Electronic Supplementary Material

Similar documents
ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood

Supporting Information

Supporting Information

Christophe Lincheneau, Bernard Jean-Denis and Thorfinnur Gunnlaugsson* Electronic Supplementary Information

Electronic Supporting Information

Electronic Supplementary Information

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

Electronic Supplementary Information

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

Supporting Information. for. Synthesis of dye/fluorescent functionalized. dendrons based on cyclotriphosphazene

Dual-site Controlled and Lysosome-targeted ICT-PET-FRET. Fluorescent Probe for Monitoring ph Changes in Living Cells

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

Development of a near-infrared fluorescent probe for monitoring hydrazine in serum and living cells

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies

Acyl Radical Reactions in Fullerene Chemistry: Direct Acylation of. [60]Fullerene through an Efficient Decatungstate-Photomediated Approach.

Supporting Information

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines

Preparation, isolation and characterization of N α -Fmoc-peptide isocyanates: Solution synthesis of oligo-α-peptidyl ureas

Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins

Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle

L-Carnosine-Derived Fmoc-Tripeptides Forming ph- Sensitive and Proteolytically Stable Supramolecular

Supporting information for

Supporting Information. for. Access to pyrrolo-pyridines by gold-catalyzed. hydroarylation of pyrroles tethered to terminal alkynes

Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylin

Allenylphosphine oxides as simple scaffolds for. phosphinoylindoles and phosphinoylisocoumarins

Supporting information to Amino-functional polyester dendrimers based on bis-mpa as nonviral vectors for sirna delivery

Supplementary Information

Support Information. Table of contents. Experimental procedures. S2. Spectroscopic data... S2-S23. Photophysical properties..

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Supplementary Information

Supporting Information. Radical fluorination powered expedient synthesis of 3 fluorobicyclo[1.1.1]pentan 1 amine

Supporting Information. Recyclable hypervalent-iodine-mediated solid-phase peptide

Supporting Information

Supporting Information

Accessory Publication

Scheme S1. Synthesis of glycose-amino ligand.

Electronic Supplementary Information (ESI) belonging to

Hetero Bodipy-dimers as heavy atom-free triplet photosensitizer showing long-lived triplet excited state for triplet-triplet annihilation upconversion

Supporting Information

All chemicals were obtained from Aldrich, Acros, Fisher, or Fluka and were used without

Supplementary Information

Direct Aerobic Carbonylation of C(sp 2 )-H and C(sp 3 )-H Bonds through Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors

Electronic Supplementary Information

mm C3a. 1 mm C3a Time (s) C5a. C3a. Blank. 10 mm Time (s) Time (s)

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis

Thiol-Ene Photoimmobilization of Chymotrypsin on Polysiloxane Gels for Enzymatic Peptide Synthesis

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction

Simple copper/tempo catalyzed aerobic dehydrogenation. of benzylic amines and anilines

Supporting Information

Nitro-Grela-type complexes containing iodides. robust and selective catalysts for olefin metathesis

Use of degradable cationic surfactants with cleavable linkages for enhancing the. chemiluminescence of acridinium ester labels. Supplementary Material

Supplemental Material

Supporting Information. for. Synthesis of 2,1-benzisoxazole-3(1H)-ones by basemediated. photochemical N O bond-forming

Supporting Information

Supporting Information

An Orthogonal Array Optimization of Lipid-like Nanoparticles for. mrna Delivery in Vivo

Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine. Resistant Breast Cancer Therapeutics

Self-assembly of Tetra- and Hexameric Terpyridine-based Macrocycles Using Cd(II), Zn(II) and Fe(II)

Facile Cu(II) mediated conjugation of thioesters and thioacids to peptides and proteins under mild conditions

Pyridazine N-Oxides as Precursors of Metallocarbenes: Rhodium-Catalyzed Transannulation with Pyrroles. Supporting Information

Photoinitiated Multistep Charge Separation in Ferrocene-Zinc Porphyrin- Diiron Hydrogenase Model Complex Triads

Supporting Information for

Supporting Information for:

The First Au-Nanoparticles Catalyzed Green Synthesis of Propargylamines Via Three-Component Coupling Reaction of Aldehyde, Alkyne And Amine

