Potential of Müller Glia to Become Neurogenic Retinal Progenitor Cells

Similar documents
Insulin and Fibroblast Growth Factor 2 Activate a Neurogenic Program in Müller Glia of the Chicken Retina

Cell Birth and Death. Chapter Three

Exogenous Growth Factors Stimulate the Regeneration of Ganglion Cells in the Chicken Retina

Neuroepithelial Cells and Neural Differentiation

Neurodevelopment II Structure Formation. Reading: BCP Chapter 23

High sensitivity rod photoreceptor input to blue-yellow color opponent pathway in macaque retina

Chapter 5. Summary and Future directions

Quantitative Analysis of Major Histocompatibility Complex Class II-Positive Cells in Posterior Segment of Royal College of Surgeons Rat Eyes

Brain Development III

Genesis of cerebellar interneurons and the prevention of neural DNA damage require XRCC1.

Animal models of CAMBRIDGE OPHTHALMOLOGICAL SYMPOSIUM. GP Lewis 1, DG Charteris 3, CS Sethi 3

Soluble Lutein (Lutemax2020 ) Prevents Retinal Damage in Streptozotocin (STZ)- induced Diabetic Rats

The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development

Neurons vs. glia. Traditionally, glia have been viewed as passive cells that help to maintain the function of neurons.

Plasticity of Cerebral Cortex in Development

Parallel pathways in the retina

The Visual System. Retinal Anatomy Dr. Casagrande February 2, Phone: Office: T2302 MCN

Dicer Is Required for the Transition from Early to Late Progenitor State in the Developing Mouse Retina

THE EYE: RETINA AND GLOBE

The ON and OFF Channels

SUPPLEMENTARY INFORMATION

Cell Type Nervous System I. Developmental Readout. Foundations. Stem cells. Organ formation. Human issues.

Retinoic acid promotes differentiation of photoreceptors in vitro

Photoreceptor Proliferation and Dysregulation of Cell Cycle Genes in Early Onset Inherited Retinal Degenerations

Supplementary information Novel VCP modulators mi2gate major pathologies of rd10, a mouse model of re2ni2s pigmentosa

mir-7a regulation of Pax6 in neural stem cells controls the spatial origin of forebrain dopaminergic neurons

Unique peptides for reversing eye aging: Latest inventions in macular degeneration and diabetic retinopathy treatment

Prss56, a novel marker of adult neurogenesis in the mouse brain. - Supplemental Figures 1 to 5- Brain Structure and Function

Neural stem cells and the neurobiology of ageing. Chen Siyun 1, Dawe G.S. 2

Construction of the Visual Image

Primary Mouse Cerebral Cortex Neurons V: 80% TE: 70%

Extending Injury- and Disease-Tolerant Phenotypes by Repetitive Conditioning

NSCs), broblast growth factor, bfgf) ( Peprotech ) ; NSCs

( neural progeni2 tor cell), ,,,, , (neural crest) (radial glial cell) mrna [2 ]

EMBO REPORT SUPPLEMENTARY SECTION. Quantitation of mitotic cells after perturbation of Notch signalling.

Characterization of Retinal Progenitor Cells

Intrinsic mechanisms that control the specification of mammalian retinal cell types

Foundations. 1. Introduction 2. Gross Anatomy of the Eye 3. Simple Anatomy of the Retina

Notch-Signaling in Retinal Regeneration and Müller glial Plasticity DISSERTATION. Kanika Ghai, MS. Neuroscience Graduate Studies Program

Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice

SUPPLEMENTARY DATA. Supplementary Table 2. Antibodies used for Immunofluoresence. Supplementary Table 3. Real-time PCR primer sequences.

Olfactory ensheathing glia

glial cells missing and gcm2 Cell-autonomously Regulate Both Glial and Neuronal

TGF-β Signaling Regulates Neuronal C1q Expression and Developmental Synaptic Refinement

SUPPLEMENTARY FIG. S2. Representative counting fields used in quantification of the in vitro neural differentiation of pattern of dnscs.

