 Fecha de aceptación: 31/12/2000

Similar documents
Management of NRTI Resistance

Anumber of clinical trials have demonstrated

Perspective Resistance and Replication Capacity Assays: Clinical Utility and Interpretation

Many highly active antiretroviral therapy PROCEEDINGS

NOTICE TO PHYSICIANS. Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases, National Institutes of Health

2 nd Line Treatment and Resistance. Dr Rohit Talwani & Dr Dave Riedel 12 th June 2012

ARV Mode of Action. Mode of Action. Mode of Action NRTI. Immunopaedia.org.za

Second-Line Therapy NORTHWEST AIDS EDUCATION AND TRAINING CENTER

NNRTI Resistance NORTHWEST AIDS EDUCATION AND TRAINING CENTER

Evaluation and Management of Virologic Failure

Management of patients with antiretroviral treatment failure: guidelines comparison

Terapia antirretroviral inicial y de rescate: Utilidad actual y futura de nuevos medicamentos

Introduction to HIV Drug Resistance. Kevin L. Ard, MD, MPH Massachusetts General Hospital Harvard Medical School

Resistance Workshop. 3rd European HIV Drug

HIV replication and selection of resistance: basic principles

Differentiating emtricitabine (FTC) from lamivudine (3TC): what a fine-tuning of antiretroviral therapy might entail

Subtle Decreases in Stavudine Phenotypic Susceptibility Predict Poor Virologic Response to Stavudine Monotherapy in Zidovudine-Experienced Patients

HIV/AIDS CID 2003:37 (1 July) 113

Scottish Medicines Consortium

Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents

THE HIV LIFE CYCLE. Understanding How Antiretroviral Medications Work

HIV Drug Resistance: An Overview

Somnuek Sungkanuparph, M.D.

HIV - Life cycle. HIV Life Cyle

Continuing Education for Pharmacy Technicians

ABC/3TC/ZDV ABC PBO/3TC/ZDV

Challenges for the clinical development of new nucleoside reverse transcriptase inhibitors for HIV infection

Antiviral Chemotherapy

Genotypic Resistance in HIV-infected Patients Failing a d4t/3tc/nvp Regimen

Treatment of respiratory virus infection Influenza A & B Respiratory Syncytial Virus (RSV)

0.14 ( 0.053%) UNAIDS 10% (94) ( ) (73-94/6 ) 8,920

DNA Genotyping in HIV Infection

HIV medications HIV medication and schedule plan

Clinical skills building - HIV drug resistance

MDR HIV and Total Therapeutic Failure. Douglas G. Fish, MD Albany Medical College Albany, New York Cali, Colombia March 30, 2007

Special Contribution Questions to and Answers from the International AIDS Society USA Resistance Testing Guidelines Panel

Once-a-Day Highly Active Antiretroviral Therapy: A Systematic Review

Dolutegravir-Rilpivirine (Juluca)

Principles of Antiretroviral Therapy

Supplemental Digital Content 1. Combination antiretroviral therapy regimens utilized in each study

Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA.

Resistance profile of the new nucleoside reverse transcriptase inhibitor apricitabine

Optimizing 2 nd and 3 rd Line Antiretroviral Therapy in Children and Adolescents

The rise and fall of triple nucleoside reverse transcriptase inhibitor (NRTI) regimens

Higher Risk of Hyperglycemia in HIV-Infected Patients Treated with Didanosine Plus Tenofovir

Resistance to Integrase Strand Transfer Inhibitors

Antiretroviral treatment outcomes after the introduction of tenofovir in the public-sector in South Africa

Despite the wealth of efficacy data from

1592U89 (Abacavir) Resistance and Phenotypic Resistance Testing

Resistance Post Week 48 in ART-Experienced, Integrase Inhibitor-Naïve Subjects with Dolutegravir (DTG) vs. Raltegravir (RAL) in SAILING (ING111762)

PAEDIATRIC HIV INFECTION. Dr Ashendri Pillay Paediatric Infectious Diseases Specialist