Supporting Information for

Efficient and green, microwave assisted synthesis of haloalkylphosphonates via Michaelis-Arbuzov reaction

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences,

Analysis of fatty acid metabolism using Click-Chemistry and HPLC-MS

Organic Semiconducting Nanoparticles as Efficient Photoacoustic Agents for Lightening Early Thrombus and

Pt IV azido complexes undergo copper-free click reactions with alkynes

Dual-Responsive Polymer Micelles for. Target-Cell-Specific Anticancer Drug Delivery

Supporting Information. for. Pd-catalyzed decarboxylative Heck vinylation of. 2-nitro-benzoates in the presence of CuF 2

Chukvelutins A-C, 16-norphragmalin limonoids with unprecedented skeletons from Chukrasia tabularis var. velutina

Gabriel De Crozals, Carole Farre, Monique Sigaud, Philippe Fortgang, Corinne Sanglar and Carole Chaix* Instrumentation and Chemicals

Efficient Metal-Free Pathway to Vinyl Thioesters with Calcium Carbide as the Acetylene Source

Supporting Information

Palladium-Catalyzed Regioselective C-2 Arylation of 7-Azaindoles, Indoles, and Pyrroles with Arenes. Supporting Information

Supporting Information

Electronic Supporting Information

An Unusual Glycosylation Product from a Partially Protected Fucosyl Donor. under Silver Triflate activation conditions. Supporting information

Preparation of Stable Aziridinium Ions and Their Ring Openings

Supporting Information. Design and Synthesis of Bicyclic Pyrimidinones as Potent and Orally. Bioavailable HIV-1 Integrase Inhibitors.

Fluorescent probes for detecting monoamine oxidase activity and cell imaging

Supporting Information

Electronic Supplementary Information

Insight into aggregation-induced emission characteristics of red-emissive quinoline-malononitrile by cell tracking and real-time trypsin detection

Supporting information

Supporting Information

Synthesis of Some Aldoxime Derivatives of 4H-Pyran-4-ones

Supporting information

Supporting Information. as the nitro source

Self-organization of dipyridylcalix[4]pyrrole into a supramolecular cage for dicarboxylates

Supporting Information

A ph-sensitive prodrug micelle self-assembled from multi-doxorubicin-tailed. PCFM Lab of Ministry of Education, School of Chemistry and Chemical

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Base-promoted acetal formation employing aryl salicylates

Transcription:

Electronic Supplementary Material PAMAM Dendrimers Bearing Electron-Donating Chromophores: Fluorescence and Electrochemical Properties Bing-BingWang a, Xin Zhang a, Ling Yang a, Xin-Ru Jia* a, Yan Ji a, Wu-Song Li a, Yen Wei* b a Department of Polymer Science & Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871 China, Fax: 86-10-62751708; Tel: 86-10-62885490; E- mail: xrjia@pku.edu.cn b Department of Chemistry, Drexel University, Philadelphia, PA 19104 USA Tel. 215-895- 2650; Fax 215-895-1265; E-mail: weiyen@drexel.edu PAMAM-P G1. 10 ml of benzaldehyde (0.037 g, 3.08 mmol) was added to a methanol solution (50 ml) of the first generation PAMAM dendrimer G1 (0.50 g, 0.35 mmol) in the presence of anhydrous sodium sulfate (2.0g). After the reaction at 60 for 12 h under stirring, the system was cooled to room temperature and the solvent was removed under a reduced pressure. The residue was dissolved again in chloroform (5 ml). The solvent and excess benzaldehyde were removed under reduced pressure. The resulting yellow semi-solid crude product was purified by repeated dissolution in methanol (5 ml) and precipitation in anhydrous diethyl ether (100 ml) with vigorously stirring. The precipitate was collected and further purified by dialysis using a dialysis membrane (M W =1000) to afford final product (0.1g). Yield: 39%. FT-IR: (KBr pellet, cm -1 ) 3278, 3061, 2936, 2841, 1645, 1552, 1450, 1378, 1254, 757, 720, 695. 1 H-NMR (CDCl 3, TMS, ppm): δ7.36-7.66 (40H, aromatic ring), 8.25 (8H, s, 8-CH=N-), 3.67 (16H, 8-CH 2 -CH 2 -N=CH-), 3.50 (16H, 8-NH-CH 2 -CH 2 -N=C-), 3.18 (8H, 4-NH-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.65 (22H, 11-CH 2 -N(- CH 2 -)-CH 2 -CH 2 -), 2.46(12H, 6-CH 2 -N(-CH 2 -)-CH 2 -), 2.25 (24H, 12-CH 2 -CO-). 13 C-NMR (CDCl 3, ppm): 172.49, 162.91, 135.69, 130.83, 128.56, 128.07, 60.24, 50.13, 40.13, and 33.95. MALDI- S1