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

Ganglion cell analysis by optical coherence tomography (OCT) Jonathan A. Micieli, MD Valérie Biousse, MD

The Thymus as The Primary Site of T-cell Production

Insulin-Like Growth Factor-I Binds in the Inner Plexiform Layer and Circumferential Germinal Zone in the Retina of the Goldfish

Terminology. Terminology. Terminology. Terminology. Terminology. Bromodeoxyuridine

RETINA: Immunohistochemical approaches to examine neuronal and glial responses to disease

The formation of the area centralis of the retinal ganglion cell layer in the chick

Early events of neural development

Psy393: Cognitive Neuroscience. Prof. Anderson Department of Psychology Week 3

4/18/2011. Physiology 67 Lecture on Neural Development

Option A: Neurobiology & Behavior HL BIOLOGY 2 ND EDITION DAMON, MCGONEGAL, TOSTO, AND

FIRST MIDTERM EXAM October 18, 2011 BILD2

Supplementary Information. Staged decline of neuronal function in vivo in an animal model of Alzheimer s Disease. Supplementary Figures S1-10

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp ,

Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study

Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration

Analysis of gene expression in wild-type and Notch1 mutant retinal cells by single cell profiling

Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates

Loss of LMO4 in the retina leads to reduction of GABAergic amacrine cells and functional deficits. Philippe Martin Duquette

Supplemental Experimental Procedures

Sonic hedgehog, secreted by amacrine cells, acts as a short-range signal to direct differentiation and lamination in the zebrafish retina

Histology of the Eye

Supplementary Figure 1

A PROPOSAL FOR THE HEAR SEE HOPE FOUNDATION VISUALIZING A CURE

Vision I. Steven McLoon Department of Neuroscience University of Minnesota

A Cxcl12-Cxcr4 Chemokine Signaling Pathway Defines

Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina

Milestones of neuronal development in the adult hippocampus

Contact: Course outline: Contact for other times.

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

TISSUE-SPECIFIC STEM CELLS

Retinal detachment C H A P T E R 71. Symptoms, signs of retinal detachment, and diagnostics. Clinical background. History

Test Bank Chapter 2: The Beginnings of Perception

Retinal detachment (RD), the physical separation of the

Notch Signaling Influences Neuroprotective and Proliferative Properties of Mature Müller Glia

Microglia-derived extracellular vesicles regulate the proliferation and differentiation of oligodendrocyte precursor cells

PSY 214 Lecture 5 (09/19/2010) (Vision) Dr. Achtman PSY 214. Lecture 5 Topic: Introduction to Vision Chapter 3, pages 55-71

Introduction to Physiological Psychology

Neurogenesis in Adult Central Nervous System: Death of a Dogma

4/22/16. Eye. External Anatomy of Eye. Accessory Structures. Bio 40B Dr. Kandula

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye:

L aser photocoagulation is an established treatment for a

Symptoms of spinal cord injury:

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology

Directed transdifferentiation of Müller glial cells to photoreceptors using the sonic hedgehog signaling pathway agonist purmorphamine

Sox2 Plays a Role in the Induction of Amacrine and Müller Glial Cells in Mouse Retinal Progenitor Cells METHODS

Introduction to Full Field ERGs

Development of the Nervous System 1 st month

Journal of Advances in Molecular Biology, Vol. 1, No. 1, June

A new subtype of progenitor cell in the mouse embryonic neocortex. Xiaoqun Wang, Jin-Wu Tsai, Bridget LaMonica & Arnold R.

Photic history modifies susceptibility to retinal damage in albino trout

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1

Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina

Transcription:

GLIA 43:70 76 (2003) Potential of Müller Glia to Become Neurogenic Retinal Progenitor Cells ANDY J. FISCHER AND THOMAS A. REH* Department of Biological Structure, University of Washington, Seattle, Washington KEY WORDS Müller glia; neural regeneration; retinal progenitor cells ABSTRACT The possibility of neural regeneration has gained credence with the identification of neural stem cells seeded within different regions of the adult central nervous system (CNS). Recently, this possibility has received an additional boost from reports that glia, the support cells of the CNS, might provide a source of neural regeneration. We review some of our findings that Müller glia in the chicken retina are a source of proliferating progenitors that can generate neurons. These Müller cells are fully differentiated glial cells that serve functions ascribed to this cell type. In response to damage or exogenous growth factors, Müller glia dedifferentiate, proliferate, express combinations of transcription factors normally expressed by embryonic retinal progenitors, and produce new neurons and glia. In light of these data, the potential of Müller glia as a source of neural regeneration in the retina of nonavian species, namely humans, seems an avenue of investigation that warrants serious consideration. GLIA 43:70 76, 2003. 2003 Wiley-Liss, Inc. The retina develops as an outgrowth of the neural tube known as the optic vesicle. Although there are many highly specialized cells in the retina, such as photoreceptors and pigmented epithelial cells, the basic mechanisms of neurogenesis are largely conserved with other regions of the central nervous system (CNS). The cells of the optic vesicle act as retinal founder cells, or stem cells, in that they have the potential to generate all of the various cells in the retina: five basic types of neurons and one type of intrinsic glial cell, the Müller glial cell. The classic studies carried out by Sidman (1961) first demonstrated that the neurons and Müller glia that make up the mature retina are generated in a specific sequence during histogenesis: ganglion cells, cone photoreceptors, and horizontal cells are generated early in development, while amacrine cells, rod photoreceptors, bipolar cells, and Müller glia are generated in a second cohort. The molecular basis for this change in the genesis of the different types of retinal cells probably reflects changes both within the progenitor cells and in their local microenvironment; however, several different lines of evidence indicate that Müller glia share a lineage and a precursor with retinal neurons (Turner and Cepko, 1987; Holt et al., 1988; Turner et al., 1990). The developmental relationship between retinal neurons and Müller glia has led to speculation that proliferating glia could serve as a source for retinal regeneration. In the retina of teleost fish, for example, a robust regeneration after surgical lesions results in functional repair. Although it has been difficult to determine precisely which cells are responsible for generating the new retinal cells, the following three sources have been proposed: (1) an intrinsic progenitor cell, known as the rod precursor cell, which normally produces only rod photoreceptors during the growth of the fish eye (Raymond et al., 1988); (2) an intrinsic retinal stem cell that normally has a very long cell cycle and is activated after injury (Julian et al., 1998; Otteson et al., 2001); and (3) the dedifferentiation of Müller glial cells (Raymond and Hitchcock, 1997). In mammals, it has been known for some time that Müller cells can reenter the cell cycle and can be maintained in vitro after retinal damage (Sarthy, 1985; Lewis et al., 1992). More recently, several lines of evidence have indicated a relationship among neural progenitors, *Correspondence to: Thomas A. Reh, Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195. E-mail: tomreh@u.washington.edu Received 12 November 2002; Accepted 20 January 2003 DOI 10.1002/glia.10218 2003 Wiley-Liss, Inc.