Update on HIV Drug Resistance. Daniel R. Kuritzkes, MD Division of Infectious Diseases Brigham and Women s Hospital Harvard Medical School

Received 29 May 2003/Returned for modification 7 August 2003/Accepted 13 November 2003

HIV Treatment Update. Awewura Kwara, MD, MPH&TM Associate Professor of Medicine and Infectious Diseases Brown University

MEDICAL COVERAGE GUIDELINES ORIGINAL EFFECTIVE DATE: 03/07/18 SECTION: DRUGS LAST REVIEW DATE: 02/19/19 LAST CRITERIA REVISION DATE: ARCHIVE DATE:

Virologic and CD4 Cell Response to Zidovudine or Zidovudine and Lamivudine Following Didanosine Treatment of Human Immunodeficiency Virus Infection

Clinical Implications of Mutations at Reverse Transcriptase Codon 135 on Response to NNRTI-Based Therapy

Does Resistance Still Matter? Daniel R. Kuritzkes, M.D. Division of Infectious Diseases Brigham and Women s Hospital Harvard Medical School

Reverse transcriptase and protease inhibitor resistant mutations in art treatment naïve and treated hiv-1 infected children in India A Short Review

The E138A substitution in HIV-1 reverse transcriptase decreases in vitro. susceptibility to emtricitabine as indicated by competitive fitness assays

Because accurate and reproducible phenotypic susceptibility

Antiviral Agents DEPARTEMEN FARMAKOLOGI & TERAPEUTIK FK USU. 06 August

Perspective Current Concepts in Antiretroviral Therapy Failure

Patterns of Resistance to Antiretroviral Therapy among HIV+ Patients in Clinical Care

Crafting an ART Regimen for Initiation or Salvage: Are NRTI s Necessary?

Clinical Management of HIV Drug Resistance

HIV associated CNS disease in the era of HAART

Treatment-Emergent Mutations and Resistance in HIV-Infected Children Treated with Fosamprenavir-Containing Antiretroviral Regimens

Integrase Strand Transfer Inhibitors on the Horizon

HIV THERAPY STRATEGIES FOR THIRD LINE. issues to consider when faced with few drug options

Case # 1. Case #1 (cont d)

ORIGINAL ARTICLE /j x. Brescia, Italy

Pediatric Antiretroviral Resistance Challenges

HIV Update Objectives. Epidemiology. Epidemiology, Transmission and Natural History. Transmission Risk by Exposure. Transmission 9/29/2014

Microbiology Review Division of Antiviral Drug Products (HFD-530)

Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064

Central Nervous System Penetration of ARVs: Does it Matter?

MedChem 401~ Retroviridae. Retroviridae

La terapia dell infezione da HIV: passato, presente e futuro.

The new epidemic of drug resistant HIV-1

Nucleoside reverse transcriptase inhibitor resistance mutations in subtype F1 strains isolated from heavily treated adolescents in Romania

History (August 2010) Therapy for Experienced Patients. History (September 2010) History (November 2010) 12/2/11

Supplementary information

HIV Drugs and the HIV Lifecycle

Selected Issues in HIV Clinical Trials

Industry Request Integrase Inhibitors

What are the most promising opportunities for dose optimisation?

The Danish HIV Cohort Study, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark 4

10 : 4. Introduction. R Sajithkumar, Kottayam. Mutations to select agents: Evolution:

Kimberly Adkison, 1 Lesley Kahl, 1 Elizabeth Blair, 1 Kostas Angelis, 2 Herta Crauwels, 3 Maria Nascimento, 1 Michael Aboud 1

Research Article Efficacy of Once Daily Darunavir/Ritonavir in PI-Na\ve, NNRTI-Experienced Patients in the ODIN Trial

Antiviral Therapy 2011; 16: (doi: /IMP1851)

C h a p t e r 5 5 HIV Therapy Where are We Now?

HIV Drug Resistance. Together, we can change the course of the HIV epidemic one woman at a time.