TOF MS (matrix: dithranol/silver trifluoroacetate =1:1/w:w): Calcd for C 118 H 160 N 26 O 12 [M]: 2132, found: 2133 (M+H + ), 2155 (M+Na + ). PAMAM-P G2 to G5 were synthesized in a same manner as PAMAM-Ph G1. PAMAM-P G2: 1 H-NMR (CDCl 3, TMS, ppm): δ 7.71, 7.97 (90H, 16aromatic ring), 8.27 (16H, s, 16-CH=N-), 3.59 (32H, 16-CH 2 -CH 2 -N=CH-), 3.36 (32H, 16-NH-CH 2 -CH 2 -N=CH-), 3.06 (24H, 12-NHCH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.60 (56H, 28-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.39 (24H, 12-CH 2 - N(-CH 2 -)-CH 2 -), 2.16 (56H, 28-CH 2 -CO-). FT-IR: (KBr pellet, cm -1 ): 1695 (C=N), 1640, 1553 (- NH-CO-), 1451, 756, 696 (phenyl ring). PAMAM-P G3: 1 H-NMR (CDCl 3, TMS, ppm): δ 7.31, 7.68 (160H, 32aromatic ring), 8.25 (32H, 32-CH=N-), 3.66 (64H, 32-CH 2 -CH 2 -N=CH-), 3.46 (64H, 32-NH-CH 2 -CH 2 -N=CH-), 3.10 (54H, 27-NHCH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.64 (124H, 62-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.32 (54H, 27-CH 2 - N(-CH 2 -)-CH 2 -), 2.24 (122H, 61-CH 2 -CO-). FT-IR: (KBr pellet, cm -1 ): 1695 (C=N), 1645, 1556 (- NH-CO-), 1456,756, 695 (phenyl ring). PAMAM-P G4: 1 H-NMR (CDCl 3, TMS, ppm): δ 7.36, 7.66 (320H, 64aromatic ring), 8.25 (64H, s, 64-CH=N-), 3.67 (126H, 63-CH 2 -CH 2 -N=CH-), 3.50 (130H, 65-NH-CH 2 -CH 2 -N=CH-), 3.18 (122H, 61-NH-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.65 (252H, 126-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.46(118H, 59-CH 2 -N(-CH 2 -)-CH 2 -), 2.25 (246H, 123-CH 2 -CO-). FT-IR: (KBr pellet, cm -1 ): 1688 (C=N), 1649,1558 (-NH-CO-), 1456, 779, 691 (phenyl ring). PAMAM-P G5: 1 H-NMR (CDCl 3, TMS, ppm): δ 7.36-7.66 (640H, 128aromatic ring), 8.25 (128H,s, 128-CH=N-), 3.67 (252H, 126-CH 2 -CH 2 -N=CH-), 3.50 (252H, 126-NH-CH 2 -CH 2 -N=CH- ), 3.18 (244H, 122-NH-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.65 (502H, 251-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.46(250H,125-CH 2 -N(-CH 2 -)-CH 2 -), 2.25 (508H, 259-CH 2 -CO-). FT-IR: (KBr pellet, cm -1 ) 3278, 3061, 2936, 2841, 1645, 1552, 1450, 1378, 1254, 757, 720, 695. PAMAM-PA G1: 1 H-NMR(CDCl 3, TMS, ppm): δ 6.65-6.69 (16H, 8aromatic ring), 7.54 (16H, 8aromatic ring), 8.11 (8H, s, 8-CH=N-), 3.62 (16H, 8-CH 2 -CH 2 -N=CH-), 3.51 (16H, 8-NH-CH 2 - CH 2 -N=C-), 3.23 (8H, 4-CO-NH-CH 2 -CH2-N(-CH 2 -)-CH 2 -), 3.00 (48H, 8-N-(CH 3 ) 2 ), 2.80 (8H, 4 -CH 2 -N(-CH 2 -)-CH 2 -), 2.64 (24H, 12-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.45 (4H, -CH 2 -(-CH 2 -)-N-CH 2 - S2