stem cells, and glia (see other articles in this issue). In this review, we highlight recent studies from our laboratory that show that Müller glia have the potential to acquire the characteristics of retinal progenitors, both phenotypically and functionally, and that they can serve as a source of retinal regeneration in the chicken. In a series of recent experiments, we have tested the potential of the avian retina to regenerate after neurotoxic damage. In the first set of studies, we induced extensive cell death of inner retinal neurons, such as amacrine cells and bipolar cells, by making intraocular injections of toxic levels of N-methyl-D-aspartate (NMDA) (Fig. 1A). One day after the injection, we found widespread apoptosis of the inner retinal cells and activation of microglia, presumably acting as phagocytes (Fischer et al., 1998; Fischer and Reh, 2001). Two days after the NMDA injection, we were surprised to find large numbers of mitotically active cells in the retina as shown by BrdU incorporation and immunoreactivity for Phospho-Histone H3 and proliferating cell nuclear antigen (PCNA) (Fig. 1B). By double labeling for BrdU and glutamine synthetase, a marker for Müller glia, we found that 100% of the mitotically active cells were Müller glia 2 days after toxin treatment. However, by the next day, many of the BrdU-labeled cells began to express markers of embryonic retinal progenitors, including the neurogenic bhlh transcription factor CASH-1 and homeodomain transcription factors Pax6 and Chx10 (Fischer and Reh, 2001). In addition, these progenitor-like cells expressed neurofilament transiently at 2 4 days after toxin treatment. Similar to the transient expression of neurofilament, CASH-1 was expressed between 2 and 4 days after toxin treatment, with expression disappearing thereafter. We followed the fate of the mitotically active cells over the next few weeks by making a single intraocular injection of BrdU 2 days after the NMDA treatment and allowing the animals to survive for varying lengths of time. We can make several conclusions from these experiments. First, similar to embryonic neural progenitors in the developing retina and cortex, Müller glia that reenter the cell cycle undergo interkinetic nuclear migration, entering S-phase with somata located in the center of the inner nuclear layer and continuing to M-phase with somata located in the outer nuclear layer. Second, after a single mitotic division, when the number of BrdU-labeled, Müller glia-derived cells approximately doubles, these cells do not continue to proliferate in vivo. Third, the newly generated cells become distributed throughout the inner and outer nuclear layers of the retina and survive for at least several weeks after damage. Fourth, the BrdU-labeled cells can adopt one of three different fates: a small percentage (less than 4%) of the Müller glia-derived cells differentiate into retinal neurons that express Hu, calretinin, or cellular retinoic acid-binding protein (CRABP), a greater percentage (about 20%) of the newly generated cells differentiate as Müller glia that express glutamine synthetase, and most (about 80%) RETINAL MÜLLER GLIA AS A SOURCE OF STEM CELLS remain undifferentiated with continued expression of Pax6 and Chx10. In addition, we found that the proliferation and dedifferentiation of Müller glia in response to acute damage is not uniform across the retina but rather occurs in specific regions of the retina and changes as the animal ages (Fischer and Reh, unpublished observations) (Fig. 2). For example, toxin treatment within the first week after hatching results in proliferating Müller glia in central regions of the retina, while toxin treatment after the first post-hatch week results in proliferating Müller glia in more peripheral regions of the retina. As the animal ages, the region in which proliferating glia are found in response to toxin treatment becomes increasingly confined to peripheral regions of the retina. The regenerative response of Müller glia to neurotoxic damage has raised many questions: (1) Are the dedifferentiated Müller glia capable of regenerating all retinal cell types, or are they instead acting as faterestricted late progenitors? (2) Are the types of cells regenerated after neurotoxin damage dependent on the types of cells destroyed by the toxin? (3) What molecules activate the proliferation and dedifferentiation of Müller glia after damage? (4) Can Müller cells be stimulated to proliferate in the absence of retinal damage? (5) What is the basis for the regional nature of this response? (6) Why do the glia in central retina ultimately lose their ability to proliferate? (7) Why do so many of the cells generated in response to damage fail to differentiate into neurons or new Müller glia? To address the first two questions, we tested the Müller glial response to two other toxins: (1) kainate, which destroys bipolar, amacrine, and ganglion cells; and (2) colchicine, which selectively destroys ganglion cells (Fischer and Reh, 2002). We found that intraocular injections of either kainate or colchicine stimulated the proliferation of Müller glia in a manner similar to that which we observed after NMDA injection. In animals treated with either kainate or colchicine, we found that some of the newly generated cells differentiated into cells that expressed markers (Brn3; Islet 1; neurofilament) and had the morphology of ganglion cells (Fig. 3). Because the regeneration of this cell type was never observed after NMDA-induced retinal damage, which does not destroy ganglion cells, the results suggest that the type of neuron destroyed in the retina may allow or promote the regeneration of that neuronal type by the Müller glia-derived progenitor cells. In addition, these results indicate that the Müller gliaderived progenitors can generate a cell type, the retinal ganglion cell, that is normally generated early in retinal development. This suggests that these dedifferentiated Müller cells may have a potential to generate all retinal cell types, not just the late-generated neuronal types. However, we have yet to define conditions that promote photoreceptor production by these cells. What molecules are responsible for activating Müller glial proliferation after damage? Can the glial cells be stimulated to proliferate in the absence of damage? In 71

Fig. 1. In response to N-methyl-D-aspartate (NMDA)-induced apoptosis, Müller glia reenter the cell cycle, express Cash1, and differentiate into neurons that express Hu or CRABP. Vertical sections of the retina were obtained from untreated eyes (B,H) and eyes treated with NMDA (A,C G,I O). Retinas were obtained at 1 day (A) 2 days (C,E,I), 3 days (D), or 14 days (J O) after NMDA treatment. Sections were labeled for fragmented DNA (A; TUNEL), antibodies to BrdU (B E,J,M), or hydridized with Dig-conjugated riboprobes to CASH1 (H,I). G,L,O: Overlaid images of the of the 2 panels directly to their left. (Modified from Fischer and Reh, 2001.) INL, inner nuclear layer; ONL, outer nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; GS, glutamine synthetase; BrdU, bromodeoxyuridine; CRABP, cellular retinaldehyde binding protein. Scale bars 50 m.