Antiretroviral Therapy During Pregnancy and Delivery: 2015 Update

Antiretroviral Therapy

VIKING STUDIES Efficacy and safety of dolutegravir in treatment-experienced subjects

Second and third line paediatric ART strategies

Optimizing the treatment

Transcription:

Abril-Junio 2002 N 11 De interés ISSN 1317-987X Mechanisms of NRTI Resistance and Implications for Therapy NRTI Cross-Resistance May Be More Common Than We Thought Update on Adherence: Interventions and Outcomes 9th Conference on Retroviruses and Opportunistic Infections Fecha de recepción: 31/12/2000 Fecha de aceptación: 31/12/2000 Washington State Convention & Trade Center Seattle, WA. El pasado mes de febrero se celebró la IX conferencia sobre retrovirus e infecciónes oportunistas (CROI) en la ciudad de Seattle, Estados Unidos. Este evento es considerado uno de los de mayor relevancia en lo que se refiere a epidemiología, patogénesis y tratamiento del Virus de Inmunodeficiencia Humana (HIV), así como el desarrollo de nuevas drogas en el intento de controlarlo. Warning: Invalid argument supplied for foreach() in /var/www/vitae/modules/articulo_pdf.php on line 141 / Mechanisms of NRTI Resistance and Implications for Therapy William A. O'Brien, MD, MS Disclosures Wednesday, February 27, 2002, Seattle, Washington In a plenary presentation noteworthy for a crystal-clear discussion of a very complex topic, John Mellors[1] of the University of Pittsburgh described the specific mechanisms of nucleoside reverse transcriptase inhibitor (NRTI) resistance, and explained the observed levels of resistance associated with the various patterns of mutations encountered in clinical practice. The mutations associated with resistance to zidovudine were identified by Brendan Larder and colleagues[2] over a decade ago, well before any other antiretroviral drug was approved. These mutations -- 41L, 67N, 70R, 210W, 215Y/F, and 219E/Q --tend to accumulate during continued exposure to zidovudine in the absence of good viral suppression. Recently, it has been appreciated that these mutations can also be selected by stavudine, and that they have implications for resistance to all drugs in the NRTI class and to the recently FDA-approved nucleotide reverse transcriptase inhibitor, tenofovir. Reverse transcription is the process whereby the single-stranded HIV RNA genome is converted to a double-stranded DNA version that can be integrated into the chromosome of the infected cell. The RNA genome serves as a template, and reverse transcriptase adds deoxynucleotide triphosphates (dntps) one at a time as the viral DNA chain elongates. During this process, 2 of the 3 phosphate groups are cleaved off; this double phosphate is called pyrophosphate. At the end of the chain, there is a hydroxy group (OH), which allows the next nucleoside monophosphate to be added onto the end of the chain. All of the NRTIs are "chain terminators" because they have a substitution other than OH at the end, and thus do not allow addition of the next building block. The process of adding a new building block involves 3 steps: 1. Binding of the next nucleoside or nucleoside analogue (NRTI) triphosphate http://vitae.ucv.ve/index_pdf.php?module=articulo_pdf&n=3169&rv=79 1/5