CH 2 -N(-CH 2 -)-CH 2 -), 2.28 (24H, 12-CH 2 -CO-). FT-IR: (KBr pellet, cm -1 ): 3289; 3075; 2924; 2851; 1645; 1608; 1556; 1524; 1446; 1359; 1228; 1182; 1166. PAMAM-PA G2: 1 H-NMR(CDCl 3, TMS, ppm): δ 6.66-6.69 (32H, 16aromatic ring), 7.58 (32H, 16aromatic ring), 8.115 (16H, s, 16-CH=N-), 3.62 (32H, 16-CH 2 -CH 2 -N=CH-), 3.51 (32H, 16-NH- CH 2 -CH 2 -N=C-), 3.23 (24H, 12-CO-NH-CH 2 -CH2-N(-CH 2 -)-CH 2 -), 3.00 (96H, 16-N-(CH 3 ) 2 ), 2.80 (24H, 12 -CH 2 -N(-CH 2 -)-CH 2 -), 2.64 (56H, 28-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.45 (4H, -CH 2 -(-CH 2 - )-N-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.28 (56H, 28-CH 2 -CO-). FT-IR (KBr pellet, cm -1 ): 3287; 3072; 2925; 2852; 1649; 1614; 1552; 1523; 1446; 1353; 1226; 1182; 1165. PAMAM-PA G3: 1 H-NMR(CDCl 3, TMS, ppm): δ 6.65-6.69 (64H, 32aromatic ring), 7.54-7.58 (64H, 32aromatic ring), 8.12 (32H, s, 32-CH=N-), 3.63 (64H, 32-CH 2 -CH 2 -N=CH-), 3.50 (64H, 32- NH-CH 2 -CH 2 -N=C-), 3.26 (56H, 28-CO-NH-CH 2 -CH2-N(-CH 2 -)-CH 2 -), 3.00 (192H, 32-N- (CH 3 ) 2 ), 2.81 (56H, 28 -CH 2 -N(-CH 2 -)-CH 2 -), 2.66 (120H, 60-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.45 (4H, -CH 2 -(-CH 2 -)-N-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.28 (120H, 60-CH 2 -CO-). FT-IR (KBr pellet, cm - 1 ): 3287; 3072; 2925; 2852; 1649; 1614; 1552; 1523; 1446; 1353; 1226; 1182; 1165. PAMAM-PA G4: 1 H-NMR(CDCl 3, TMS, ppm): δ 6.65 (128H, 64aromatic ring), 7.55 (128H, 64aromatic ring), 8.11 (64H, s, 64-CH=N-), 3.63 (128H, 64-CH 2 -CH 2 -N=CH-), 3.50 (128H, 64- NH-CH 2 -CH 2 -N=C-), 3.23 (120H, 60-CO-NH-CH 2 -CH2-N(-CH 2 -)-CH 2 -), 3.00 (384H, 64-N- (CH 3 ) 2 ), 2.81 (120H, 60 -CH 2 -N(-CH 2 -)-CH 2 -), 2.66 (248H, 124-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.45 (4H, -CH 2 -(-CH 2 -)-N-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.28 (248H, 124-CH 2 -CO-). FT-IR (KBr pellet, cm -1 ): 3287; 3072; 2925; 2852; 1649; 1614; 1552; 1523; 1446; 1353; 1226; 1182; 1165. PAMAM-PA G5: 1 H-NMR(CDCl 3, TMS, ppm): δ 6.61-6.65 (256H, 128aromatic ring), 7.51-7.55 (256H, 128aromatic ring), 8.10 (128H, s, 128-CH=N-), 3.61 (256H, 128-CH 2 -CH 2 -N=CH-), 3.48 (256H, 128-NH-CH 2 -CH 2 -N=C-), 3.21 (248H, 124-CO-NH-CH 2 -CH2-N(-CH 2 -)-CH 2 -), 3.00 (768H, 128-N-(CH 3 ) 2 ), 2.81 (248H, 124 -CH 2 -N(-CH 2 -)-CH 2 -), 2.66 (504H, 252-CH 2 -N(-CH 2 -)-CH 2 -CH 2 - ), 2.45(4H, -CH 2 -(-CH 2 -)-N-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 2.28 (504H, 252-CH 2 -CO-). FT-IR (KBr S3