Fig. 2. The region of retina in which Müller glia proliferate in response to acute damage becomes confined to peripheral regions of the retina with increasing age of the animal. Toxin treatment at P1 results in central regions of the retina containing proliferating Müller glia, while toxin treatment at P7 P30 results in peripheral regions of the retina containing proliferating Müller glia. response to damage, previous studies have shown that growth factors, including fibroblast growth factors (FGFs), are produced by retinal cells (Kostyk et al., 1994; Wen et al., 1995; Valter et al., 1998; Walsh et al., 2001; Cao et al., 2001). Therefore, it is possible that FGFs produced by damaged retinal cells cause Müller glia to dedifferentiate, proliferate and become progenitor-like cells in toxin-damaged chick retina. Like FGFs, insulin and insulin-like growth factor (IGF) may be involved in the Müller glial response to injury. During embryonic retinal development, IGF-I is transiently expressed by Müller glia and pigmented epithelial cells (Hansson et al., 1989; de la Rosa et al., 1994). RETINAL MÜLLER GLIA AS A SOURCE OF STEM CELLS To test whether these growth factors are sufficient to activate the regenerative response of Müller glia, we made intraocular injections of FGF2 and insulin, either alone or in combination, and assayed for changes in glial phenotype and proliferation within the retina (Fischer et al., 2002). While insulin or FGF2 alone had no effect, the combination of insulin and FGF2 stimulated the proliferation in Müller cells similar to the response we observed in neurotoxin-damaged retinas. In addition, the progeny of the Müller glia-derived progenitor cells went on to the same fates as those observed after NMDA-induced damage. As there was no evidence of retinal damage in eyes treated with insulin and FGF2, these growth factors are sufficient to initiate a response in Müller glia similar to that observed with neurotoxic damage, and these factors may be normally involved in the damage response. Furthermore, these findings imply that exogenous growth factors might be used to stimulate endogenous glial cells to regenerate neurons throughout the CNS. For example, the combination of insulin and FGF2 stimulated the regeneration of ganglion cells in kainate- and colchicine-treated retinas (Fischer and Reh, 2002). Some of our findings are summarized in Figure 4. Many questions remain unresolved regarding the response of Müller glia to retinal damage. As noted above, toxin treatment within the first postnatal week results in proliferating Müller in central regions of the retina, while toxin treatment at as late as one month of age results in proliferating Müller glia in more peripheral regions of the retina. We do not know what underlies the regional nature of this response. Why do the glia in central retina ultimately lose their ability to regenerate? It is possible that Müller cells are capable of undergoing dedifferentiation for only a limited period of time after their genesis. The production of Müller glia, like the generation of other retinal cell types, proceeds in a central-to-peripheral wave during development (Prada et al., 1991). For example, there are 7 days between the time the first Müller cells are generated in central retina and when the last ones are generated in the periphery (excluding those produced at the retinal margin). Thus, differences in the timing of cell genesis between central and peripheral Müller cells might underlie the difference in when these cells are capable of proliferating in response to damage. Since the peripherally located Müller cells are capable of regeneration for a much longer time than those in the central retina, perhaps these peripheral cells can undergo this response indefinitely. In addition to differences in birth dates, Müller cells have distinct morphological differences, depending on where they are isolated within the retina (Anezary et al., 2001). Immediately after hatching, many Müller cells have only a single ventricular process, but these cells become progressively more complex in morphology in the central retina. By 1 month after hatching, nearly all these glia in the central retina have more complex branching of the ventricular processes. By contrast, Müller glia in the peripheral retina lag behind in morphological mat- 73

74 FISCHER AND REH Fig. 3. Ganglion cells are regenerated in colchicine-damaged retinas. Vertical sections of the retina were stained with toluidine blue (A,B) or labeled with antibodies to BrdU (C,F), neurofilament (D), or Brn3 (G). (Modified from Fischer and Reh, 2002.) INL, inner nuclear layer; ONL, outer nuclear layer; IPL, inner plexiform layer; BrdU, bromodeoxyuridine; NF, neurofilament.