2. Incorporation onto the end of the growing viral DNA chain and release of pyrophosphate 3. Translocation of the incorporated nucleoside to a different position to allow room for addition of the next nucleoside residue For a long time, it was assumed that resistance mutations changed the shape of the binding pocket in such a way that the nucleoside analogues no longer were bound as well as the cellular nucleosides, rendering the drugs impotent. This view was recently changed by studies led by Meyer and colleagues[3,4] and confirmed by others, which showed that the nucleoside analogues are actually removed by mutant reverse transcriptase by a cleavage process called pyrophosphorylysis (PPi), the reverse of the step that led to their incorporation in the first place. Instead of pyrophosphate being released when the nucleoside analogue triphosphate is incorporated into the viral DNA chain, the presence of multiple resistance mutations in reverse transcriptase prevents translocation and allows removal of the nucleoside analogue. The extension process can then proceed by the addition of a cellular nucleoside building block. This mechanism of resistance within reverse transcriptase containing the mutations selected by zidovudine has been shown to affect stavudine and abacavir as well as zidovudine. In view of the increasing levels of phenotypic resistance associated with increasing number of these mutations, [5] this mechanism also probably affects zalcitabine, didanosine, lamivudine, and tenofovir. Thus, these mutations are probably best referred to as nucleoside analogue mutations (NAMs), since they can affect the entire class. The 184V mutation that can result in up to 1000-fold increases in resistance to lamivudine also appears to interact with NAMs to modulate resistance to all the other NRTIs.[5] In reverse transcriptase that contains no more than 2 or 3 NAMs, this mutation enhances translocation during reverse transcription, preventing PPi and excision of the nucleoside analogue residue. However, as the number of NAMs increases, 184V does not have enough effect to prevent PPi. The structure of tenofovir results in some flexibility, which may make this substrate a moving target, making excision inefficient. This could explain why the activity of tenofovir is maintained in the presence of just a few NAMs. However, higher numbers of these mutations will still result in tenofovir resistance. Tenofovir resistance is also modulated by the 184V mutation through enhancement of translocation. The take-home message is that NAMs are bad for this class of antiretrovirals, and the accumulation of high numbers of these mutations should be assiduously avoided. The drugs that are most likely to select for these mutations should probably be avoided in initial regimens, and viral load and resistance monitoring should be used together to ensure that therapy is changed before high numbers of NAMs evolve. The appearance of the 184V mutation may improve sensitivity to many of the drugs in this class, but it will not "reverse" high-level resistance. Nonetheless, inclusion of lamivudine in salvage regimens may improve the effectiveness of the NRTI components of therapy, and it is certainly a well-tolerated drug -- an important issue for most patients receiving salvage therapy. These recent findings also identify a new target for antiretroviral therapy: inhibition of PPi. This has been shown with foscarnet, and development of a more effective and better-tolerated derivative of foscarnet is currently underway in Dr. Mellors' laboratory. References 1. Mellors J. New insights into mechanisms of HIV-1 resistance to reverse transcriptase inhibitors. Program and abstracts of Program and abstracts of the 9th Conference on Abstract L6. 2. Larder BA, Kemp SD. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science. 1989;246:1155-1158. 3. Meyer PR, Matsuura SE, Schinazi RF, So AG, Scott WA. Differential removal of thymidine nucleotide analogues from blocked DNA chains by human immunodeficiency virus reverse transcriptase in the presence of physiological concentrations of 2'- deoxynucleoside triphosphates. Antimicrob Agents Chemother. 2000;44:3465-3472. 4. Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA. A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Molecular Cell. 1999;4:35-43. 5. Whitcomb JM, Paxinos EE, Huang W, et al. The presence of nucleoside analogue mutations (NAMs) is highly correlated with reduced susceptibility to all NRTIs. Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; February 24-28, 2002; Seattle, Washington. Abstract 569. NRTI Cross-Resistance May Be More Common Than We Thought http://vitae.ucv.ve/index_pdf.php?module=articulo_pdf&n=3169&rv=79 2/5