pellet, cm -1 ): 3287; 3072; 2925; 2852; 1649; 1614; 1552; 1523; 1446; 1353; 1226; 1182; 1165. PAMAM-Cz G0: 1 H-NMR(CDCl 3, TMS, ppm): δ 7.17-7.48 (64H, 8carbazole), 4.23 (16H, 8-CH 2 - CH 2 -CH 2 -N-), 3.37-3.40 (8H, 4-CO-NH-CH 2 -), 3.10 (8H, 4 -N(-CH 2 -)-CH 2 -), 2.78 (8H, 4-CH 2 -N(- CH 2 -)- CH 2 -), 2.56 (8H, 4-CH 2 -CO-), 2.43 (16H, 8-CH 2 -CH 2 -CH 2 -N-), 1.87 (16H, 8-CH 2 -CH 2 - CH 2 -N-). FT-IR: (KBr pellet, cm -1 ): 3361; 3259; 3051; 2924; 2852; 1658; 1597; 1548; 1463; 1454; 1348; 1327; 1234; 1216. PAMAM-Cz G1: 1 H-NMR(CDCl 3, TMS, ppm): δ 7.17-7.49 (128H, 16carbazole), 4.12-4.20 (32H, 16-CH 2 -CH 2 -CH 2 -N-), 3.37-3.41 (24H, 12-CO-NH-CH 2 -), 3.10 (24H, 12 -N(-CH 2 -)-CH 2 -), 2.77 (32H, 12-CH 2 -N(-CH 2 -)- CH 2 -), 2.52 (24H, 12-CH 2 -CO-), 2.42-2.44 (32H, 16-CH 2 -CH 2 -CH 2 -N-), 1.82 (32H, 16-CH 2 -CH 2 - CH 2 -N-). FT-IR: (KBr pellet, cm -1 ): 3361; 3258; 3049; 2929; 2853; 1661; 1596; 1548; 1484; 1454; 1348; 1327; 1233; 1218. PAMAM-Cz G2: 1 H-NMR(CDCl 3, TMS, ppm): δ 7.16-7.48 (256H, 32carbazole), 4.11 (64H, 32- CH 2 -CH 2 -CH 2 -N-), 3.37-3.40 (56H, 28-CO-NH-CH 2 -), 3.10 (56H, 28-N(-CH 2 -)-CH 2 -), 2.78 (56H, 28-CH 2 -N(-CH 2 -)- CH 2 -), 2.42-2.44 (56H, 28-CH 2 - CO-), 2.23-2.26 (64H, 32-CH 2 -CH 2 -CH 2 -N-), 1.83 (64H, 32-CH 2 -CH 2 -CH 2 -N-). FT-IR: (KBr pellet, cm -1 ): 3402; 3249; 3049; 2937; 2853; 1660; 1596; 1548; 1484; 1454; 1348; 1327; 1234; 1216. PAMAM-Cz G3: 1 H-NMR(CDCl 3, TMS, ppm): δ 7.12-7.44 (512H, 64carbazole), 4.14 (128H, 64- CH 2 -CH 2 -CH 2 -N-), 3.37-3.40 (120H, 60-CO-NH-CH 2 -), 3.12 (120H, 60 -N(-CH 2 -)-CH 2 -), 2.78 (120H, 60-CH 2 -N(-CH 2 -)-CH 2 -), 2.57 (120H, 60-CH 2 - CO-), 2.40-2.47 (128H, 64-CH 2 -CH 2 -CH 2 - N-), 1.81 (128H, 64-CH 2 -CH 2 -CH 2 -N-). FT-IR: (KBr pellet, cm -1 ): 3398; 3262; 3050; 2927; 2853; 1661; 1597; 1548; 1484; 1454; 1348; 1327; 1233; 1216. PAMAM-Cz G4: 1 H-NMR(CDCl 3, TMS, ppm): δ 7.17-7.48 (1024H, 128carbazole), 4.23 (256H, 128-CH 2 -CH 2 -CH 2 -N-), 3.37-3.40 (248H, 124-CO-NH-CH 2 -), 3.10 (248H, 124-N(-CH 2 -)-CH 2 -), 2.78 (248H, 124-CH 2 -N(-CH 2 -)- CH 2 -), 2.56 (248H, 124-CH 2 -CO-), 2.43 (256H, 128-CH 2 -CH 2 - CH 2 -N-), 1.87 (256H, 128-CH 2 -CH 2 - CH 2 -N-). FT-IR: (KBr pellet, cm -1 ): 3390; 3250; 3050; 2931; S4