RETINAL MÜLLER GLIA AS A SOURCE OF STEM CELLS 75 Fig. 4. Schematic diagram illustrating the response of Müller glia to N-methyl-D-aspartate (NMDA)- induced damage (A), colchicine-induced damage (B), and intraocular injections of the insulin and fibroblast growth factor 2 (FGF2) (C). Apoptotic cells in the INL are the most abundant 1 day after NMDA treatment (Fischer et al., 1998), while apoptotic cells in the GCL are the most abundant 3 4 days after colchicine treatment (Fischer et al., 1999). The questions marks in b indicate that it remains uncertain whether Müller glia give rise to progenitor-like cells in colchicine-damaged retina. ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; BrdU, bromodeoxyuridine. uration. It is possible that the failure of all Müller glia in the peripheral retina to undergo this stage in maturation is related to their ability to dedifferentiate in response to neurotoxic damage or growth factor injections. In addition to differences between Müller glia in different regions of the retina, there may be heterogeneity between neighboring Müller glia in the same region of retina. For example, in regions of retina where proliferation occurs in response to NMDA-in-

76 FISCHER AND REH duced damage, a maximum of 65% of the Müller glia reenter the cell cycle, while the remaining 35% of glia do not (A.J. Fischer and T.A. Reh, unpublished observations). We have not found any molecular differences between proliferating and nonproliferating Müller glia within the same region of retina that might regulate reentry into the cell cycle. However, we have found that Müller glia that increase their expression of glial fibrillary acidic protein (GFAP) in response to damage do not reenter the cell cycle, while the glia that fail to increase their expression of GFAP incorporate BrdU (A.J. Fischer and T.A. Reh, unpublished observations). In addition, some genes normally restricted to the nonpigmented epithelium of the ciliary body (quiescent neurogenic cells) are upregulated in some Müller glia following neurotoxic damage (R. Kubota, C. McGuire, B.D. Dierks, and T.A. Reh, unpublished observations). We also do not understand why most of the cells generated in response to damage fail to differentiate into either neurons or new Müller glia. There could be environmental restrictions, with the mature retinal environment lacking necessary factors to direct progenitors to neural or glial fates. Alternatively, key cellintrinsic factors, like proneural transcription factors, might also be absent. Evidence for the first possibility comes from preliminary experiments that are currently under way. We are testing the ability of embryonic retinal progenitor cells to differentiate into various types of neurons when transplanted to the toxintreated postnatal chicken retina. Our results suggest that the postnatal chicken retina does not support the neuronal differentiation of embryonic progenitor cells; thus, the local environment may also suppress the differentiation of the Müller glial-derived progenitors (Fischer and Reh, unpublished observations). In addition, results of similar experiments in mice show that few brain-derived progenitors differentiate into neurons in the degenerating retina of the retinal degeneration (rd) mouse (Lu et al., 2002). We have also been testing whether there may be intrinsic limits to the potential of the dedifferentiated Müller cells. While these cells transiently express the proneural bhlh transcription factor CASH-1 and homeodomain transcription factors consistent with neural differentiation (e.g., Pax6), the expression of these genes is not sufficient for neurogenesis in all cells. Indeed, overexpression of the proneural transcription factors NeuroD1 or Neurogenin fails to drive most of these cells into neuronal fates in vitro (A.J. Fischer and T.A. Reh, unpublished observations). While many questions remain unanswered concerning the response of Müller cells to damage in the chicken retina, it is clear that, under normal conditions, Müller glia are not neural stem cells; dedifferentiation and proliferation are required for Müller glia to become progenitors. In chicken, as in all vertebrate species, Müller glia are differentiated support cells that express a complement of