Peter Ruane, MD Disclosures Tuesday, February 26, 2002, Seattle, Washington New dimensions were added to our understanding of nucleoside reverse transcriptase inhibitor (NRTI) resistance and cross-resistance by a poster by Whitcomb and colleagues[1] from ViroLogic. From a database of 4174 samples with matched genotype and phenotype measurements, they excluded all isolates containing recognized multidrug resistance mutations (ie, Q151M and T69 insertions). The remaining samples were phenotypically categorized as either (1) wild-type (susceptible to all NRTIs); (2) > 20-fold zidovudine-resistant but with little or no cross-resistance to other NRTIs; or (3) zidovudine-resistant and cross-resistant to other NRTIs. Genotypic correlates were then sought, evaluating the fold change in NRTI susceptibility as a function of the number of nucleoside analogue mutations (NAMS: M41L, D67N,K70R,L 210W,T215Y/F and K219Q/E) and the presence of M184V or other RT substitutions. Pairwise comparisons were made as continuous variables with all the appropriate statistics. An increasing number of NAMs was associated with decreased susceptibilities to all NRTIs, although to differing degrees for each drug. Unexpectedly, mutations that resulted in 100-fold reduced susceptibility to zidovudine were also associated with 6.5-fold resistance to lamivudine. The presence of mutations at positions 41 and 210 in particular was linked to an increased likelihood of cross-resistance, including to tenofovir. Higher levels of cross-resistance were also associated with additional substitutions not currently recognized as NAMs, especially at positions 39, 40, 43, 44, 68, 69, 74,118, 208, and 228. The M184V mutation is well known to enhance susceptibility to zidovudine. Today's data showed that it also improved susceptibility to stavudine, adefovir, and tenofovir, and reduced susceptibility to lamivudine, abacavir, didanosine, and zalcitabine. These data provide additional evidence that resistance to NRTIs and protease inhibitors is similar, in that the presence of multiple mutations confers substantial cross-resistance in a linear fashion. The reported association between additional non-nam mutations and cross-resistance should lead us to look for these more carefully, and to assume that in heavily pretreated patients greater resistance may be present than may be recognized from the typical genotype reports from reference labs. It is also high time for these labs to provide us with full genotypic reports with all the sequencing information they have, so we can make more complete interpretations both now and in the future. To my knowledge, at present only one (also FDA-approved) assay provides this routinely. Reference 1. Whitcomb JM, Paxinos EE, Huang W, et al. The presence of nucleoside analogue mutations (NAMs) is highly correlated with reduced susceptibility to all NRTIs. Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; February 24-28, 2002; Seattle, Washington. Abstract 569. Update on Adherence: Interventions and Outcomes Richard A. Elion, MD Disclosures Tuesday, February 26, 2002, Seattle, Washington Rates of adherence to antiretroviral therapy have been correlated with virologic success,[1] so there is considerable interest in clinical strategies that might promote improved adherence. Posters presented today reported the results from trials of a variety of techniques, including phone calls, counseling interventions, and directly observed therapy (DOT). Collier and her colleagues[2] investigated the impact of serial scripted telephone calls to patients about their medications. Treatment-naive patients enrolled in a large antiretroviral-therapy study were randomly assigned to receive either the clinic's usual standard of therapy support (n = 140) or intensified support including 16 telephone calls during 96 weeks (n = 142). Evaluation of the intervention was hampered by the high levels of self-reported adherence in the study: Approximately 64% of patients in each arm reported taking > 95% of their medications, and > 61% reported 100% adherence. As a result, there was no difference between the arms in adherence or virologic outcome, which may reflect either the high levels of adherence achieved in this context of a supervised clinical trial or a lack of effect of the telephone intervention. Pradier and associates[3] randomly assigned 244 patients to receive either 3 counseling sessions in addition to normal care, and found that there were improvements in adherence in the http://vitae.ucv.ve/index_pdf.php?module=articulo_pdf&n=3169&rv=79 3/5