2852; 1662; 1596; 1548; 1484; 1454; 1348; 1327; 1234; 1216. PAMAM-Py G1. A methanol solution (25 ml) of PAMAM G1 (0.0136 g, 0.00952 mmol) was added dropwise to an acetone solution (30 ml) of N-(1-pyrenyl)maleimide (0.050 g, 0.168 mmol) at 0 C. The resultant solution was kept at 30 C with stirring for 48 h. After evaporating the solvent under a reduced pressure, the residue was dissolved in methanol (5 ml), which was then dropped into anhydrous diethyl ether (100 ml) with stirring. A white precipitation was collected by suction filtration, then dissolved again in methanol (10 ml) and dialyzed with a dialysis bag (M W =3500) using methanol as a solvent at room temperature for 24 h. After evaporating methanol under a reduced pressure and drying in a vacuum oven at 40 C for 24 h, a pale yellow powder (0.0070 g) was obtained. Yield: 30%. FT-IR (KBr pellet, cm-1): 3021, 3116, 2925, 1641, 1504, 1411, 1326, 781, 735. 1 H NMR: (CDCl 3, ppm) δ 7.597-8.235 (72H, aromatic ring), 3.700 (8H, 8-CH 2 -CH (-CO- )-NH-), 2.873 (16H, 8-NH-CH 2 -CH 2 -N(-CH 2 -)-CH 2 -), 3.483 (16H, 8-CH 2 -CH 2 -NH-CH(-CO-)- CH 2 -), 3.323 (8H, 4-NH-CH 2 -CH 2 -NH-CH- ), 2.654 (32H,16-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 2.366 (24H, 12- CH 2 -CO-). MALDI-TOF MS (matrix: 2, 5-dihydroxybenzoic acid) Calcd for C 223 H 220 N 34 O 28 [M]: 3821.7. Found: 3846 (M + Na) +. PAMAM-Py G0: 1 H-NMR: (CDCl 3, ppm) δ 7.954 (36H, 4aromatic ring), 3.678(4H, 4-CH 2 -CH(- CO-)-NH-), 2.695(8H, 4-CH 2 -N(-CH 2 -)-CH 2 -CH 2 -), 3.230 (8H, 4-CH 2 -CH 2 -NH-CH(-CO-)-CH 2 -), 2.862 (8H, 4-NHCH 2 -CH 2 -NH-CH-), 2.234 (8H, 4-CH 2 -CO-). FT-IR (KBr pellet, cm -1 ): 3016, 3220, 2924, 1642, 1519,1403, 1325, 778, 742. MALDI-TOF MS (matrix: DI): Calcd for C102H92N14O12 [M]: 1704.7, found:[m+h + ] 1706. PAMAM-Py G2: 1 H-NMR: (CDCl 3, ppm) δ 7.999 (288H,16aromatic ring), 3.492(16H, 16-CH 2 - CH-(-CO-)-NH-), 2.657(32H, 16-CH 2 -NH-CH 2 -CH 2 ), 3.219 (56H,284-CH 2 -CH 2 -NH-CH(-CO-)- CH 2 -), 2.450 (56H,28-NHCH 2 -CH 2 -NH-CH-), 2.218 (56H, 28-CH 2 -CO-). FT- IR (KBr pellet, cm - 1 ): 3047, 3135,2975, 1644, 1551, 1443, 1327, 782, 711. PAMAM-Py G3: 1 H-NMR: (CDCl 3, ppm) δ 7.963 (576H,32aromatic ring), 3.665(32H, 32-CH 2 - CH-(-CO-)-NH-), 2.780(64H, 32-CH 2 -NH-CH 2 -CH 2 ), 3.484 (58H, 58-CH 2 -CH-(-CO-)-NH-), 2.591(118H, 59-NHCH 2 -CH 2 -NH-CH-), 2.312(122H, 61-CH 2 -CO-). FT- IR (KBr pellet, cm - S5