cell-specific functional proteins. The relationships among stem cells, progenitors, and glia have undergone considerable revision in recent years, as highlighted in the work we have reviewed in the avian retina. Understanding of the molecular basis of the relationship among these cell types may improve our ability to control the process of neurogenesis and may lead to the exciting possibility of promoting retinal regeneration in higher vertebrates, like ourselves. REFERENCES Anezary L, Medina JI, Sanchez-Nogueiro J, Lopez-Gallardo M, Prada C. 2001. Shape diversity among chick retina Müller cells and their postnatal differentiation. J Comp Neurol 438:32 49. Cao W, Li F, Steinberg RH, Lavail MM. 2001. Development of normal and injury-induced gene expression of afgf, bfgf, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res 72:591 604. de la Rosa EJ, Bondy CA, Hernandez-Sanchez C, Wu X, Zhou J, Lopez-Carranza A, Scavo LM, de Pablo F. 1994. Insulin and insulinlike growth factor system components: gene expression in the chicken retina from early neurogenesis until late development and their effects on neuroepithelial cells. Eur J Neurosci 6:1801 1810. Fischer AJ, Reh TA. 2001. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci 4:247 252. Fischer AJ, Reh TA. 2002. Exogenous growth factors stimulate the regeneration of ganglion cells in the retina. Dev Biol 251:367 379. Fischer AJ, Seltner RLP, Poon J, Stell WK. 1998. Immunocytochemical characterization of NMDA and QA-induced excitotoxicity in the retina of chicks. J Comp Neurol 393:1 15. Fischer AJ, McGuire C, Dierks BD, Reh TA. 2002. Insulin and FGF2 activate a neurogenic program in Müller glia. J Neurosci 22:9387 9398. Hansson HA, Holmgren A, Norstedt G, Rozell B. 1989. Changes in the distribution of insulin-like growth factor I, thioredoxin reductase and ribonucleotide reductase during development of the retina. Exp Eye Res 48:411 420. Holt CE, Bertsch TW, Ellis HM, Harris WA. 1988. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1:15 26. Julian D, Ennis K, Korenbrot JI. 1998. Birth and fate of proliferative cells in the inner nuclear layer of the mature fish retina. J Comp Neurol 394:271 282. Lewis GP, Erickson PA, Guerin CJ, Anderson DH, Fisher SK. 1992. Basic fibroblast growth factor: a potential regulator of proliferation and intermediate filament expression in the retina. J Neurosci 12:3968 3978. Lu B, Kwan T, Kurimoto Y, Shatos M, Lund RD, Young MJ. 2002. Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice. Brain Res 943:292 300. Kostyk SK, D Amore PA, Herman IM, Wagner JA. 1994. Optic nerve injury alters basic fibroblast growth factor localization in the retina and optic tract. J Neurosci 14:1441 1449. Otteson DC, D Costa AR, Hitchcock PF. 2001. Putative stem cells and the lineage of rod photoreceptors in the mature retina of the goldfish. Dev Biol 232:62 76. Prada C, Puga J, Pérez-Méndez L, Lóper R, Ramírez G. 1991. Spatial and temporal patterns of neurogenesis in the chick retina. Eur J Neurosci 3:559 569. Raymond PA, Hitchcock PF. 1997. Retinal regeneration: common principles but a diversity of mechanisms. Adv Neurol 72:171 184. Raymond PA, Reifler MJ, Rivlin PK. 1988. Regeneration of goldfish retina: rod precursors are a likely source of regenerated cells. J Neurobiol 19:431 463. Sarthy PV. 1985. Establishment of Müller cell cultures from adult rat retina. Brain Res 337:138 141. Sidman RL. 1961. Histogenesis of the mouse retina studied with [ 3 H] thymidine. In: Smelser G, editor. The structure of the eye. San Diego: Academic Press. p 487 506. Turner DL, Cepko CL. 1987. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131 136. Turner DL, Snyder EY, Cepko CL. 1990. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833 845. Valter K, Maslim J, Bowers F, Stone J. 1998. Photoreceptor dystrophy in the RCS rat: roles of oxygen, debris, and bfgf. Invest Ophthalmol Vis Sci 39:2427 2442. Walsh N, Valter K, Stone J. 2001. Cellular and subcellular patterns of expression of bfgf and CNTF in the normal and light-stressed adult rat retina. Exp Eye Res 72:495 501. Wen S, Song Y, Cheng T, Matthes MT, Tasumura D, LaVail MM, Steinberg RH. 1995. Injury-induced upregulation of bfgf and CNTF mrnas in the rat retina. J Neurosci 15: 7377 7385.