intervention group at month 6: 75% were 100% adherent at month 6, compared with 61% of controls (P =.04). This was accompanied by decreases in HIV-1 RNA in the intervention group, although the proportion of patients with viral load < 40 copies/ml remained similar in both arms. Jordan and coworkers[4] described predictors of adherence and efficacy in the CNA3014 trial comparing coformulated zidovudine/lamivudine (Combivir ) plus either abacavir or indinavir. This trial had previously reported improved efficacy for the simpler triple-nrti (nucleoside reverse transcriptase inhibitor) regimen. These authors now demonstrate significant differences in adherence between the 2 arms, with 72% of subjects in the abacavir arm reporting > 95% adherence, compared with 45% in the indinavir arm (P <.001). Each 5% increase in adherence was associated with a 1.7-fold increase in the likelihood of achieving HIV-1 RNA < 400 copies/ml. There was a suggestion that the abacavir-based regimen was slightly more effective among subjects with lower levels of adherence, but this was a small sample, and the "forgiveness quotient" of the regimen could not be adequately determined. Conway and colleagues[5] reported on the use of DOT for once- and twice-daily regimens among a cohort of injection-drug users (IDUs). The twice-daily regimens were only partial DOT: Only the morning dose was observed, and the patient was queried regarding the evening dose the following morning. The overall success rates for viral suppression were modest, with only 44% achieving a viral load < 50 copies/ml, but it was encouraging to note that concomitant cocaine use did not significantly affect the virologic success rate: 60% of active cocaine users achieved HIV-1 RNA < 400 copies/ml compared with 65% of the overall study population of IDUs. The take-home message was that use of DOT seemed helpful in achieving a typical rate of virologic success despite ongoing recreational drug use. In a related report, Lucas and associates[6] showed that the transition from abstinence to substance use was associated with worse virologic outcomes; conversely, switching from substance use to abstinence was associated with improvements in virologic control and adherence. The relationship between imperfect levels of adherence and the incidence of new resistance mutations was evaluated by Bangsberg and coworkers.[7] The relatively good news is that individuals with the worst adherence usually discontinued therapy sooner than more adherent patients, resulting in less resistance. A total of 78% of people who took < 50% of their initial 3- month pill count discontinued therapy within 6 months, compared with 33% of those taking 50% to 79% of their pills (P <.01). The troubling corollary is that the more adherent patients were more likely to develop mutations. Thus, the population most at risk of developing resistance is those patients who take many -- but not enough -- of their pills. References 1. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med. 2000;133:21-30. 2. Collier A, Ribaudo H, Feinberg J, Mukherjee L, Fischl M, Chesney M, for the ACTG Protocol 746 Team. Randomized study of telephone calls to improve adherence to antiretroviral therapy. Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; February 24-28, 2002; Seattle, Washington. Abstract 540. 3. Pradier C, Bentz L, Spire B, et al. Counseling interventions can improve adherence to highly active antiretroviral therapy: results of a French prospective controlled study. Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; February 24-28, 2002; Seattle, Washington. Abstract 541. 4. Jordan J, Cahn P, Vibhagool A, and the CNA3014 Study team. Predictors of adherence and efficacy in HIV-1-infected patients treated with abacavir/combivir (ABC/COM) or indinavir/combi vir (IDV/COM): final 48-week data from CNA3014. Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; February 24-28, 2002; Seattle, Washington. Abstract 543. 5. Conway B, Prasad J, Reynolds R, et al. Nevirapine (NVP) and protease inhibitor (PI)- based regimens in a directly observed therapy (DOT) program for intravenous drug users (IDUs). Program and abstracts of the 9th Conference on Retroviruses and Opportunistic Infections; February 24-28, 2002; Seattle, Washington. Abstract 545. 6. Lucas G, Gebo K, Chaisson R, Moore R. Longitudinal assessment of the effects of drug and alcohol abuse on HIV treatment. Program and abstracts of the 9th Conference on Abstract 547. 7. Bangsberg DR, Charlebois ED, Grant R, et al. Low levels of adherence do not increase risk of HIV drug resistance mutations. Program and abstracts of the 9th Conference on Abstract 546. NOTA: Toda la información que se brinda en este artículo es de carácter investigativo y con fines académicos y de http://vitae.ucv.ve/index_pdf.php?module=articulo_pdf&n=3169&rv=79 4/5

actualización para estudiantes y profesionales de la salud. En ningún caso es de carácter general ni sustituye el asesoramiento de un médico. Ante cualquier duda que pueda tener sobre su estado de salud, consulte con su médico o especialista. http://vitae.ucv.ve/index_pdf.php?module=articulo_pdf&n=3169&rv=79 5/5