1 ):3028, 3114, 2925, 1643, 1567, 1416, 1326, 776. PAMAM-Py G4: 1 H-NMR: (CDCl 3, ppm) δ 7.997 (1152H,64aromatic ring), 3.701(64H, 64-CH 2 - CH(-CO-)-NH-), 2.873(128H, 64-CH 2 -NH-CH 2 -CH 2 ), 3.483 (126H, 126-CH 2 -CH-(-CO-)-NH-), 2.592(242H, 121-NHCH 2 -CH 2 -NH-CH-), 2.366(246H, 123-CH 2 -CO-). FT- IR (KBr pellet, cm - 1 ):3030, 3109, 2925, 2853, 1642, 1541, 1409, 1324, 778. PAMAM-Py G5: 1 H-NMR:(CDCl 3, ppm) δ 7.597-8.235 (1152H, 128aromatic ring), 3.700 (128H,128-CH 2 -CH-(-CO-)-NH-), 2.873 (252H, 126-CH 2 -NH-CH 2 -CH 2 ), 3.483 (258H, 258-CH 2 - CH-(-CO-)-NH-), 3.323 (258H, 258-CH 2 -CH-(-CO-)-NH-), 2.654(764H, 387-NHCH 2 -CH 2 -NH- CH-), 2.366 (758H, 379-CH 2 CO-). FT-IR (KBr pellet, cm -1 ): 3021, 3116, 2925, 1641, 1504, 1411,1326, 781, 735. 9-(3-bromopropyl)-9H-carbazole: 9-(3-bromopropyl)-9H-carbazole was synthesized as shown in Scheme S-1. Hydride sodium (0.53 g, 0.02mol) was added slowly into a tetrahydrofuran solution (50 ml) of carbazole (3.34 g, 0.02 mol) in a 100 ml flask. The reaction mixture was added 1,3- dibromopropane (40.4 g, 0.20 mole) when there was no more hydrogen bubbling out. The mixture was stirred for 12 h at room temperature. Then the crude product was obtained after filtrating the solvent followed by purification by chromatography over silica using a mixed petroleum ether/dichloromethane (20:1/v:v) solvent as eluent. Yield: 52%. 1 H-NMR(CDCl3, TMS, ppm): δ 8.1 (d,2h), 7.6-7.2 (m,6h),4.5 (t,2h),3.38 (t,2h),2.43 (m,2h). Scheme S-1. Synthesis of N-(ω-bromopropyl)-carbazole NaH, THF NH Br Br room temperature N Br S6

Relative Intensity 20 80 min 70 min 60 min 50 min 40 min 10 30 min 20 min 10 min 0 360 450 540 Wavelength /nm Figure S-1. Changes in the fluorescence intensity during the reaction of PAMAM G 4 with 4- dimethylaminobenzaldehyde in methanol. [chromophore] = 5x10-6 M S7

Figure S-2. 1 H-NMR spectra during the reaction of PAMAM G 4 with p-dimethylaminobenzaldehyde. Reaction time for each spectrum (min): 2, 17, 62 (from bottom to top). S8

100 Conversion (%) 75 50 25 1000 500 0 Relative Fluorescence Intensity 0 20 40 60 80 Reaction time /min Figure S-3. Reaction of PAMAM G 4 with p-dimethylaminobenzaldehyde monitored by following the changes in fluorescence intensity and by 1 H-NMR spectroscopy. S9

1000 Relative Intensity 800 600 400 50 60 70 80 90 100 Conversion(%) Figure S-4. Correlation plot of fluorescence intensity versus reaction extent of PAMAM G 4 with p-dimethylaminobenzaldehyde 70 0.8 60 Absorbance 0.6 0.4 0.2 50 40 30 20 Relative Intensity 10 0.0 0 200 250 300 350 400 450 500 550 Wavelength /nm Figure S-5. UV-vis absorption and fluorescence spectra of PAMAM-PA G 5 in methanol. [PA]=1x10-5 M, λ ex =340 nm. S10

14 Fluorescence Quantum Yields 12 10 8 6 4 2 0 G1 G2 G3 G4 G5 Figure S-6. Fluorescence quantum yields (Φ f ) of PAMAM-PA G 1-5 in methanol (MeOH) ( ), acetonitrile (AN) ( ), N, N-dimethyforamine (DMF) ( ) and dichloromethane (DCM) ( ). Figure S-7. Cyclic voltammograms of PAMAM-PA G 1-5 in acetonitrile solution at scanning rate S11

50mVs -1 (25 ) [PA]=10-2 M 40 Relative Intensity 30 20 10 88 % 82 % 78 % 42 % 0 300 350 400 450 500 550 600 Wavelength/ nm Figure S-8. Fluorescence spectra of PAMAM-PA G 2 with different modification extents from bottom to top: 42 %, 78 %, 82 %, 88 % in methanol. [chromophore] = 5x10-6 M. λ ex = 340 nm. S12

20 Relative Intensity 10 88 % 83 % 65 % 55 % 0 300 350 400 450 500 550 600 Wavelength /nm Figure S-9. Fluorescence spectra of PAMAM-PA G 4 with different modification extents from bottom to top: 55 %, 75 %, 83 %, 88 % in methanol. [chromophore] = 5x10-6 M. λ ex = 340 nm S13

Table S - 1. Fluorescence quantum yields (Φ f ) of PAMAM-PA G1-5 in methanol (MeOH), acetonitrile (AN), dichloromethane (DCM) and N, N-dimethyforamine (DMF). η(meoh)=1.3286 MeOH G1 G2 G3 G4 G5 I 3710.700 3830.900 3488.100 3265.500 4131.500 A 0.7875 0.7944 0.8033 0.8517 0.8265 Φ f (%) 1.17 1.20 1.08 0.95 1.24 η(an)=1.3441 AN G1 G2 G3 G4 G5 I 110.5 104.5 108.6 81.36 91.51 A 0.7308 0.7290 0.7103 0.7467 0.7388 Φ f (%) 2.78 2.64 2.81 2.01 2.28 η(dcm)=1.4246 DCM G1 G2 G3 G4 G5 I 6827.3 5923.1 7203.7 8213.0 8183.6 A 0.1820 0.1391 0.1910 0.2187 0.1991 Φ f (%) 10.15 11.39 10.28 10.26 11.07 η(dmf)=1.4269 DMF G1 G2 G3 G4 G5 I 2002.3 1893.5 2278.4 2893.9 3316.8 A 0.0992 0.1010 0.1144 0.1661 0.1681 Φ f (%) 6.70 6.37 6.86 6.23 6.59 S14

Table S-2. Stokes shifts of PAMAM-PA G1 in dichloromethane (DCM), N, N-dimethyforamine (DMF), acetonitrile (AN), methanol (MeOH). Solvent f Con (mol/l) λ ab (nm) ν a (10 4 cm -1 ) λ em (nm) ν f (10 4 cm -1 ) λ=λ em - λ ab (nm) ν a -ν f (10 4 cm -1 ) DCM 0.2184 3.0 10 5 335 2.985 383.8 2.606 48.8 0.379 DMF 0.2751 3.0 10 5 335 2.985 382.4 2.615 47.4 0.370 AN 0.3054 3.0 10 5 335 2.985 386 2.589 51.0 0.396 MeOH 0.3390 3.0 10 5 335 2.985 390.8 2.559 55.8 0.426 Table S-3. Fluorescence quantum yields (Φ f ) of Carbazole and PAMAM-Cz G 0 to G 4 in dichloromethane. Carbazole G0 G1 G2 G3 G4 I 7393.8 2567.2 2433.6 2816.4 5695.2 4484.3 A 0.0828 0.0649 0.0605 0.0719 0.1273 0.1068 Φ f (%) 25.49 11.29 11.48 11.18 12.77 11.98 S15